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Preface
C++ Primer, Fourth Edition , provides a comprehensive introduction to the C++ language. As a
primer, it provides a clear tutorial approach to the language, enhanced by numerous examples
and other learning aids. Unlike most primers, it also provides a detailed description of the
language, with particular emphasis on current and effective programming techniques.

Countless programmers have used previous editions of C++ Primer to learn C++. In that time
C++ has matured greatly. Over the years, the focus of the languageand of C++
programmershas grown beyond a concentration on run-time efficiency to focus on ways of
making programmers more efficient. With the widespread availability of the standard library, it
is possible to use and learn C++ more effectively than in the past. This revision of the C++
Primer reflects these new possiblities.

 



 

Changes to the Fourth Edition

In this edition, we have completely reorganized and rewritten the C++ Primer to highlight
modern styles of C++ programming. This edition gives center stage to using the standard
library while deemphasizing techniques for low-level programming. We introduce the standard
library much earlier in the text and have reformulated the examples to take advantage of library
facilities. We have also streamlined and reordered the presentation of language topics.

In addition to restructuring the text, we have incorporated several new elements to enhance the
reader's understanding. Each chapter concludes with a Chapter Summary and glossary of
Defined Terms, which recap the chapter's most important points. Readers should use these
sections as a personal checklist: If you do not understand a term, restudy the corresponding
part of the chapter.

We've also incorporated a number of other learning aids in the body of the text:

Important terms are indicated in bold ; important terms that we assume are already
familiar to the reader are indicated in bold italics . Each term appears in the chapter's
Defined Terms section.

Throughout the book, we highlight parts of the text to call attention to important aspects
of the language, warn about common pitfalls, suggest good programming practices, and
provide general usage tips. We hope that these notes will help readers more quickly digest
important concepts and avoid common pitfalls.

To make it easier to follow the relationships among features and concepts, we provide
extensive forward and backward cross-references.

We have provided sidebar discussions that focus on important concepts and supply
additional explanations for topics that programmers new to C++ often find most difficult.

Learning any programming language requires writing programs. To that end, the primer
provides extensive examples throughout the text. Source code for the extended examples
is available on the Web at the following URL:

http://www.awprofessional.com/cpp_primer

What hasn't changed from earlier versions is that the book remains a comprehensive tutorial
introduction to C++. Our intent is to provide a clear, complete and correct guide to the
language. We teach the language by presenting a series of examples, which, in addition to
explaining language features, show how to make the best use of C++. Although knowledge of C
(the language on which C++ was originally based) is not assumed, we do assume the reader
has programmed in a modern block-structured language.

 

http://www.awprofessional.com/cpp_primer


 

Structure of This Book

C++ Primer provides an introduction to the International Standard on C++, covering both the
language proper and the extensive library that is part of that standard. Much of the power of
C++ comes from its support for programming with abstractions. Learning to program effectively
in C++ requires more than learning new syntax and semantics. Our focus is on how to use the
features of C++ to write programs that are safe, that can be built quickly, and yet offer
performance comparable to the sorts of low-level programs often written in C.

C++ is a large language and can be daunting to new users. Modern C++ can be thought of as
comprising three parts:

The low-level language, largely inherited from C

More advanced language features that allow us to define our own data types and to
organize large-scale programs and systems

The standard library, which uses these advanced features to provide a set of useful data
structures and algorithms

Most texts present C++ in this same order: They start by covering the low-level details and
then introduce the the more advanced language features. They explain the standard library only
after having covered the entire language. The result, all too often, is that readers get bogged
down in issues of low-level programming or the complexities of writing type definitions and
never really understand the power of programming in a more abstract way. Needless to say,
readers also often do not learn enough to build their own abstractions.

In this edition we take a completely different tack. We start by covering the basics of the
language and the library together. Doing so allows you, the reader, to write significant
programs. Only after a thorough grounding in using the library and writing the kinds of abstract
programs that the libary allowsdo we move on to those features of C++ that will enable you to
write your own abstractions.

Parts I and II cover the basic language and library facilities. The focus of these parts is to learn
how to write C++ programs and how to use the abstractions from the library. Most C++
programmers need to know essentially everything covered in this portion of the book.

In addition to teaching the basics of C++, the material in Parts I and II serves another
important purpose. The library facilities are themselves abstract data types written in C++. The
library can be defined using the same class-construction features that are available to any C++
programmer. Our experience in teaching C++ is that by first using well-designed abstract types,
readers find it easier to understand how to build their own types.

Parts III through V focus on how we can write our own types. Part III introduces the heart of
C++: its support for classes. The class mechanism provides the basis for writing our own
abstractions. Classes are also the foundation for object-oriented and generic programming,
which we cover in Part IV . The Primer concludes with Part V , which covers advanced features
that are of most use in structuring large, complex systems.
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This chapter introduces most of the basic elements of C++: built-in, library, and class types;
variables; expressions; statements; and functions. Along the way, we'll briefly explain how to
compile and execute a program.

Having read this chapter and worked through the exercises, the reader should be able to write,
compile, and execute simple programs. Subsequent chapters will explain in more detail the
topics introduced here.

Learning a new programming language requires writing programs. In this chapter, we'll write a
program to solve a simple problem that represents a common data-processing task: A
bookstore keeps a file of transactions, each of which records the sale of a given book. Each
transaction contains an ISBN (International Standard Book Number, a unique identifier assigned
to most books published throughout the world), the number of copies sold, and the price at
which each copy was sold. Each transaction looks like

   0-201-70353-X 4 24.99

where the first element is the ISBN, the second is the number of books sold, and the last is the
sales price. Periodically the bookstore owner reads this file and computes the number of copies
of each title sold, the total revenue from that book, and the average sales price. We want to
supply a program do these computations.

Before we can write this program we need to know some basic features of C++. At a minimum
we'll need to know how to write, compile, and execute a simple program. What must this
program do? Although we have not yet designed our solution, we know that the program must

Define variables

Do input and output

Define a data structure to hold the data we're managing



Test whether two records have the same ISBN

Write a loop that will process every record in the transaction file

We'll start by reviewing these parts of C++ and then write a solution to our bookstore problem.

 



 

1.1. Writing a Simple C++ Program

Every C++ program contains one or more functions , one of which must be named main . A

function consists of a sequence of statements that perform the work of the function. The
operating system executes a program by calling the function named main . That function
executes its constituent statements and returns a value to the operating system.

Here is a simple version of main does nothing but return a value:

    int main()
    {
        return 0;
    }

The operating system uses the value returned by main to determine whether the program
succeeded or failed. A return value of 0 indicates success.

The main function is special in various ways, the most important of which are that the function
must exist in every C++ program and it is the (only) function that the operating system
explicitly calls.

We define main the same way we define other functions. A function definition specifies four
elements: the return type , the function name , a (possibly empty) parameter list enclosed
in parentheses, and the function body . The main function may have only a restricted set of
parameters. As defined here, the parameter list is empty; Section 7.2.6 (p. 243 ) will cover the
other parameters that can be defined for main .

The main function is required to have a return type of int , which is the type that represents
integers. The int type is a built-in type , which means that the type is defined by the
language.

The final part of a function definition, the function body, is a block of statements starting with
an open curly brace and ending with a close curly:

    {
        return 0;
    }

The only statement in our program is a return , which is a statement that terminates a function.

Note the semicolon at the end of the return statement. Semicolons
mark the end of most statements in C++. They are easy to
overlook, but when forgotten can lead to mysterious compiler error
messages.



When the return includes a value such as 0 , that value is the return value of the function. The
value returned must have the same type as the return type of the function or be a type that can
be converted to that type. In the case of main the return type must be int , and the value 0 is
an int .

On most systems, the return value from main is a status indicator. A return value of 0 indicates
the successful completion of main . Any other return value has a meaning that is defined by the
operating system. Usually a nonzero return indicates that an error occurred. Each operating
system has its own way of telling the user what main returned.

1.1.1. Compiling and Executing Our Program

Having written the program, we need to compile it. How you compile a program depends on
your operating system and compiler. For details on how your particular compiler works, you'll
need to check the reference manual or ask a knowledgeable colleague.

Many PC-based compilers are run from an integrated development environment (IDE) that
bundles the compiler with associated build and analysis tools. These environments can be a
great asset in developing complex programs but require a fair bit of time to learn how to use
effectively. Most of these environments include a point-and-click interface that allows the
programmer to write a program and use various menus to compile and execute the program.
Learning how to use such environments is well beyond the scope of this book.

Most compilers, including those that come with an IDE, provide a command-line interface.
Unless you are already familiar with using your compiler's IDE, it can be easier to start by using
the simpler, command-line interface. Using the command-line interface lets you avoid the
overhead of learning the IDE before learning the language.

Program Source File Naming Convention

Whether we are using a command-line interface or an IDE, most compilers expect that the
program we want to compile will be stored in a file. Program files are referred to as source
files . On most systems, a source file has a name that consists of two parts: a file namefor
example, prog1 and a file suffix. By convention, the suffix indicates that the file is a program.
The suffix often also indicates what language the program is written in and selects which
compiler to run. The system that we used to compile the examples in this book treats a file with
a suffix of .cc as a C++ program and so we stored this program as

    prog1.cc

The suffix for C++ program files depends on which compiler you're running. Other conventions
include

    prog1.cxx
    prog1.cpp
    prog1.cp
    prog1.C



Invoking the GNU or Microsoft Compilers

The command used to invoke the C++ compiler varies across compilers and
operating systems. The most common compilers are the GNU compiler and
the Microsoft Visual Studio compilers. By default the command to invoke
the GNU compiler is g++ :

    $ g++ prog1.cc -o prog1

where $ is the system prompt. This command generates an executable file
named prog1 or prog1.exe , depending on the operating system. On UNIX,
executable files have no suffix; on Windows, the suffix is .exe . The -o prog1

is an argument to the compiler and names the file in which to put the
executable file. If the -o prog1 is omitted, then the compiler generates an
executable named a.out on UNIX systems and a.exe on Windows.

The Microsoft compilers are invoked using the command cl :

    C:\directory> cl -GX prog1.cpp

where C:directory> is the system prompt and directory is the name of the
current directory. The command to invoke the compiler is cl , and -GX is an

option that is required for programs compiled using the command-line
interface. The Microsoft compiler automatically generates an executable
with a name that corresponds to the source file name. The executable has
the suffix .exe and the same name as the source file name. In this case, the
executable is named prog1.exe .

For further information consult your compiler's user's guide.

Running the Compiler from the Command Line

If we are using a command-line interface, we will typically compile a program in a console
window (such as a shell window on a UNIX system or a Command Prompt window on Windows).
Assuming that our main program is in a file named prog1.cc , we might compile it by using a
command such as:

    $ CC prog1.cc

where CC names the compiler and $ represents the system prompt. The output of the compiler is
an executable file that we invoke by naming it. On our system, the compiler generates the
executable in a file named a.exe . UNIX compilers tend to put their executables in a file named
a.out . To run an executable we supply that name at the command-line prompt:



    $ a.exe

executes the program we compiled. On UNIX systems you sometimes must also specify which
directory the file is in, even if it is in the current directory. In such cases, we would write

    $ ./a.exe

The ". " followed by a slash indicates that the file is in the current directory.

The value returned from main is accessed in a system-dependent manner. On both UNIX and
Windows systems, after executing the program, you must issue an appropriate echo command.
On UNIX systems, we obtain the status by writing

    $ echo $?

To see the status on a Windows system, we write

    C:\directory> echo %ERRORLEVEL%

Exercises Section 1.1.1

Exercise
1.1:

Review the documentation for your compiler and determine
what file naming convention it uses. Compile and run the main
program from page 2 .

Exercise
1.2:

Change the program to return -1 . A return value of -1 is often
treated as an indicator that the program failed. However,
systems vary as to how (or even whether) they report a failure
from main . Recompile and rerun your program to see how
your system treats a failure indicator from main .

 



 

1.2. A First Look at Input/Output

C++ does not directly define any statements to do input or output (IO). Instead, IO is provided
by the standard library . The IO library provides an extensive set of facilities. However, for
many purposes, including the examples in this book, one needs to know only a few basic
concepts and operations.

Most of the examples in this book use the iostream library , which handles formatted input and
output. Fundamental to the iostream library are two types named istream and ostream , which

represent input and output streams, respectively. A stream is a sequence of characters intended
to be read from or written to an IO device of some kind. The term "stream" is intended to
suggest that the characters are generated, or consumed, sequentially over time.

1.2.1. Standard Input and Output Objects

The library defines four IO objects. To handle input, we use an object of type istream named cin
(pronounced "see-in"). This object is also referred to as the standard input . For output, we
use an ostream object named cout (pronounced "see-out"). It is often referred to as the
standard output . The library also defines two other ostream objects, named cerr and clog

(pronounced "see-err" and "see-log," respectively). The cerr object, referred to as the
standard error , is typically used to generate warning and error messages to users of our
programs. The clog object is used for general information about the execution of the program.

Ordinarily, the system associates each of these objects with the window in which the program is
executed. So, when we read from cin , data is read from the window in which the program is
executing, and when we write to cout, cerr , or clog , the output is written to the same
window. Most operating systems give us a way of redirecting the input or output streams when
we run a program. Using redirection we can associate these streams with files of our choosing.

1.2.2. A Program that Uses the IO Library

So far, we have seen how to compile and execute a simple program, although that program did
no work. In our overall problem, we'll have several records that refer to the same ISBN. We'll
need to consolidate those records into a single total, implying that we'll need to know how to
add the quantities of books sold.

To see how to solve part of that problem, let's start by looking at how we might add two
numbers. Using the IO library, we can extend our main program to ask the user to give us two
numbers and then print their sum:

    #include <iostream>
    int main()
    {
        std::cout << "Enter two numbers:" << std::endl;
        int v1, v2;
        std::cin >> v1 >> v2;
        std::cout << "The sum of " << v1 << " and " << v2
                  << " is " << v1 + v2 << std::endl;
        return 0;



    }

This program starts by printing

      Enter two numbers:

on the user's screen and then waits for input from the user. If the user enters

      3 7

followed by a newline, then the program produces the following output:

      The sum of 3 and 7 is 10

The first line of our program is a preprocessor directive :

      #include <iostream>

which tells the compiler that we want to use the iostream library. The name inside angle
brackets is a header . Every program that uses a library facility must include its associated
header. The #include directive must be written on a single linethe name of the header and the
#include must appear on the same line. In general, #include directives should appear outside
any function. Typically, all the #include directives for a program appear at the beginning of the
file.

Writing to a Stream

The first statement in the body of main executes an expression . In C++ an expression is
composed of one or more operands and (usually) an operator. The expressions in this statement
use the output operator (the << operator) to print the prompt on the standard output:

      std::cout << "Enter two numbers:" << std::endl;

This statement uses the output operator twice. Each instance of the output operator takes two
operands: The left-hand operand must be an ostream object; the right-hand operand is a value
to print. The operator writes its right-hand operand to the ostream that is its left-hand operand.

In C++ every expression produces a result, which typically is the value generated by applying
an operator to its operands. In the case of the output operator, the result is the value of its left-
hand operand. That is, the value returned by an output operation is the output stream itself.



The fact that the operator returns its left-hand operand allows us to chain together output
requests. The statement that prints our prompt is equivalent to

      (std::cout << "Enter two numbers:") << std::endl;

Because (std::cout << "Enter two numbers:") returns its left operand, std::cout , this
statement is equivalent to

      std::cout << "Enter two numbers:";
      std::cout << std::endl;

endl is a special value, called a manipulator , that when written to an output stream has the
effect of writing a newline to the output and flushing the buffer associated with that device. By
flushing the buffer, we ensure that the user will see the output written to the stream
immediately.

Programmers often insert print statements during debugging. Such
statements should always flush the stream. Forgetting to do so may
cause output to be left in the buffer if the program crashes, leading
to incorrect inferences about where the program crashed.

Using Names from the Standard Library

Careful readers will note that this program uses std::cout and std::endl rather than just cout
and endl . The prefix std:: indicates that the names cout and endl are defined inside the
namespace named std . Namespaces allow programmers to avoid inadvertent collisions with
the same names defined by a library. Because the names that the standard library defines are
defined in a namespace, we can use the same names for our own purposes.

One side effect of the library's use of a namespace is that when we use a name from the library,
we must say explicitly that we want to use the name from the std namespace. Writing
std::cout uses the scope operator (the :: operator) to say that we want to use the name cout
that is defined in the namespace std . We'll see in Section 3.1 (p. 78 ) a way that programs
often use to avoid this verbose syntax.

Reading From a Stream

Having written our prompt, we next want to read what the user writes. We start by defining two
variables named v1 and v2 to hold the input:



      int v1, v2;

We define these variables as type int , which is the built-in type representing integral values.
These variables are uninitialized , meaning that we gave them no initial value. Our first use of
these variables will be to read a value into them, so the fact that they have no initial value is
okay.

The next statement

      std::cin >> v1 >> v2;

reads the input. The input operator (the >> operator) behaves analogously to the output
operator. It takes an istream as its left-hand operand and an object as its right-hand operand.
It reads from its istream operand and stores the value it read in its right-hand operand. Like the
output operator, the input operator returns its left-hand operand as its result. Because the
operator returns its left-hand operand, we can combine a sequence of input requests into a
single statement. In other words, this input operation is equivalent to

      std::cin >> v1;
      std::cin >> v2;

The effect of our input operation is to read two values from the standard input, storing the first
in v1 and the second in v2 .

Completing the Program

What remains is to print our result:

     std::cout << "The sum of " << v1 << " and " << v2
               << " is " << v1 + v2 << std::endl;

This statement, although it is longer than the statement that printed the prompt, is conceptually
no different. It prints each of its operands to the standard output. What is interesting is that the
operands are not all the same kinds of values. Some operands are string literals , such as

   "The sum of "

and others are various int values, such as v1, v2 , and the result of evaluating the arithmetic
expression:

   v1 + v2



The iostream library defines versions of the input and output operators that accept all of the
built-in types.

When writing a C++ program, in most places that a space appears
we could instead use a newline. One exception to this rule is that
spaces inside a string literal cannot be replaced by a newline.
Another exception is that spaces are not allowed inside preprocessor
directives.

Key Concept: Initialized and Uninitialized Variables

Initialization is an important concept in C++ and one to which we will
return throughout this book.

Initialized variables are those that are given a value when they are defined.
Uninitialized variables are not given an initial value:

   int val1 = 0;     // initialized

   int val2;         // uninitialized

It is almost always right to give a variable an initial value, but we are not
required to do so. When we are certain that the first use of a variable gives
it a new value, then there is no need to invent an initial value. For example,
our first nontrivial program on page 6 defined uninitialized variables into
which we immediately read values.

When we define a variable, we should give it an initial value unless we are
certain that the initial value will be overwritten before the variable is used
for any other purpose. If we cannot guarantee that the variable will be
reset before being read, we should initialize it.



Exercises Section 1.2.2

Exercise
1.3:

Write a program to print "Hello, World" on the standard
output.

Exercise
1.4:

Our program used the built-in addition operator, + , to
generate the sum of two numbers. Write a program that uses
the multiplication operator, * , to generate the product of two
numbers.

Exercise
1.5:

We wrote the output in one large statement. Rewrite the
program to use a separate statement to print each operand.

Exercise
1.6:

Explain what the following program fragment does:

   std::cout << "The sum of " << v1;
             << " and " << v2;
             << " is " << v1 + v2
             << std::endl;

Is this code legal? If so, why? If not, why not?

 



 

1.3. A Word About Comments

Before our programs get much more complicated, we should see how C++ handles comments .
Comments help the human readers of our programs. They are typically used to summarize an
algorithm, identify the purpose of a variable, or clarify an otherwise obscure segment of code.
Comments do not increase the size of the executable program. The compiler ignores all
comments.

In this book, we italicize comments to make them stand out from
the normal program text. In actual programs, whether comment
text is distinguished from the text used for program code depends
on the sophistication of the programming environment.

There are two kinds of comments in C++: single-line and paired. A single-line comment starts
with a double slash (// ). Everything to the right of the slashes on the current line is a comment
and ignored by the compiler.

The other delimiter, the comment pair (/* */ ), is inherited from the C language. Such
comments begin with a /* and end with the next */ . The compiler treats everything that falls
between the /* and */ as part of the comment:

   #include <iostream>
   /* Simple main function: Read two numbers and write their sum */
   int main()
   {
       // prompt user to enter two numbers
       std::cout << "Enter two numbers:" << std::endl;
       int v1, v2;           // uninitialized
       std::cin >> v1 >> v2; // read input
       return 0;
   }

A comment pair can be placed anywhere a tab, space, or newline is permitted. Comment pairs
can span multiple lines of a program but are not required to do so. When a comment pair does
span multiple lines, it is often a good idea to indicate visually that the inner lines are part of a
multi-line comment. Our style is to begin each line in the comment with an asterisk, thus
indicating that the entire range is part of a multi-line comment.

Programs typically contain a mixture of both comment forms. Comment pairs generally are used
for multi-line explanations, whereas double slash comments tend to be used for half-line and
single-line remarks.

Too many comments intermixed with the program code can obscure the code. It is usually best



to place a comment block above the code it explains.

Comments should be kept up to date as the code itself changes. Programmers expect comments
to remain accurate and so believe them, even when other forms of system documentation are
known to be out of date. An incorrect comment is worse than no comment at all because it may
mislead a subsequent reader.

Comment Pairs Do Not Nest

A comment that begins with /* always ends with the next */ . As a result, one comment pair
cannot occur within another. The compiler error message(s) that result from this kind of
program mistake can be mysterious and confusing. As an example, compile the following
program on your system:

   #include <iostream>
   /*

    * comment pairs /* */ cannot nest.

    * "cannot nest" is considered source code,

    * as is the rest of the program
    */
   int main()
   {
       return 0;
   }

When commenting out a large section of a program, it can seem easiest to put a comment pair
around a region that you want to omit temporarily. The trouble is that if that code already has a
comment pair, then the newly inserted comment will terminate prematurely. A better way to
temporarily ignore a section of code is to use your editor to insert single-line comment at the
beginning of each line of code you want to ignore. That way, you need not worry about whether
the code you are commenting out already contains a comment pair.

 



 

1.4. Control Structures

Statements execute sequentially: The first statement in a function is executed first, followed by
the second, and so on. Of course, few programsincluding the one we'll need to write to solve our
bookstore problemcan be written using only sequential execution. Instead, programming
languages provide various control structures that allow for more complicated execution paths.
This section will take a brief look at some of the control structures provided by C++. Chapter 6
covers statements in detail.

Exercises Section 1.3

Exercise
1.7:

Compile a program that has incorrectly nested comments.

Exercise
1.8:

Indicate which, if any, of the following output statements, are
legal.

   std::cout << "/*";
   std::cout << "*/";
   std::cout << /* "*/" */;

After you've predicted what will happen, test your answer by
compiling a program with these three statements. Correct any
errors you encounter.

1.4.1. The while Statement

A while statement provides for iterative execution. We could use a while to write a program to

sum the numbers from 1 through 10 inclusive as follows:

    #include <iostream>
    int main()
    {
        int sum = 0, val = 1;

        // keep executing the while until val is greater than 10
        while (val <= 10) {

            sum += val;  // assigns sum + val to sum

            ++val;       // add 1 to val
        }
        std::cout << "Sum of 1 to 10 inclusive is "



                  << sum << std::endl;
        return 0;
    }

This program when compiled and executed will print:

   Sum of 1 to 10 inclusive is 55

As before, we begin by including the iostream header and define a main function. Inside main we
define two int variables: sum , which will hold our summation, and val , which will represent
each of the values from 1 through 10. We give sum an initial value of zero and start val off with
the value one.

The important part is the while statement. A while has the form

   while (condition) while_body_statement;

A while executes by (repeatedly) testing the condition and executing the associated
while_body_statement until the condition is false.

A condition is an expression that is evaluated so that its result can be tested. If the resulting
value is nonzero, then the condition is true; if the value is zero then the condition is false.

If the condition is true (the expression evaluates to a value other than zero) then
while_body_statement is executed. After executing while_body_statement , the condition is
tested again. If condition remains true, then the while_body_statement is again executed. The
while continues, alternatively testing the condition and executing while_body_statement until
the condition is false.

In this program, the while statement is:

    // keep executing the while until val is greater than 10
    while (val <= 10) {

        sum += val; // assigns sum + val to sum

        ++val; // add 1 to val
    }

The condition in the while uses the less-than-or-equal operator (the <= operator) to compare
the current value of val and 10 . As long as val is less than or equal to 10, we execute the body
of the while . In this case, the body of the while is a block containing two statements:

    {

        sum += val; // assigns sum + val to sum

        ++val; // add 1 to val
    }



A block is a sequence of statements enclosed by curly braces. In C++, a block may be used
wherever a statement is expected. The first statement in the block uses the compound
assignment operator , (the += operator). This operator adds its right-hand operand to its
left-hand operand. It has the same effect as writing an addition and an assignment :

    sum = sum + val; // assign sum + val to sum

Thus, the first statement adds the value of val to the current value of sum and stores the result
back into sum .

The next statement

    ++val; // add 1 to val

uses the prefix increment operator (the ++ operator). The increment operator adds one to its
operand. Writing ++val is the same as writing val = val + 1 .

After executing the while body we again execute the condition in the while . If the (now
incremented) value of val is still less than or equal to 10, then the body of the while is executed
again. The loop continues, testing the condition and executing the body, until val is no longer
less than or equal to 10.

Once val is greater than 10, we fall out of the while loop and execute the statement following
the while . In this case, that statement prints our output, followed by the return , which
completes our main program.

Key Concept: Indentation and Formatting of C++ Programs

C++ programs are largely free-format, meaning that the positioning of
curly braces, indentation, comments, and newlines usually has no effect on
the meaning of our programs. For example, the curly brace that denotes the
beginning of the body of main could be on the same line as main , positioned

as we have done, at the beginning of the next line, or placed anywhere
we'd like. The only requirement is that it be the first nonblank,
noncomment character that the compiler sees after the close parenthesis
that concludes main 's parameter list.

Although we are largely free to format programs as we wish, the choices
we make affect the readability of our programs. We could, for example,
have written main on a single, long line. Such a definition, although legal,

would be hard to read.

Endless debates occur as to the right way to format C or C++ programs.
Our belief is that there is no single correct style but that there is value in
consistency. We tend to put the curly braces that delimit functions on their
own lines. We tend to indent compound input or output expressions so that
the operators line up, as we did with the statement that wrote the output in
the main function on page 6 . Other indentation conventions will become

clear as our programs become more complex.



The important thing to keep in mind is that other ways to format programs
are possible. When choosing a formatting style, think about how it affects
readability and comprehension. Once you've chosen a style, use it
consistently.

1.4.2. The for Statement

In our while loop, we used the variable val to control how many times we iterated through the
loop. On each pass through the while , the value of val was tested and then in the body the
value of val was incremented.

The use of a variable like val to control a loop happens so often that the language defines a
second control structure, called a for statement , that abbreviates the code that manages the

loop variable. We could rewrite the program to sum the numbers from 1 through 10 using a for
loop as follows:

    #include <iostream>
    int main()
    {
        int sum = 0;
        // sum values from 1 up to 10 inclusive
        for (int val = 1; val <= 10; ++val)

            sum += val; // equivalent to sum = sum + val

        std::cout << "Sum of 1 to 10 inclusive is "
                  << sum << std::endl;
        return 0;
    }

Prior to the for loop, we define sum , which we set to zero. The variable val is used only inside
the iteration and is defined as part of the for statement itself. The for statement

    for (int val = 1; val <= 10; ++val)

        sum += val; // equivalent to sum = sum + val

has two parts: the for header and the for body. The header controls how often the body is
executed. The header itself consists of three parts: an init-statement, a condition , and an
expression. In this case, the init-statement

    int val = 1;

defines an int object named val and gives it an initial value of one. The initstatement is
performed only once, on entry to the for . The condition

    val <= 10



which compares the current value in val to 10, is tested each time through the loop. As long as
val is less than or equal to 10, we execute the for body. Only after executing the body is the
expression executed. In this for , the expression uses the prefix increment operator, which as
we know adds one to the value of val . After executing the expression , the for retests the
condition . If the new value of val is still less than or equal to 10 , then the for loop body is
executed and val is incremented again. Execution continues until the condition fails.

In this loop, the for body performs the summation

  sum += val; // equivalent to sum = sum + val

The body uses the compound assignment operator to add the current value of val to sum ,
storing the result back into sum .

To recap, the overall execution flow of this for is:

Create val and initialize it to 1 .1.

Test whether val is less than or equal to 10 .2.

If val is less than or equal to 10, execute the for body, which adds val to sum . If val is
not less than or equal to 10, then break out of the loop and continue execution with the
first statement following the for body.

3.

Increment val .4.

Repeat the test in step 2, continuing with the remaining steps as long as the condition is
true.

5.

When we exit the for loop, the variable val is no longer accessible.
It is not possible to use val after this loop terminates. However, not
all compilers enforce this requirement.

In pre-Standard C++ names defined in a for header were accessible outside the for
itself. This change in the language definition can surprise people accustomed to using
an older compiler when they instead use a compiler that adheres to the standard.

Compilation Revisited

Part of the compiler's job is to look for errors in the program text. A compiler
cannot detect whether the meaning of a program is correct, but it can detect



errors in the form of the program. The following are the most common kinds
of errors a compiler will detect.

Syntax errors. The programmer has made a grammatical error in the C++
language. The following program illustrates common syntax errors; each
comment describes the error on the following line:

                     // error: missing ')' in parameter list for main
       int main ( {

                     // error: used colon, not a semicolon after endl
           std::cout << "Read each file." << std::endl:

                     // error: missing quotes around string literal
           std::cout << Update master. << std::endl;

                     // ok: no errors on this line
           std::cout << "Write new master." <<std::endl;

                     // error: missing ';' on return statement
           return 0
       }

1.

Type errors. Each item of data in C++ has an associated type. The value
10, for example, is an integer. The word "hello" surrounded by double
quotation marks is a string literal. One example of a type error is passing
a string literal to a function that expects an integer argument.

2.

Declaration errors. Every name used in a C++ program must be declared
before it is used. Failure to declare a name usually results in an error
message. The two most common declaration errors are to forget to use
std:: when accessing a name from the library or to inadvertently misspell

the name of an identifier:

    #include <iostream>
    int main()
    {
        int v1, v2;

        std::cin >> v >> v2; // error: uses " v "not" v1"

        // cout not defined, should be std::cout
        cout << v1 + v2 << std::endl;
        return 0;
     }

3.

An error message contains a line number and a brief description of what the
compiler believes we have done wrong. It is a good practice to correct errors
in the sequence they are reported. Often a single error can have a cascading
effect and cause a compiler to report more errors than actually are present. It
is also a good idea to recompile the code after each fixor after making at most
a small number of obvious fixes. This cycle is known as edit-compile-debug .



Exercises Section 1.4.2

Exercise
1.9:

What does the following for loop do? What is the final value of
sum ?

    int sum = 0;
    for (int i = -100; i <= 100; ++i)
        sum += i;

Exercise
1.10:

Write a program that uses a for loop to sum the numbers
from 50 to 100. Now rewrite the program using a while .

Exercise
1.11:

Write a program using a while loop to print the numbers from
10 down to 0. Now rewrite the program using a for .

Exercise
1.12:

Compare and contrast the loops you wrote in the previous two
exercises. Are there advantages or disadvantages to using
either form?

Exercise
1.13:

Compilers vary as to how easy it is to understand their
diagnostics. Write programs that contain the common errors
discussed in the box on 16. Study the messages the compiler
generates so that these messages will be familiar when you
encounter them while compiling more complex programs.

1.4.3. The if Statement

A logical extension of summing the values between 1 and 10 is to sum the values between two
numbers our user supplies. We might use the numbers directly in our for loop, using the first
input as the lower bound for the range and the second as the upper bound. However, if the user
gives us the higher number first, that strategy would fail: Our program would exit the for loop
immediately. Instead, we should adjust the range so that the larger number is the upper bound
and the smaller is the lower. To do so, we need a way to see which number is larger.

Like most languages, C++ provides an if statement that supports conditional execution. We

can use an if to write our revised sum program:

    #include <iostream>
    int main()
    {
        std::cout << "Enter two numbers:" << std::endl;
        int v1, v2;
        std::cin >> v1 >> v2; // read input

        // use smaller number as lower bound for summation

        // and larger number as upper bound
        int lower, upper;



        if (v1 <= v2) {
            lower = v1;
            upper = v2;
        } else {
            lower = v2;
            upper = v1;
        }
        int sum = 0;

        // sum values from lower up to and including upper
        for (int val = lower; val <= upper; ++val)
            sum += val; // sum = sum + val

        std::cout << "Sum of " << lower
                  << " to " << upper
                  << " inclusive is "
                  << sum << std::endl;
        return 0;
    }

If we compile and execute this program and give it as input the numbers 7 and 3, then the
output of our program will be

  Sum of 3 to 7 inclusive is 25

Most of the code in this program should already be familiar from our earlier examples. The
program starts by writing a prompt to the user and defines four int variables. It then reads
from the standard input into v1 and v2 . The only new code is the if statement

    // use smaller number as lower bound for summation

    // and larger number as upper bound
    int lower, upper;
    if (v1 <= v2) {
        lower = v1;
        upper = v2;
    } else {
        lower = v2;
        upper = v1;
    }

The effect of this code is to set upper and lower appropriately. The if condition tests whether v1
is less than or equal to v2 . If so, we perform the block that immediately follows the condition.
This block contains two statements, each of which does an assignment. The first statement
assigns v1 to lower and the second assigns v2 to upper .

If the condition is falsethat is, if v1 is larger than v2 then we execute the statement following the
else . Again, this statement is a block consisting of two assignments. We assign v2 to lower and
v1 to upper .

1.4.4. Reading an Unknown Number of Inputs



Another change we might make to our summation program on page 12 would be to allow the
user to specify a set of numbers to sum. In this case we can't know how many numbers we'll be
asked to add. Instead, we want to keep reading numbers until the program reaches the end of
the input. When the input is finished, the program writes the total to the standard output:

    #include <iostream>
    int main()
    {
        int sum = 0, value;
        // read till end-of-file, calculating a running total of all values read
        while (std::cin >> value)

            sum += value; // equivalent to sum = sum + value
        std::cout << "Sum is: " << sum << std::endl;
        return 0;
     }

If we give this program the input

  3 4 5 6

then our output will be

  Sum is: 18

Exercises Section 1.4.3

Exercise
1.14:

What happens in the program presented in this section if the
input values are equal?

Exercise
1.15:

Compile and run the program from this section with two equal
values as input. Compare the output to what you predicted in
the previous exercise. Explain any discrepancy between what
happened and what you predicted.

Exercise
1.16:

Write a program to print the larger of two inputs supplied by
the user.

Exercise
1.17:

Write a program to ask the user to enter a series of numbers.
Print a message saying how many of the numbers are
negative numbers.



As usual, we begin by including the necessary headers. The first line inside main defines two int
variables, named sum and value . We'lluse value to hold each number we read, which we do
inside the condition in the while :

  while (std::cin >> value)

What happens here is that to evaluate the condition, the input operation

  std::cin >> value

is executed, which has the effect of reading the next number from the standard input, storing
what was read in value . The input operator (Section 1.2.2 , p. 8 ) returns its left operand. The
condition tests that result, meaning it tests std::cin .

When we use an istream as a condition, the effect is to test the state of the stream. If the
stream is validthat is, if it is still possible to read another input then the test succeeds. An
istream becomes invalid when we hit end-of-file or encounter an invalid input, such as reading
a value that is not an integer. An istream that is in an invalid state will cause the condition to
fail.

Until we do encounter end-of-file (or some other input error), the test will succeed and we'll
execute the body of the while . That body is a single statement that uses the compound
assignment operator. This operator adds its right-hand operand into the left hand operand.

Entering an End-of-file from the Keyboard

Operating systems use different values for end-of-file. On Windows
systems we enter an end-of-file by typing a control-zsimultaneously type
the "ctrl" key and a "z." On UNIX systems, including Mac OS-X machines, it
is usually control-d.

Once the test fails, the while terminates and we fall through and execute the statement
following the while . That statement prints sum followed by endl , which prints a newline and
flushes the buffer associated with cout . Finally, we execute the return , which as usual returns
zero to indicate success.



Exercises Section 1.4.4

Exercise
1.18:

Write a program that prompts the user for two numbers and
writes each number in the range specified by the two numbers
to the standard output.

Exercise
1.19:

What happens if you give the numbers 1000 and 2000 to the
program written for the previous exercise? Revise the program
so that it never prints more than 10 numbers per line.

Exercise
1.20:

Write a program to sum the numbers in a user-specified
range, omitting the if test that sets the upper and lower
bounds. Predict what happens if the input is the numbers 7
and 3, in that order. Now run the program giving it the
numbers 7 and 3, and see if the results match your
expectation. If not, restudy the discussion on the for and
while loop until you understand what happened.

 



 

1.5. Introducing Classes

The only remaining feature we need to understand before solving our bookstore problem is how
to write a data structure to represent our transaction data. In C++ we define our own data
structure by defining a class . The class mechanism is one of the most important features in
C++. In fact, a primary focus of the design of C++ is to make it possible to define class types
that behave as naturally as the built-in types themselves. The library types that we've seen
already, such as istream and ostream , are all defined as classesthat is, they are not strictly
speaking part of the language.

Complete understanding of the class mechanism requires mastering a lot of information.
Fortunately, it is possible to use a class that someone else has written without knowing how to
define a class ourselves. In this section, we'll describe a simple class that we can use in solving
our bookstore problem. We'll implement this class in the subsequent chapters as we learn more
about types, expressions, statements, and functionsall of which are used in defining classes.

To use a class we need to know three things:

What is its name?1.

Where is it defined?2.

What operations does it support?3.

For our bookstore problem, we'll assume that the class is named Sales_item and that it is
defined in a header named Sales_item.h .

1.5.1. The Sales_item Class

The purpose of the Sales_item class is to store an ISBN and keep track of the number of copies
sold, the revenue, and average sales price for that book. How these data are stored or
computed is not our concern. To use a class, we need not know anything about how it is
implemented. Instead, what we need to know is what operations the class provides.

As we've seen, when we use library facilities such as IO, we must include the associated
headers. Similarly, for our own classes, we must make the definitions associated with the class
available to the compiler. We do so in much the same way. Typically, we put the class definition
into a file. Any program that wants to use our class must include that file.

Conventionally, class types are stored in a file with a name that, like the name of a program
source file, has two parts: a file name and a file suffix. Usually the file name is the same as the
class defined in the header. The suffix usually is .h , but some programmers use .H, .hpp , or
.hxx . Compilers usually aren't picky about header file names, but IDEs sometimes are. We'll
assume that our class is defined in a file named Sales_item.h .

Operations on Sales_item Objects

Every class defines a type. The type name is the same as the name of the class. Hence, our
Sales_item class defines a type named Sales_item . As with the built-in types, we can define a



variable of a class type. When we write

    Sales_item item;

we are saying that item is an object of type Sales_item . We often contract the phrase "an
object of type Sales_item" to"aSales_ item object" or even more simply to "a Sales_item."

In addition to being able to define variables of type Sales_item , we can perform the following
operations on Sales_item objects:

Use the addition operator, + , to add two Sales_item s

Use the input operator, << to read a Sales_item object,

Use the output operator, >> to write a Sales_item object

Use the assignment operator, = , to assign one Sales_item object to another

Call the same_isbn function to determine if two Sales_item s refer to the same book

Reading and Writing Sales_item s

Now that we know the operations that the class provides, we can write some simple programs
to use this class. For example, the following program reads data from the standard input, uses
that data to build a Sales_item object, and writes that Sales_item object back onto the standard
output:

    #include <iostream>
    #include "Sales_item.h"
    int main()
    {
        Sales_item book;
        // read ISBN, number of copies sold, and sales price
        std::cin >> book;
        // write ISBN, number of copies sold, total revenue, and average price
        std::cout << book << std::endl;
        return 0;
    }

If the input to this program is

    0-201-70353-X 4 24.99

then the output will be

    0-201-70353-X 4 99.96 24.99



Our input said that we sold four copies of the book at $24.99 each, and the output indicates that
the total sold was four, the total revenue was $99.96, and the average price per book was
$24.99.

This program starts with two #include directives, one of which uses a new form. The iostream
header is defined by the standard library; the Sales_item header is not. Sales_item is a type
that we ourselves have defined. When we use our own headers, we use quotation marks (" " )
to surround the header name.

Headers for the standard library are enclosed in angle brackets (< >
). Nonstandard headers are enclosed in double quotes (" " ).

Inside main we start by defining an object, named book , which we'll use to hold the data that
we read from the standard input. The next statement reads into that object, and the third
statement prints it to the standard output followed as usual by printing endl to flush the buffer.

Key Concept: Classes Define Behavior

As we go through these programs that use Sales_item s, the important thing
to keep in mind is that the author of the Sales_item class defined all the

actions that can be performed by objects of this class. That is, the author of
the Sales_item data structure defines what happens when a Sales_item object

is created and what happens when the addition or the input and output
operators are applied to Sales_item objects, and so on.

In general, only the operations defined by a class can be used on objects of
the class type. For now, the only operations we know we can peeform on
Sales_item objects are the ones listed on page 21 .

We'll see how these operations are defined in Sections 7.7.3 and 14.2 .

Adding Sales_item s

A slightly more interesting example adds two Sales_item objects:

     #include <iostream>
     #include "Sales_item.h"
     int main()
     {
        Sales_item item1, item2;
        std::cin >> item1 >> item2;   // read a pair of transactions



        std::cout << item1 + item2 << std::endl; // print their sum
        return 0;
     }

If we give this program the following input

     0-201-78345-X 3 20.00
     0-201-78345-X 2 25.00

our output is

     0-201-78345-X 5 110 22

This program starts by including the Sales_item and iostream headers. Next we define two
Sales_item objects to hold the two transactions that we wish to sum. The output expression
does the addition and prints the result. We know from the list of operations on page 21 that
adding two Sales_item s together creates a new object whose ISBN is that of its operands and
whose number sold and revenue reflect the sum of the corresponding values in its operands. We
also know that the items we add must represent the same ISBN.

It's worth noting how similar this program looks to the one on page 6 : We read two inputs and
write their sum. What makes it interesting is that instead of reading and printing the sum of two
integers, we're reading and printing the sum of two Sales_item objects. Moreover, the whole
idea of "sum" is different. In the case of int s we are generating a conventional sumthe result of
adding two numeric values. In the case of Sales_item objects we use a conceptually new
meaning for sumthe result of adding the components of two Sales_item objects.

Exercises Section 1.5.1

Exercise
1.21:

The Web site (http://www.awprofessional.com/cpp_primer )
contains a copy of Sales_item.h in the Chapter 1 code
directory. Copy that file to your working directory. Write a
program that loops through a set of book sales transactions,
reading each transaction and writing that transaction to the
standard output.

Exercise
1.22:

Write a program that reads two Sales_item objects that have
the same ISBN and produces their sum.

Exercise
1.23:

Write a program that reads several transactions for the same
ISBN. Write the sum of all the transactions that were read.

http://www.awprofessional.com/cpp_primer


1.5.2. A First Look at Member Functions

Unfortunately, there is a problem with the program that adds Sales_item s. What should happen
if the input referred to two different ISBNs? It doesn't make sense to add the data for two
different ISBNs together. To solve this problem, we'll first check whether the Sales_item
operands refer to the same ISBNs:

    #include <iostream>
    #include "Sales_item.h"
    int main()
    {
        Sales_item item1, item2;
        std::cin >> item1 >> item2;

        // first check that item1 and item2 represent the same book
        if (item1.same_isbn(item2)) {
            std::cout << item1 + item2 << std::endl;
            return 0;    // indicate success
        } else {
            std::cerr << "Data must refer to same ISBN"
                      << std::endl;
            return -1; // indicate failure
        }
    }

The difference between this program and the previous one is the if test and its associated else
branch. Before explaining the if condition, we know that what this program does depends on
the condition in the if . If the test succeeds, then we write the same output as the previous
program and return 0 indicating success. If the test fails, we execute the block following the
else , which prints a message and returns an error indicator.

What Is a Member Function?

The if condition

    // first check that item1 and item2 represent the same book
    if (item1.same_isbn(item2)) {

calls a member function of the Sales_item object named item1 . A member function is a
function that is defined by a class. Member functions are sometimes referred to as the methods
of the class.

Member functions are defined once for the class but are treated as members of each object. We
refer to these operations as member functions because they (usually) operate on a specific
object. In this sense, they are members of the object, even though a single definition is shared
by all objects of the same type.

When we call a member function, we (usually) specify the object on which the function will
operate. This syntax uses the dot operator (the "." operator):

    item1.same_isbn



means "the same_isbn member of the object named item1 ." The dot operator fetches its right-
hand operand from its left. The dot operator applies only to objects of class type: The left-hand
operand must be an object of class type; the right-hand operand must name a member of that
type.

Unlike most other operators, the right operand of the dot (". ")
operator is not an object or value; it is the name of a member.

When we use a member function as the right-hand operand of the dot operator, we usually do
so to call that function. We execute a member function in much the same way as we do any
function: To call a function, we follow the function name by the call operator (the "() "
operator). The call operator is a pair of parentheses that encloses a (possibly empty) list of
arguments that we pass to the function.

The same_isbn function takes a single argument, and that argument is another Sales_item
object. The call

    item1.same_isbn(item2)

passes item2 as an argument to the function named same_isbn that is a member of the object
named item1 . This function compares the ISBN part of its argument, item2 , to the ISBN in
item1 , the object on which same_isbn is called. Thus, the effect is to test whether the two
objects refer to the same ISBN.

If the objects refer to the same ISBN, we execute the statement following the if , which prints
the result of adding the two Sales_item objects together. Otherwise, if they refer to different
ISBNs, we execute the else branch, which is a block of statements. The block prints an
appropriate error message and exits the program, returning -1 . Recall that the return from main
is treated as a status indicator. In this case, we return a nonzero value to indicate that the
program failed to produce the expected result.

 



 

1.6. The C++ Program

Now we are ready to solve our original bookstore problem: We need to read a file of sales
transactions and produce a report that shows for each book the total revenue, average sales
price, and the number of copies sold.

Exercises Section 1.5.2

Exercise
1.24:

Write a program that reads several transactions. For each new
transaction that you read, determine if it is the same ISBN as
the previous transaction, keeping a count of how many
transactions there are for each ISBN. Test the program by
giving multiple transactions. These transactions should
represent multiple ISBNs but the records for each ISBN should
be grouped together.

We'll assume that all of the transactions for a given ISBN appear together. Our program will
combine the data for each ISBN in a Sales_item object named total . Each transaction we read
from the standard input will be stored in a second Sales_item object named TRans . Each time
we read a new transaction we'll compare it to the Sales_item object in total . If the objects
refer to the same ISBN, we'll update total . Otherwise we'll print the value in total and reset it
using the transaction we just read.

    #include <iostream>
    #include "Sales_item.h"
    int main()
    {
        //  declare variables to hold running sum and data for the next record
        Sales_item total, trans;
        //  is there data to process?
        if (std::cin >> total) {
            // if so, read the transaction records
            while (std::cin >> trans)
                if  (total.same_isbn(trans))
                   //  match: update the running total
                   total = total + trans;
                else {
                   //  no match: print & assign to total
                   std::cout << total << std::endl;
                   total = trans;
                }
            //  remember to print last record
            std::cout << total << std::endl;
         } else {



            //  no input!, warn the user
            std::cout << "No data?!" << std::endl;
            return -1;  //  indicate failure
         }
         return 0;
    }

This program is the most complicated one we've seen so far, but it uses only facilities that we
have already encountered. As usual, we begin by including the headers that we use: iostream
from the library and Sales_item.h , which is our own header.

Inside main we define the objects we need: total , which we'll use to sum the data for a given
ISBN, and trans , which will hold our transactions as we read them. We start by reading a
transaction into total and testing whether the read was successful. If the read fails, then there
are no records and we fall through to the outermost else branch, which prints a message to
warn the user that there was no input.

Assuming we have successfully read a record, we execute the code in the if branch. The first
statement is a while that will loop through all the remaining records. Just as we did in the
program on page 18, our while condition reads a value from the standard input and then tests
that valid data was actually read. In this case, we read a Sales_item object into TRans . As long
as the read succeeds, we execute the body of the while .

The body of the while is a single if statement. We test whether the ISBNs are equal, and if so
we add the two objects and store the result in total . If the ISBNs are not equal, we print the
value stored in total and reset total by assigning trans to it. After execution of the if , we
return to the condition in the while , reading the next transaction and so on until we run out of
records.

Once the while completes, we still must write the data associated with the last ISBN. When the
while terminates, total contains the data for the last ISBN in the file, but we had no chance to
print it. We do so in the last statement of the block that concludes the outermost if statement.

Exercises Section 1.6

Exercise
1.25:

Using the Sales_item.h header from the Web site, compile and
execute the bookstore program presented in this section.

Exercise
1.26:

In the bookstore program we used the addition operator and
not the compound assignment operator to add trans to total .
Why didn't we use the compound assignment operator?

 



 

Chapter Summary

This chapter introduced enough of C++ to let the reader compile and execute simple C++
programs. We saw how to define a main function, which is the function that is executed first in
any C++ program. We also saw how to define variables, how to do input and output, and how
to write if, for , and while statements. The chapter closed by introducing the most
fundamental facility in C++: the class. In this chapter we saw how to create and use objects of
a given class . Later chapters show how to define our own classes.

 



 

Defined Terms

argument

A value passed to a function when it is called.

block

Sequence of statements enclosed in curly braces.

buffer

A region of storage used to hold data. IO facilities often store input (or output) in a buffer
and read or write the buffer independently of actions in the program. Output buffers
usually must be explicitly flushed to force the buffer to be written. By default, reading cin
flushes cout ; cout is also flushed when the program ends normally.

built-in type

A type, such as int , defined by the language.

cerr

ostream object tied to the standard error, which is often the same stream as the standard
output. By default, writes to cerr are not buffered. Usually used for error messages or
other output that is not part of the normal logic of the program.

cin

istream object used to read from the standard input.

class

C++ mechanism for defining our own data structures. The class is one of the most
fundamental features in C++. Library types, such as istream and ostream , are classes.

class type

A type defined by a class. The name of the type is the class name.



clog

ostream object tied to the standard error. By default, writes to clog are buffered. Usually
used to report information about program execution to a log file.

comments

Program text that is ignored by the compiler. C++ has two kinds of comments: single-line
and paired. Single-line comments start with a //. Everything from the // to the end of the
line is a comment. Paired comments begin with a /* and include all text up to the next */
.

condition

An expression that is evaluated as true or false. An arithmetic expression that evaluates
to zero is false; any other value yields true.

cout

ostream object used to write to the standard output. Ordinarily used to write the output of
a program.

curly brace

Curly braces delimit blocks. An open curly ({) starts a block; a close curly (}) ends one.

data structure

A logical grouping of data and operations on that data.

edit-compile-debug

The process of getting a program to execute properly.

end-of-file

System-specific marker in a file that indicates that there is no more input in the file.

expression

The smallest unit of computation. An expression consists of one or more operands and
usually an operator. Expressions are evaluated to produce a result. For example,
assuming i and j are int s, then i + j is an arithmetic addition expression and yields the



sum of the two int values. Expressions are covered in more detail in Chapter 5 .

for statement

Control statement that provides iterative execution. Often used to step through a data
structure or to repeat a calculation a fixed number of times.

function

A named unit of computation.

function body

Statement block that defines the actions performed by a function.

function name

Name by which a function is known and can be called.

header

A mechanism whereby the definitions of a class or other names may be made available to
multiple programs. A header is included in a program through a #include directive.

if statement

Conditional execution based on the value of a specified condition. If the condition is true,
the if body is executed. If not, control flows to the statement following the else if there is
one or to the statement following the if if there is no else .

iostream

library type providing stream-oriented input and output.

istream

Library type providing stream-oriented input.

library type

A type, such as istream , defined by the standard library.



main function

Function called by the operating system when executing a C++ program. Each program
must have one and only one function named main.

manipulator

Object, such as std::endl , that when read or written "manipulates" the stream itself.
Section A.3.1 (p. 825 ) covers manipulators in more detail.

member function

Operation defined by a class. Member functions ordinarily are called to operate on a
specific object.

method

Synonym for member function.

namespace

Mechanism for putting names defined by a library into a single place. Namespaces help
avoid inadvertent name clashes. The names defined by the C++ library are in the
namespace std .

ostream

Library type providing stream-oriented output.

parameter list

Part of the definition of a function. Possibly empty list that specifies what arguments can
be used to call the function.

preprocessor directive

An instruction to the C++ preprocessor. #include is a preprocessor directive. Preprocessor
directives must appear on a single line. We'll learn more about the preprocessor in Section
2.9.2 .

return type

Type of the value returned by a function.



source file

Term used to describe a file that contains a C++ program.

standard error

An output stream intended for use for error reporting. Ordinarily, on a windowing
operating system, the standard output and the standard error are tied to the window in
which the program is executed.

standard input

The input stream that ordinarily is associated by the operating system with the window in
which the program executes.

standard library

Collection of types and functions that every C++ compiler must support. The library
provides a rich set of capabilities including the types that support IO. C++ programmers
tend to talk about "the library," meaning the entire standard library or about particular
parts of the library by referring to a library type. For example, programmers also refer to
the "iostream library," meaning the part of the standard library defined by the iostream
classes.

standard output

The output stream that ordinarily is associated by the operating system with the window
in which the program executes.

statement

The smallest independent unit in a C++ program. It is analogous to a sentence in a
natural language. Statements in C++ generally end in semicolons.

std

Name of the namespace used by the standard library. std::cout indicates that we're using
the name cout defined in the std namespace.

string literal

Sequence of characters enclosed in double quotes.



uninitialized variable

Variable that has no initial value specified. There are no uninitialized variables of class
type. Variables of class type for which no initial value is specified are initialized as
specified by the class definition. You must give a value to an uninitialized variable before
attempting to use the variable's value. Uninitialized variables can be a rich source of bugs
.

variable

A named object.

while statement

An iterative control statement that executes the statement that is the while body as long
as a specified condition is true. The body is executed zero or more times, depending on
the truth value of the condition.

() operator

The call operator: A pair of parentheses "()" following a function name. The operator
causes a function to be invoked. Arguments to the function may be passed inside the
parentheses.

++ operator

Increment operator. Adds one to the operand; ++i is equivalent to i = i+ 1 .

+= operator

A compound assignment operator. Adds right-hand operand to the left and stores the
result back into the left-hand operand; a += b is equivalent to a =a + b .

. operator

Dot operator. Takes two operands: the left-hand operand is an object and the right is the
name of a member of that object. The operator fetches that member from the named
object.

:: operator

Scope operator. We'll see more about scope in Chapter 2 . Among other uses, the scope
operator is used to access names in a namespace. For example, std::cout says to use the
name cout from the namespace std .



= operator

Assigns the value of the right-hand operand to the object denoted by the left-hand
operand.

<< operator

Output operator. Writes the right-hand operand to the output stream indicated by the left-
hand operand: cout << "hi" writes hi to the standard output. Output operations can be
chained together: cout << "hi << "bye" writes hibye .

>> operator

Input operator. Reads from the input stream specified by the left-hand operand into the
right-hand operand: cin >> i reads the next value on the standard input into i . Input
operations can be chained together: cin >> i >> j reads first into i and then into j .

== operator

The equality operator. Tests whether the left-hand operand is equal to the right-hand.

!= operator

Assignment operator. Tests whether the left-hand operand is not equal to the right-hand.

<= operator

The less-than-or-equal operator. Tests whether the left-hand operand is less than or equal
to the right-hand.

< operator

The less-than operator. Tests whether the left-hand operand is less than the right-hand.

>= operator

Greater-than-or-equal operator. Tests whether the left-hand operand is greater than or
equal to the right-hand.

> operator

Greater-than operator. Tests whether the left-hand operand is greater than the right-
hand.



 



 

Part I: The Basics
Programming languages have distinctive features that determine the kinds of applications
for which they are well suited. They also share many fundamental attributes. Essentially all
languages provide:

Built-in data types such as integers, characters, and so forth

Expressions and statements to manipulate values of these types

Variables, which let us give names to the objects we use

Control structures, such as if or while , that allow us to conditionally execute or
repeat a set of actions

Functions that let us abstract actions into callable units of computation

Most modern programming languages supplement this basic set of features in two ways:
They let programmers extend the language by defining their own data types, and they
provide a set of library routines that define useful functions and data types not otherwise
built into the language.

In C++, as in most programming languages, the type of an object determines what
operations can be performed on it. Depending on the type of the objects involved, a
statement might or might not be legal. Some languages, notably Smalltalk and Python,
check the types involved in expressions at run time . In contrast, C++ is a statically typed
language; type-checking is done at compile time. As a consequence, the compiler must be
told the type of every name used in the program before that name can be used.

C++ provides a set of built-in data types, operators to manipulate those types, and a small
set of statements for program flow control. These elements form an alphabet with which
many large, complex real-world systems can and have been written. At this basic level,
C++ is a simple language. Its expressive power arises from its support for mechanisms
that allow the programmer to define new data structures.

Perhaps the most important feature in C++ is the class, which allows programmers to
define their own data types. In C++ such types are sometimes called "class types" to
distinguish them from the types that are built into the language. Some languages let
programmers define data types that specify only what data make up the type. Others, like
C++, allow programmers to define types that include operations as well as data. One of
the primary design goals of C++ is to let programmers define their own types that are as
easy to use as the built-in types. The Standard C++ library uses these features to
implement a rich library of class types and associated functions.

The first step in mastering C++learning the basics of the language and libraryis the topic
of Part I . Chapter 2 covers the built-in data types and looks briefly at the mechanisms for
defining our own new types. Chapter 3 introduces two of the most fundamental library
types: string and vector . Arrays, which are covered in Chapter 4 , are a lower-level data
structure built into C++ and many other languages. Arrays are similar to vector s but
harder to use. Chapters 5 through 7 cover expressions, statements, and functions. This
part concludes in Chapter 8 , which covers the most important facilities from the IO
library.
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Types are fundamental to any program. They tell us what our data mean and what operations
we can perform on our data.

C++ defines several primitive types: characters, integers, floating-point numbers, and so on.
The language also provides mechanisms that let us define our own data types. The library uses
these mechanisms to define more complex types such as variable-length character string s,
vector s, and so on. Finally, we can modify existing types to form compound types. This chapter
covers the built-in types and begins our coverage of how C++ supports more complicated types.

Types determine what the data and operations in our programs mean. As we saw in Chapter 1
, the same statement

     i =i +j;

can mean different things depending on the types of i and j . If i and j are integers, then this
statement has the ordinary, arithmetic meaning of + . However, if i and j are Sales_item
objects, then this statement adds the components of these two objects.

In C++ the support for types is extensive: The language itself defines a set of primitive types
and ways in which we can modify existing types. It also provides a set of features that allow us
to define our own types. This chapter begins our exploration of types in C++ by covering the
built-in types and showing how we associate a type with an object. It also introduces ways we
can both modify types and can build our own types.

 



 

2.1. Primitive Built-in Types

C++ defines a set of arithmetic types , which represent integers, floating-point numbers, and
individual characters and boolean values. In addition, there is a special type named void . The

void type has no associated values and can be used in only a limited set of circumstances. The
void type is most often used as the return type for a function that has no return value.

The size of the arithmetic types varies across machines. By size, we mean the number of bits
used to represent the type. The standard guarantees a minimum size for each of the arithmetic
types, but it does not prevent compilers from using larger sizes. Indeed, almost all compilers
use a larger size for int than is strictly required. Table 2.1 (p. 36 ) lists the built-in arithmetic
types and the associated minimum sizes.

Table 2.1. C++: Arithmetic Types

Type Meaning Minimum Size

bool boolean NA

char character 8 bits

wchar_t wide character 16 bits

short short integer 16 bits

int integer 16 bits

long long integer 32 bits

float single-precision floating-point 6 significant digits

double double-precision floating-
point

10 significant digits

long double extended-precision floating-
point

10 significant digits

Because the number of bits varies, the maximum (or minimum)
values that these types can represent also vary by machine.

2.1.1. Integral Types

The arithmetic types that represent integers, characters, and boolean values are collectively



referred to as the integral types .

There are two character types: char and wchar_t . The char type is guaranteed to be big enough
to hold numeric values that correspond to any character in the machine's basic character set. As
a result, char s are usually a single machine byte. The wchar_t type is used for extended
character sets, such as those used for Chinese and Japanese, in which some characters cannot
be represented within a single char .

The types short, int , and long represent integer values of potentially different sizes. Typically,
short s are represented in half a machine word , int s in a machine word, and long s in either
one or two machine words (on 32-bit machines, int s and longs are usually the same size).

Machine-Level Representation of The Built-in Types

The C++ built-in types are closely tied to their representation in the computer's
memory. Computers store data as a sequence of bits, each of which holds either
0 or 1. A segment of memory might hold

     00011011011100010110010000111011 ...

At the bit level, memory has no structure and no meaning.

The most primitive way we impose structure on memory is by processing it in
chunks. Most computers deal with memory as chunks of bits of particular sizes,
usually powers of 2. They usually make it easy to process 8, 16, or 32 bits at a
time, and chunks of 64 and 128 bits are becoming more common. Although the
exact sizes can vary from one machine to another, we usually refer to a chunk
of 8 bits as a "byte" and 32 bits, or 4 bytes, as a "word."

Most computers associate a numbercalled an address with each byte in memory.
Given a machine that has 8-bit bytes and 32-bit words, we might represent a
word of memory as follows:

736424 0 0 0 1 1 0 1 1

736425 0 1 1 1 0 0 0 1

736426 0 1 1 0 0 1 0 0

736427 0 0 1 1 1 0 1 1

In this illustration, each byte's address is shown on the left, with the 8 bits of
the byte following the address.

We can use an address to refer to any of several variously sized collections of
bits starting at that address. It is possible to speak of the word at address
736424 or the byte at address 736426. We can say, for example, that the byte
at address 736425 is not equal to the byte at address 736427.

To give meaning to the byte at address 736425, we must know the type of the
value stored there. Once we know the type, we know how many bits are needed
to represent a value of that type and how to interpret those bits.



If we know that the byte at location 736425 has type "unsigned 8-bit integer,"
then we know that the byte represents the number 112. On the other hand, if
that byte is a character in the ISO-Latin-1 character set, then it represents the
lower-case letter q. The bits are the same in both cases, but by ascribing
different types to them, we interpret them differently.

The type bool represents the truth values, true and false . We can assign any of the arithmetic
types to a bool . An arithmetic type with value 0 yields a bool that holds false . Any nonzero
value is treated as TRue .

Signed and Unsigned Types

The integral types, except the boolean type, may be either signed or unsigned . As its name
suggests, a signed type can represent both negative and positive numbers (including zero),
whereas an unsigned type represents only values greater than or equal to zero.

The integers, int, short , and long , are all signed by default. To get an unsigned type, the
type must be specified as unsigned , such as unsigned long . The unsigned int type may be
abbreviated as unsigned . That is, unsigned with no other type implies unsigned int .

Unlike the other integral types, there are three distinct types for char : plain char, signed char
, and unsigned char . Although there are three distinct types, there are only two ways a char
can be represented. The char type is respresented using either the signed char or unsigned
char version. Which representation is used for char varies by compiler.

How Integral Values Are Represented

In an unsigned type, all the bits represent the value. If a type is defined for a particular machine
to use 8 bits, then the unsigned version of this type could hold the values 0 through 255.

The C++ standard does not define how signed types are represented at the bit level. Instead,
each compiler is free to decide how it will represent signed types. These representations can
affect the range of values that a signed type can hold. We are guaranteed that an 8-bit signed
type will hold at least the values from 127 through 127; many implementations allow values
from 128 through 127.

Under the most common strategy for representing signed integral types, we can view one of the
bits as a sign bit. Whenever the sign bit is 1, the value is negative; when it is 0, the value is
either 0 or a positive number. An 8-bit integral signed type represented using a sign-bit can
hold values from 128 through 127.

Assignment to Integral Types

The type of an object determines the values that the object can hold. This fact raises the
question of what happens when one tries to assign a value outside the allowable range to an
object of a given type. The answer depends on whether the type is signed or unsigned .

For unsigned types, the compiler must adjust the out-of-range value so that it will fit. The
compiler does so by taking the remainder of the value modulo the number of distinct values the
unsigned target type can hold. An object that is an 8-bit unsigned char , for example, can hold
values from 0 through 255 inclusive. If we assign a value outside this range, the compiler
actually assigns the remainder of the value modulo 256. For example, we might attempt to
assign the value 336 to an 8-bit signed char . If we try to store 336 in our 8-bit unsigned char ,



the actual value assigned will be 80, because 80 is equal to 336 modulo 256.

For the unsigned types, a negative value is always out of range. An object of unsigned type may
never hold a negative value. Some languages make it illegal to assign a negative value to an
unsigned type, but C++ does not.

In C++ it is perfectly legal to assign a negative number to an object
with unsigned type. The result is the negative value modulo the size
of the type. So, if we assign 1 to an 8-bit unsigned char , the
resulting value will be 255, which is 1 modulo 256.

When assigning an out-of-range value to a signed type, it is up to the compiler to decide what
value to assign. In practice, many compilers treat signed types similarly to how they are
required to treat unsigned types. That is, they do the assignment as the remainder modulo the
size of the type. However, we are not guaranteed that the compiler will do so for the signed
types.

2.1.2. Floating-Point Types

The types float, double , and long double represent floating-point single-, double-, and
extended-precision values. Typically, float s are represented in one word (32 bits), double s in
two words (64 bits), and long double in either three or four words (96 or 128 bits). The size of
the type determines the number of significant digits a floating-point value might contain.

The float type is usually not precise enough for real programsfloat
is guaranteed to offer only 6 significant digits. The double type
guarantees at least 10 significant digits, which is sufficient for most
calculations.

 



 

2.2. Literal Constants

A value, such as 42 , in a program is known as a literal constant : literal because we can speak
of it only in terms of its value; constant because its value cannot be changed. Every literal has
an associated type. For example, 0 is an int and 3.14159 is a double . Literals exist only for the
built-in types. There are no literals of class types. Hence, there are no literals of any of the
library types.

Advice: Using the Built-in Arithmetic Types

The number of integral types in C++ can be bewildering. C++, like C, is
designed to let programs get close to the hardware when necessary, and
the integral types are defined to cater to the peculiarities of various kinds
of hardware. Most programmers can (and should) ignore these
complexities by restricting the types they actually use.

In practice, many uses of integers involve counting. For example, programs
often count the number of elements in a data structure such as a vector or

an array. We'll see in Chapters 3 and 4 that the library defines a set of
types to use when dealing with the size of an object. When counting such
elements it is always right to use the library-defined type intended for this
purpose. When counting in other circumstances, it is usually right to use an
unsigned value. Doing so avoids the possibility that a value that is too large

to fit results in a (seemingly) negative result.

When performing integer arithmetic, it is rarely right to use short s. In most
programs, using short s leads to mysterious bugs when a value is assigned
to a short that is bigger than the largest number it can hold. What happens

depends on the machine, but typically the value "wraps around" so that a
number too large to fit turns into a large negative number. For the same
reason, even though char is an integral type, the char type should be used to
hold characters and not for computation. The fact that char is signed on
some implementations and unsigned on others makes it problematic to use it

as a computational type.

On most machines, integer calculations can safely use int . Technically
speaking, an int can be as small as 16 bitstoo small for most purposes. In
practice, almost all general-purpose machines use 32-bits for int s, which
is often the same size used for long . The difficulty in deciding whether to
use int or long occurs on machines that have 32-bit int s and 64-bit long s.
On such machines, the run-time cost of doing arithmetic with long s can be
considerably greater than doing the same calculation using a 32-bit int .
Deciding whether to use int or long requires detailed understanding of the
program and the actual run-time performance cost of using long versus int .

Determining which floating-point type to use is easier: It is almost always
right to use double . The loss of precision implicit in float is significant,

whereas the cost of double precision calculations versus single precision is
negligible. In fact, on some machines, double precision is faster than
single. The precision offered by long double usually is unnecessary and often



entails considerable extra run-time cost.

Rules for Integer Literals

We can write a literal integer constant using one of three notations: decimal, octal, or
hexadecimal. These notations, of course, do not change the bit representation of the value,
which is always binary. For example, we can write the value 20 in any of the following three
ways:

     20     // decimal

     024    // octal

     0x14   // hexadecimal

Literal integer constants that begin with a leading 0 (zero) are interpreted as octal; those that
begin with either 0x or 0X are interpreted as hexadecimal.

By default, the type of a literal integer constant is either int or long . The precise type depends
on the value of the literalvalues that fit in an int are type int and larger values are type long .
By adding a suffix, we can force the type of a literal integer constant to be type long or
unsigned or unsigned long . We specify that a constant is a long by immediately following the
value with either L or l (the letter "ell" in either uppercase or lowercase).

Exercises Section 2.1.2

Exercise
2.1:

What is the difference between an int , a long , and a short
value?

Exercise
2.2:

What is the difference between an unsigned and a signed
type?

Exercise
2.3:

If a short on a given machine has 16 bits then what is the
largest number that can be assigned to a short ? To an
unsigned short ?

Exercise
2.4:

What value is assigned if we assign 100,000 to a 16-bit
unsigned short ? What value is assigned if we assign 100,000
to a plain 16-bit short ?

Exercise
2.5:

What is the difference between a float and a double ?

Exercise
2.6:

To calculate a mortgage payment, what types would you use
for the rate, principal, and payment? Explain why you selected
each type.



When specifying a long, use the uppercase L : the lowercase
letter l is too easily mistaken for the digit 1.

In a similar manner, we can specify unsigned by following the literal with either U or u . We can
obtain an unsigned long literal constant by following the value by both L and U . The suffix must
appear with no intervening space:

     128u     /* unsigned   */          1024UL    /* unsigned long   */

     1L       /* long    */             8Lu        /* unsigned long   */

There are no literals of type short .

Rules for Floating-Point Literals

We can use either common decimal notation or scientific notation to write floating-point literal
constants. Using scientific notation, the exponent is indicated either by E or e . By default,
floating-point literals are type double . We indicate single precision by following the value with
either F or f . Similarly, we specify extended precision by following the value with either L or l
(again, use of the lowercase l is discouraged). Each pair of literals below denote the same
underlying value:

     3.14159F            .001f          12.345L            0.
     3.14159E0f          1E-3F          1.2345E1L          0e0

Boolean and Character Literals

The words true and false are literals of type bool :

     bool test = false;

Printable character literals are written by enclosing the character within single quotation marks:

     'a'         '2'         ','         ' ' // blank

Such literals are of type char . We can obtain a wide-character literal of type wchar_t by
immediately preceding the character literal with an L , as in



     L'a'

Escape Sequences for Nonprintable Characters

Some characters are nonprintable . A nonprintable character is a character for which there is
no visible image, such as backspace or a control character. Other characters have special
meaning in the language, such as the single and double quotation marks, and the backslash.
Nonprintable characters and special characters are written using an escape sequence . An
escape sequence begins with a backslash. The language defines the following escape sequences:

newline \n horizontal tab \t

vertical tab \v backspace \b

carriage return \r formfeed \f

alert (bell) \a backslash \\

question mark \? single quote \'

double quote \"    

We can write any character as a generalized escape sequence of the form

     \ooo

where ooo represents a sequence of as many as three octal digits. The value of the octal digits
represents the numerical value of the character. The following examples are representations of
literal constants using the ASCII character set:

     \7 (bell)      \12 (newline)     \40 (blank)

     \0 (null)      \062 ('2')        \115 ('M')

The character represented by '\0' is often called a "null character," and has special significance,
as we shall soon see.

We can also write a character using a hexadecimal escape sequence

     \xddd

consisting of a backslash, an x , and one or more hexadecimal digits.

Character String Literals



All of the literals we've seen so far have primitive built-in types. There is one additional
literalstring literalthat is more complicated. String literals are arrays of constant characters, a
type that we'll discuss in more detail in Section 4.3 (p. 130 ).

String literal constants are written as zero or more characters enclosed in double quotation
marks. Nonprintable characters are represented by their underlying escape sequence.

     "Hello World!"                 // simple string literal
     ""                             // empty string literal
     "\nCC\toptions\tfile.[cC]\n"   // string literal using newlines and tabs

For compatibility with C, string literals in C++ have one character in addition to those typed in
by the programmer. Every string literal ends with a null character added by the compiler. A
character literal

     'A' // single quote: character literal

represents the single character A , whereas

     "A" // double quote: character string literal

represents an array of two characters: the letter A and the null character.

Just as there is a wide character literal, such as

        L'a'

there is a wide string literal, again preceded by L , such as

      L"a wide string literal"

The type of a wide string literal is an array of constant wide characters. It is also terminated by
a wide null character.

Concatenated String Literals

Two string literals (or two wide string literals) that appear adjacent to one another and
separated only by spaces, tabs, or newlines are concatenated into a single new string literal.
This usage makes it easy to write long literals across separate lines:

     // concatenated long string literal



     std::cout << "a multi-line "
                  "string literal "
                  "using concatenation"
               << std::endl;

When executed this statement would print:

     a multi-line string literal using concatenation

What happens if you attempt to concatenate a string literal and a wide string literal? For
example:

     // Concatenating plain and wide character strings is undefined
     std::cout << "multi-line " L"literal " << std::endl;

The result is undefined that is, there is no standard behavior defined for concatenating the two
different types. The program might appear to work, but it also might crash or produce garbage
values. Moreover, the program might behave differently under one compiler than under another.

Advice: Don't Rely on Undefined Behavior

Programs that use undefined behavior are in error. If they work, it is only
by coincidence. Undefined behavior results from a program error that the
compiler cannot detect or from an error that would be too much trouble to
detect.

Unfortunately, programs that contain undefined behavior can appear to
execute correctly in some circumstances and/or on one compiler. There is
no guarantee that the same program, compiled under a different compiler
or even a subsequent release of the current compiler, will continue to run
correctly. Nor is there any guarantee that what works with one set of
inputs will work with another.

Programs should not (knowingly) rely on undefined behavior. Similarly,
programs usually should not rely on machine-dependent behavior, such as
assuming that the size of an int is a fixed and known value. Such programs

are said to be nonportable . When the program is moved to another
machine, any code that relies on machine-dependent behavior may have to
be found and corrected. Tracking down these sorts of problems in
previously working programs is, mildly put, a profoundly unpleasant task.

Multi-Line Literals

There is a more primitive (and less useful) way to handle long strings that depends on an
infrequently used program formatting feature: Putting a backslash as the last character on a line



causes that line and the next to be treated as a single line.

As noted on page 14 , C++ programs are largely free-format. In particular, there are only a few
places that we may not insert whitespace. One of these is in the middle of a word. In particular,
we may not break a line in the middle of a word. We can circumvent this rule by using a
backslash:

      // ok: A \ before a newline ignores the line break
      std::cou\
      t << "Hi" << st\
      d::endl;

is equivalent to

      std::cout << "Hi" << std::endl;

We could use this feature to write a long string literal:

           // multiline string literal
           std::cout << "a multi-line \
      string literal \
      using a backslash"
                    << std::endl;
          return 0;
      }

Note that the backslash must be the last thing on the lineno comments or trailing blanks are
allowed. Also, any leading spaces or tabs on the subsequent lines are part of the literal. For this
reason, the continuation lines of the long literal do not have the normal indentation.



Exercises Section 2.2

Exercise
2.7:

Explain the difference between the following sets of literal
constants:

  (a) 'a',L 'a',"a",L"a"
  (b) 10, 10u, 10L, 10uL, 012, 0xC
  (c) 3.14, 3.14f, 3.14L

Exercise
2.8:

Determine the type of each of these literal constants:

      (a) -10 (b) -10u (c) -10. (d) -10e-2

Exercise
2.9:

Which, if any, of the following are illegal?

      (a) "Who goes with F\145rgus?\012"
      (b) 3.14e1L          (c) "two" L"some"
      (d) 1024f            (e) 3.14UL
      (f) "multiple line
           comment"

Exercise
2.10:

Using escape sequences, write a program to print 2M followed
by a newline. Modify the program to print 2 , then a tab, then
an M , followed by a newline.

 



 

2.3. Variables

Imagine that we are given the problem of computing 2 to the power of 10. Our first attempt
might be something like

      #include <iostream>
      int main()
      {
          // a first, not very good, solution
          std::cout << "2 raised to the power of 10: ";
          std::cout << 2*2*2*2*2*2*2*2*2*2;
          std::cout << std::endl;
          return 0;
      }

This program solves the problem, although we might double- or triple-check to make sure that
exactly 10 literal instances of 2 are being multiplied. Otherwise, we're satisfied. Our program
correctly generates the answer 1,024.

We're next asked to compute 2 raised to the power of 17 and then to the power of 23. Changing
our program each time is a nuisance. Worse, it proves to be remarkably error-prone. Too often,
the modified program produces an answer with one too few or too many instances of 2.

An alternative to the explicit brute force power-of-2 computation is twofold:

Use named objects to perform and print each computation.1.

Use flow-of-control constructs to provide for the repeated execution of a sequence of
program statements while a condition is true.

2.

Here, then, is an alternative way to compute 2 raised to the power of 10:

      #include <iostream>
      int main()
      {

          // local objects of type int
          int value = 2;
          int pow = 10;
          int result = 1;

          // repeat calculation of result until cnt is equal to pow
          for (int cnt = 0; cnt != pow; ++cnt)

              result *= value;   // result = result * value;
          std::cout << value
                    << " raised to the power of "
                    << pow << ": \t"
                    << result << std::endl;
          return 0;
      }



value, pow, result , and cnt are variables that allow for the storage, modification, and retrieval
of values. The for loop allows for the repeated execution of our calculation until it's been
executed pow times.

Exercises Section 2.3

Exercise
2.11:

Write a program that prompts the user to input two numbers,
the base and exponent. Print the result of raising the base to
the power of the exponent.

Key Concept: Strong Static Typing

C++ is a statically typed language, which means that types are checked at
compile time. The process by which types are checked is referred to as
type-checking.

In most languages, the type of an object constrains the operations that the
object can perform. If the type does not support a given operation, then an
object of that type cannot perform that operation.

In C++, whether an operation is legal or not is checked at compile time.
When we write an expression, the compiler checks that the objects used in
the expression are used in ways that are defined by the type of the objects.
If not, the compiler generates an error message; an executable file is not
produced.

As our programs, and the types we use, get more complicated, we'll see
that static type checking helps find bugs in our programs earlier. A
consequence of static checking is that the type of every entity used in our
programs must be known to the compiler. Hence, we must define the type
of a variable before we can use that variable in our programs.

2.3.1. What Is a Variable?

A variable provides us with named storage that our programs can manipulate. Each variable in
C++ has a specific type, which determines the size and layout of the variable's memory; the
range of values that can be stored within that memory; and the set of operations that can be
applied to the variable. C++ programmers tend to refer to variables as "variables" or as
"objects" interchangeably.

Lvalues and Rvalues



We'll have more to say about expressions in Chapter 5 , but for now it is useful to know that
there are two kinds of expressions in C++:

lvalue (pronounced "ell-value"): An expression that is an lvalue may appear as either the
left-hand or right-hand side of an assignment.

1.

rvalue (pronounced "are-value"): An expression that is an rvalue may appear on the right-
but not left-hand side of an assignment.

Variables are lvalues and so may appear on the left-hand side of an assignment. Numeric
literals are rvalues and so may not be assigned. Given the variables:

      int units_sold = 0;
      double sales_price = 0, total_revenue = 0;

2.

it is a compile-time error to write either of the following:

      // error: arithmetic expression is not an lvalue
      units_sold * sales_price = total_revenue;
      // error: literal constant is not an lvalue
      0 = 1;

Some operators, such as assignment, require that one of their operands be an lvalue. As a
result, lvalues can be used in more contexts than can rvalues. The context in which an lvalue
appears determines how it is used. For example, in the expression

      units_sold = units_sold + 1;

the variable units_sold is used as the operand to two different operators. The + operator cares
only about the values of its operands. The value of a variable is the value currently stored in the
memory associated with that variable. The effect of the addition is to fetch that value and add
one to it.

The variable units_sold is also used as the left-hand side of the = operator. The = operator
reads its right-hand side and writes to its left-hand side. In this expression, the result of the
addition is stored in the storage associated with units_sold; the previous value in units_sold is
overwritten.

In the course of the text, we'll see a number of situations in which
the use of an rvalue or lvalue impacts the behavior and/or the
performance of our programsin particular when passing and
returning values from a function.



Exercises Section 2.3.1

Exercise
2.12:

Distinguish between an lvalue and an rvalue; show examples
of each.

Exercise
2.13:

Name one case where an lvalue is required.

Terminology: What Is an object?

C++ programmers tend to be cavalier in their use of the term object . Most
generally, an object is a region of memory that has a type. More
specifically, evaluating an expression that is an lvalue yields an object.

Strictly speaking, some might reserve the term object to describe only
variables or values of class types. Others might distinguish between named
and unnamed objects, always referring to variables when discussing named
objects. Still others distinguish between objects and values, using the term
object for data that can be changed by the program and using the term
value for those that are read-only.

In this book, we'll follow the more colloquial usage that an object is a
region of memory that has a type. We will freely use object to refer to most
of the data manipulated by our programs regardless of whether those data
have built-in or class type, are named or unnamed, or are data that can be
read or written.

2.3.2. The Name of a Variable

The name of a variable, its identifier , can be composed of letters, digits, and the underscore
character. It must begin with either a letter or an underscore. Upper- and lowercase letters are
distinct: Identifiers in C++ are case-sensitive. The following defines four distinct identifiers:

      // declares four different int variables
      int somename, someName, SomeName, SOMENAME;



There is no language-imposed limit on the permissible
length of a name, but out of consideration for others that
will read and/or modify our code, it should not be too long.

For example,

      gosh_this_is_an_impossibly_long_name_to_type

is a really bad identifier name.

C++ Keywords

C++ reserves a set of words for use within the language as keywords. Keywords may not be
used as program identifiers. Table 2.2 on the next page lists the complete set of C++ keywords.

Table 2.2. C++ Keywords

asm do if return try

auto double inline short typedef

bool dynamic_cast int signed typeid

break else long sizeof typename

case enum mutable static union

catch explicit namespace static_cast unsigned

char export new struct using

class extern operator switch virtual

const false private template void

const_cast float protected this volatile

continue for public throw wchar_t

default friend register true while

delete goto reinterpret_cast    

C++ also reserves a number of words that can be used as alternative names for various
operators. These alternative names are provided to support character sets that do not support
the standard set of C++ operator symbols. These names, listed in Table 2.3 , also may not be
used as identifiers:



Table 2.3. C++ Operator Alternative Names

and bitand compl not_eq or_eq xor_eq

and_eq bitor not or xor  

In addition to the keywords, the standard also reserves a set of identifiers for use in the library.
Identifiers cannot contain two consecutive underscores, nor can an identifier begin with an
underscore followed immediately by an upper-case letter. Certain identifiersthose that are
defined outside a functionmay not begin with an underscore.

Conventions for Variable Names

There are a number of generally accepted conventions for naming variables. Following these
conventions can improve the readability of a program.

A variable name is normally written in lowercase letters. For example, one writes index ,
not Index or INDEX .

An identifier is given a mnemonic namethat is, a name that gives some indication of its use
in a program, such as on_loan or salary .

An identifier containing multiple words is written either with an underscore between each
word or by capitalizing the first letter of each embedded word. For example, one generally
writes student_loan or studentLoan , not studentloan .

The most important aspect of a naming convention is that
it be applied consistently.



Exercises Section 2.3.2

Exercise
2.14:

Which, if any, of the following names are invalid? Correct each
identified invalid name.

      (a) int double = 3.14159;        (b) char _;
      (c) bool catch-22;               (d) char 1_or_2 ='1';
      (e) float Float = 3.14f;

2.3.3. Defining Objects

The following statements define five variables:

      int units_sold;
      double sales_price, avg_price;
      std::string title;
      Sales_item curr_book;

Each definition starts with a type specifier , followed by a comma-separated list of one or more
names. A semicolon terminates the definition. The type specifier names the type associated with
the object: int, double, std::string , and Sales_item are all names of types. The types int
and double are built-in types, std::string is a type defined by the library, and Sales_item is a
type that we used in Section 1.5 (p. 20 )and will define in subsequent chapters. The type
determines the amount of storage that is allocated for the variable and the set of operations
that can be performed on it.

Multiple variables may be defined in a single statement:

      double salary, wage;    // defines two variables of type double
      int month,

          day, year;          // defines three variables of type int

      std::string address;    // defines one variable of type std::string

Initialization

A definition specifies a variable's type and identifier. A definition may also provide an initial
value for the object. An object defined with a specified first value is spoken of as initialized .
C++ supports two forms of variable initialization : copy-initialization and direct-
initialization . The copy-initialization syntax uses the equal (= ) symbol; direct-initialization
places the initializer in parentheses:



      int ival(1024);     // direct-initialization

      int ival = 1024;    // copy-initialization

In both cases, ival is initialized to 1024 .

Although, at this point in the book, it may seem obscure to the
reader, in C++ it is essential to understand that initialization is not
assignment. Initialization happens when a variable is created and
gives that variable its initial value. Assignment involves obliterating
an object's current value and replacing that value with a new one.

Many new C++ programmers are confused by the use of the = symbol to initialize a variable. It
is tempting to think of initialization as a form of assignment. But initialization and assignment
are different operations in C++. This concept is particularly confusing because in many other
languages the distinction is irrelevant and can be ignored. Moreover, even in C++ the distinction
rarely matters until one attempts to write fairly complex classes. Nonetheless, it is a crucial
concept and one that we will reiterate throughout the text.

There are subtle differences between copy- and direct-initialization
when initializing objects of a class type. We won't completely
explain these differences until Chapter 13 . For now, it's worth
knowing that the direct syntax is more flexible and can be slightly
more efficient.

Using Multiple Initializers

When we initialize an object of a built-in type, there is only one way to do so: We supply a
value, and that value is copied into the newly defined object. For built-in types, there is little
difference between the direct and the copy forms of initialization.

For objects of a class type, there are initializations that can be done only using direct-
initialization. To understand why, we need to know a bit about how classes control initialization.

Each class may define one or more special member functions (Section 1.5.2 , p. 24 ) that say
how we can initialize variables of the class type. The member functions that define how
initialization works are known as constructors . Like any function, a constructor can take
multiple arguments. A class may define several constructors, each of which must take a
different number or type of arguments.

As an example, we'll look a bit at the string class, which we'll cover in more detail in Chapter 3



. The string type is defined by the library and holds character strings of varying sizes. To use
string s, we must include the string header. Like the IO types, string is defined in the std
namespace.

The string class defines several constructors, giving us various ways to initialize a string . One
way we can initialize a string is as a copy of a character string literal:

      #include <string>

      // alternative ways to initialize string from a character string literal
      std::string titleA = "C++ Primer, 4th Ed.";
      std::string titleB("C++ Primer, 4th Ed.");

In this case, either initialization form can be used. Both definitions create a string object whose
initial value is a copy of the specified string literal.

However, we can also initialize a string from a count and a character. Doing so creates a string
containing the specified character repeated as many times as indicated by the count:

      std::string all_nines(10, '9');   // all_nines= "9999999999"

In this case, the only way to initialize all_nines is by using the direct form of initialization. It is
not possible to use copy-initialization with multiple initializers.

Initializing Multiple Variables

When a definition defines two or more variables, each variable may have its own initializer. The
name of an object becomes visible immediately, and so it is possible to initialize a subsequent
variable to the value of one defined earlier in the same definition. Initialized and uninitialized
variables may be defined in the same definition. Both forms of initialization syntax may be
intermixed:

      #include <string>

      // ok: salary defined and initialized before it is used to initialize wage
      double salary = 9999.99,
            wage(salary + 0.01);

      // ok: mix of initialized and uninitialized
      int interval,
          month = 8, day = 7, year = 1955;

      // ok: both forms of initialization syntax used
      std::string title("C++ Primer, 4th Ed."),
                  publisher = "A-W";

An object can be initialized with an arbitrarily complex expression, including the return value of
a function:

      double price = 109.99, discount = 0.16;
      double sale_price = apply_discount(price, discount);



In this example, apply_discount is a function that takes two values of type double and returns a
value of type double . We pass the variables price and discount to that function and use its
return value to initialize sale_price .

2.3.4. Variable Initialization Rules

When we define a variable without an initializer, the system sometimes initializes the variable
for us. What value, if any, is supplied depends on the type of the variable and may depend on
where it is defined.

Initialization of Variables of Built-in Type

Whether a variable of built-in type is automatically initialized depends on where it is defined.
Variables defined outside any function body are initialized to zero. Variables of built-in type
defined inside the body of a function are uninitialized . Using an uninitialized variable for
anything other than as the left-hand operand of an assignment is undefined. Bugs due to
uninitialized variables can be hard to find. As we cautioned on page 42 , you should never rely
on undefined behavior.

Exercises Section 2.3.3

Exercise
2.15:

What, if any, are the differences between the following
definitions:

      int month = 9, day = 7;

      int month = 09, day = 07;

If either definition contains an error, how might you correct
the problem?

Exercise
2.16:

Assuming calc is a function that returns a double , which, if
any, of the following are illegal definitions? Correct any that
are identified as illegal.

     (a) int car = 1024, auto = 2048;
     (b) int ival = ival;
     (c) std::cin >> int input_value;
     (d) double salary = wage = 9999.99;
     (e) double calc = calc();



We recommend that every object of built-in type be
initialized. It is not always necessary to initialize such
variables, but it is easier and safer to do so until you can
be certain it is safe to omit an initializer.

Caution: Uninitialized Variables Cause Run-Time Problems

Using an uninitialized object is a common program error, and one that is
often difficult to uncover. The compiler is not required to detect a use of an
uninitialized variable, although many will warn about at least some uses of
uninitialized variables. However, no compiler can detect all uses of
uninitialized variables.

Sometimes, we're lucky and using an uninitialized variable results in an
immediate crash at run time. Once we track down the location of the crash,
it is usually pretty easy to see that the variable was not properly initialized.

Other times, the program completes but produces erroneous results. Even
worse, the results can appear correct when we run our program on one
machine but fail on another. Adding code to the program in an unrelated
location can cause what we thought was a correct program to suddenly
start to produce incorrect results.

The problem is that uninitialized variables actually do have a value. The
compiler puts the variable somewhere in memory and treats whatever bit
pattern was in that memory as the variable's initial state. When interpreted
as an integral value, any bit pattern is a legitimate valuealthough the value
is unlikely to be one that the programmer intended. Because the value is
legal, using it is unlikely to lead to a crash. What it is likely to do is lead to
incorrect execution and/or incorrect calculation.

Initialization of Variables of Class Type

Each class defines how objects of its type can be initialized. Classes control object initialization
by defining one or more constructors (Section 2.3.3 , p. 49 ). As an example, we know that the
string class provides at least two constructors. One of these constructors lets us initialize a
string from a character string literal and another lets us initialize a string from a character and
a count.

Each class may also define what happens if a variable of the type is defined but an initializer is
not provided. A class does so by defining a special constructor, known as the default
constructor . This constructor is called the default constructor because it is run "by default;" if
there is no initializer, then this constructor is used. The default constructor is used regardless of
where a variable is defined.



Most classes provide a default constructor. If the class has a default constructor, then we can
define variables of that class without explicitly initializing them. For example, the string type
defines its default constructor to initialize the string as an empty stringthat is, a string with no
characters:

      std::string empty;  // empty is the empty string; empty =""

Some class types do not have a default constructor. For these types, every definition must
provide explicit initializer(s). It is not possible to define variables of such types without giving an
initial value.

Exercises Section 2.3.4

Exercise
2.17:

What are the initial values, if any, of each of the following
variables?

      std::string global_str;
      int global_int;
      int main()
      {
          int local_int;
          std::string local_str;
          // ...
          return 0;
      }

2.3.5. Declarations and Definitions

As we'll see in Section 2.9 (p. 67 ), C++ programs typically are composed of many files. In
order for multiple files to access the same variable, C++ distinguishes between declarations and
definitions.

A definition of a variable allocates storage for the variable and may also specify an initial value
for the variable. There must be one and only one definition of a variable in a program.

A declaration makes known the type and name of the variable to the program. A definition is
also a declaration: When we define a variable, we declare its name and type. We can declare a
name without defining it by using the extern keyword. A declaration that is not also a definition
consists of the object's name and its type preceded by the keyword extern :

      extern int i;   // declares but does not define i

      int i;          //  declares and defines i



An extern declaration is not a definition and does not allocate storage. In effect, it claims that a
definition of the variable exists elsewhere in the program. A variable can be declared multiple
times in a program, but it must be defined only once.

A declaration may have an initializer only if it is also a definition because only a definition
allocates storage. The initializer must have storage to initialize. If an initializer is present, the
declaration is treated as a definition even if the declaration is labeled extern :

      extern double pi = 3.1416; // definition

Despite the use of extern , this statement defines pi . Storage is allocated and initialized. An
extern declaration may include an initializer only if it appears outside a function.

Because an extern that is initialized is treated as a definition, any subseqent definition of that
variable is an error:

      extern double pi = 3.1416; // definition

      double pi;                 // error: redefinition of pi

Similarly, a subsequent extern declaration that has an initializer is also an error:

      extern double pi = 3.1416; // definition
      extern double pi;          // ok: declaration not definition

      extern double pi = 3.1416; // error: redefinition of pi

The distinction between a declaration and a definition may seem pedantic but in fact is quite
important.

In C++ a variable must be defined exactly once and must be
defined or declared before it is used.

Any variable that is used in more than one file requires declarations that are separate from the
variable's definition. In such cases, one file will contain the definition for the variable. Other files
that use that same variable will contain declarations forbut not a definition ofthat same variable.



Exercises Section 2.3.5

Exercise
2.18:

Explain the meaning of each of these instances of name :

      extern std::string name;
      std::string name("exercise 3.5a");
      extern std::string name("exercise 3.5a");

2.3.6. Scope of a Name

Every name in a C++ program must refer to a unique entity (such as a variable, function, type,
etc.). Despite this requirement, names can be used more than once in a program: A name can
be reused as long as it is used in different contexts, from which the different meanings of the
name can be distinguished. The context used to distinguish the meanings of names is a scope .
A scope is a region of the program. A name can refer to different entities in different scopes.

Most scopes in C++ are delimited by curly braces. Generally, names are visible from their point
of declaration until the end the scope in which the declaration appears. As an example, consider
this program, which we first encountered in Section 1.4.2 (p. 14 ):

      #include <iostream>
      int main()
      {
          int sum = 0;
          //  sum values from 1 up to 10 inclusive
          for (int val = 1; val <= 10; ++val)

              sum += val;   // equivalent to sum = sum + val

          std::cout << "Sum of 1 to 10 inclusive is "
                    << sum << std::endl;
          return 0;
      }

This program defines three names and uses two names from the standard library. It defines a
function named main and two variables named sum and val . The name main is defined outside
any curly braces and is visible throughout the program. Names defined outside any function
have global scope ; they are accessible from anywhere in the program. The name sum is
defined within the scope of the main function. It is accessible throughout the main function but
not outside of it. The variable sum has local scope . The name val is more interesting. It is
defined in the scope of the for statement (Section 1.4.2 , p. 14 ). It can be used in that
statement but not elsewhere in main . It has statement scope .

Scopes in C++ Nest



Names defined in the global scope can be used in a local scope; global names and those defined
local to a function can be used inside a statement scope, and so on. Names can also be
redefined in an inner scope. Understanding what entity a name refers to requires unwinding the
scopes in which the names are defined:

      #include <iostream>
      #include <string>
      /*  Program for illustration purposes only:
       *  It is bad style for a function to use a global variable and then
       *  define a local variable with the same name
       */

      std::string s1 = "hello";  // s1 has global scope
      int main()
      {

          std::string s2 = "world"; // s2 has local scope

          // uses global s1; prints "hello world"
          std::cout << s1 << " " << s2 << std::endl;

          int s1 = 42; // s1 is local and hides global s1

          // uses local s1;prints "42 world"
          std::cout << s1 << " " << s2 << std::endl;
          return 0;
      }

This program defines three variables: a global string named s1 , a local string named s2 , and
a local int named s1 . The definition of the local s1 hides the global s1 .

Variables are visible from their point of declaration. Thus, the local definition of s1 is not visible
when the first output is performed. The name s1 in that output expression refers to the global s1
. The output printed is hello world . The second statement that does output follows the local
definition of s1 . The local s1 is now in scope. The second output uses the local rather than the
global s1 . It writes 42 world .

Programs such as the preceeding are likely to be confusing. It is
almost always a bad idea to define a local variable with the same
name as a global variable that the function uses or might use. It is
much better to use a distinct name for the local.

We'll have more to say about local and global scope in Chapter 7 and about statement scope in
Chapter 6 . C++ has two other levels of scope: class scope , which we'll cover in Chapter 12
and namespace scope , which we'll see in Section 17.2 .

2.3.7. Define Variables Where They Are Used

In general, variable definitions or declarations can be placed anywhere within the program that



a statement is allowed. A variable must be declared or defined before it is used.

It is usually a good idea to define an object near the point
at which the object is first used.

Defining an object where the object is first used improves readability. The reader does not have
to go back to the beginning of a section of code to find the definition of a particular variable.
Moreover, it is often easier to give the variable a useful initial value when the variable is defined
close to where it is first used.

One constraint on placing declarations is that variables are accessible from the point of their
definition until the end of the enclosing block. A variable must be defined in or before the
outermost scope in which the variable will be used.

Exercises Section 2.3.6

Exercise
2.19:

What is the value of j in the following program?

      int i = 42;
      int main()
      {
          int i = 100;
          int j = i;
          // ...
      }

Exercise
2.20:

Given the following program fragment, what values are
printed?

      int i = 100, sum = 0;
      for (int i = 0; i != 10; ++i)
           sum += i;
      std::cout << i << " " << sum << std::endl;

Exercise
2.21:

Is the following program legal?

      int sum = 0;



      for (int i = 0; i != 10; ++i)
          sum += i;
      std::cout << "Sum from 0 to " << i
                << " is " << sum << std::endl;

 



 

2.4. const Qualifier

There are two problems with the following for loop, both concerning the use of 512 as an upper
bound.

      for (int index = 0; index != 512; ++index) {
          // ...
      }

The first problem is readability. What does it mean to compare index with 512? What is the loop
doingthat is, what makes 512 matter? (In this example, 512 is known as a magic number ,
one whose significance is not evident within the context of its use. It is as if the number had
been plucked by magic from thin air.)

The second problem is maintainability. Imagine that we have a large program in which the
number 512 occurs 100 times. Let's further assume that 80 of these references use 512 to
indicate the size of a particular buffer but the other 20 use 512 for different purposes. Now we
discover that we need to increase the buffer size to 1024. To make this change, we must
examine every one of the places that the number 512 appears. We must determinecorrectly in
every casewhich of those uses of 512 refer to the buffer size and which do not. Getting even one
instance wrong breaks the program and requires us to go back and reexamine each use.

The solution to both problems is to use an object initialized to 512:

      int bufSize = 512;    // input buffer size
      for (int index = 0; index != bufSize; ++index) {
          // ...
      }

By choosing a mnemonic name, such as bufSize , we make the program more readable. The
test is now against the object rather than the literal constant:

      index != bufSize

If we need to change this size, the 80 occurrences no longer need to be found and corrected.
Rather, only the one line that initializes bufSize requires change. Not only does this approach
require significantly less work, but also the likelihood of making a mistake is greatly reduced.

Defining a const Object

There is still a serious problem with defining a variable to represent a constant value. The
problem is that bufSize is modifiable. It is possible for bufSize to be changedaccidentally or
otherwise. The const type qualifier provides a solution: It transforms an object into a constant.



      const int bufSize = 512;     // input buffer size

defines bufSize to be a constant initialized with the value 512. The variable bufSize is still an
lvalue (Section 2.3.1 , p. 45 ), but now the lvalue is unmodifiable. Any attempt to write to
bufSize results in a compile-time error.

      bufSize = 0; // error: attempt to write to const object

Because we cannot subsequently change the value of an object
declared to be const , we must initialize it when it is defined:

      const std::string hi = "hello!"; // ok: initialized

      const int i, j = 0;  // error: i is uninitialized const

const Objects Are Local to a File By Default

When we define a nonconst variable at global scope (Section 2.3.6 , p. 54 ), it is accessible
throughout the program. We can define a nonconst variable in one file andassuming an
appropriate declaration has been madecan use that variable in another file:

      // file_1.cc
      int counter;  // definition

      // file_2.cc

      extern int counter; // uses counter from file_1

      ++counter;          // increments counter defined in file_1

Unlike other variables, unless otherwise specified, const variables declared at global scope are
local to the file in which the object is defined. The variable exists in that file only and cannot be
accessed by other files.

We can make a const object accessible throughout the program by specifying that it is extern :

      // file_1.cc

      // defines and initializes a const that is accessible to other files
      extern const int bufSize = fcn();

      // file_2.cc

      extern const int bufSize; // uses bufSize from file_1



      // uses bufSize defined in file_1
      for (int index = 0; index != bufSize; ++index)
            // ...

In this program, file_1.cc defines and initializes bufSize to the result returned from calling the
function named fcn . The definition of bufSize is extern , meaning that bufSize can be used in
other files. The declaration in file_2.cc is also made extern . In this case, the extern signifies
that bufSize is a declaration and hence no initializer is provided.

We'll see in Section 2.9.1 (p. 69 ) why const objects are made local to a file.

Nonconst variables are extern by default. To make a const variable
accessible to other files we must explicitly specify that it is extern .

Exercises Section 2.4

Exercise
2.22:

The following program fragment, while legal, is an example of
poor style. What problem(s) does it contain? How would you
improve it?

      for (int i = 0; i < 100; ++i)

          // process i

Exercise
2.23:

Which of the following are legal? For those usages that are
illegal, explain why.

      (a) const int buf;
      (b) int cnt = 0;
          const int sz = cnt;
      (c) cnt++; sz++;

 



 

2.5. References

A reference serves as an alternative name for an object. In real-world programs, references
are primarily used as formal parameters to functions. We'll have more to say about reference
parameters in Section 7.2.2 (p. 232 ). In this section we introduce and illustrate the use of
references as independent objects.

A reference is a compound type that is defined by preceding a variable name by the & symbol.
A compound type is a type that is defined in terms of another type. In the case of references,
each reference type "refers to" some other type. We cannot define a reference to a reference
type, but can make a reference to any other data type.

A reference must be initialized using an object of the same type as the reference:

      int ival = 1024;

      int &refVal = ival; // ok: refVal refers to ival
      int &refVal2;       // error: a reference must be initialized
      int &refVal3 = 10;  // error: initializer must be an object

A Reference Is an Alias

Because a reference is just another name for the object to which it is bound, all operations on a
reference are actually operations on the underlying object to which the reference is bound:

      refVal += 2;

adds 2 to ival , the object referred to by refVal . Similarly,

      int ii = refVal;

assigns to ii the value currently associated with ival .

When a reference is initialized, it remains bound to that object as
long as the reference exists. There is no way to rebind a reference
to a different object.



The important concept to understand is that a reference is just another name for an object .
Effectively, we can access ival either through its actual name or through its alias, refVal .
Assignment is just another operation, so that when we write

      refVal = 5;

the effect is to change the value of ival to 5. A consequence of this rule is that you must
initialize a reference when you define it; initialization is the only way to say to which object a
reference refers.

Defining Multiple References

We can define multiple references in a single type definition. Each identifier that is a reference
must be preceded by the & symbol:

      int i = 1024, i2 = 2048;

      int &r = i, r2 = i2;      // r is a reference, r2 is an int
      int i3 = 1024, &ri = i3;  // defines one object, and one reference
      int &r3 = i3, &r4 = i2;   // defines two references

const References

A const reference is a reference that may refer to a const object:

      const int ival = 1024;

      const int &refVal = ival;      // ok: both reference and object are const

      int &ref2 = ival;              // error: non const reference to a const object

We can read from but not write to refVal . Thus, any assignment to refVal is illegal. This
restriction should make sense: We cannot assign directly to ival and so it should not be
possible to use refVal to change ival .

For the same reason, the initialization of ref2 by ival is an error: ref2 is a plain, nonconst

reference and so could be used to change the value of the object to which ref2 refers.
Assigning to ival through ref2 would result in changing the value of a const object. To prevent
such changes, it is illegal to bind a plain reference to a const object.



Terminology: const Reference is a Reference to const

C++ programmers tend to be cavalier in their use of the term const
reference. Strictly speaking, what is meant by "const reference" is
"reference to const ." Similarly, programmers use the term "nonconst
reference" when speaking of reference to a nonconst type. This usage is so

common that we will follow it in this book as well.

A const reference can be initialized to an object of a different type or to an rvalue (Section 2.3.1
, p. 45 ), such as a literal constant:

      int i = 42;

      //  legal for const references only
      const int &r = 42;
      const int &r2 = r + i;

The same initializations are not legal for nonconst references. Rather, they result in compile-
time errors. The reason is subtle and warrants an explanation.

This behavior is easiest to understand when we look at what happens when we bind a reference
to an object of a different type. If we write

      double dval = 3.14;
      const int &ri = dval;

the compiler transforms this code into something like this:

      int temp = dval;          // create temporary int from the double

      const int &ri = temp;   // bind ri to that temporary

If ri were not const , then we could assign a new value to ri . Doing so would not change dval
but would instead change temp . To the programmer expecting that assignments to ri would
change dval , it would appear that the change did not work. Allowing only const references to
be bound to values requiring temporaries avoids the problem entirely because a const reference
is read-only.

A nonconst reference may be attached only to an object of the
same type as the reference itself.

A const reference may be bound to an object of a different but related type or to an



rvalue.

Exercises Section 2.5

Exercise
2.24:

Which of the following definitions, if any, are invalid? Why? How
would you correct them?

     (a) int ival = 1.01;     (b) int &rval1 = 1.01;
     (c) int &rval2 = ival;   (d) const int &rval3 = 1;

Exercise
2.25:

Given the preceeding definitions, which, if any, of the following
assignments are invalid? If they are valid, explain what they do.

     (a) rval2 = 3.14159;  (b) rval2 = rval3;
     (c) ival = rval3;     (d) rval3 = ival;

Exercise
2.26:

What are the differences among the definitions in (a) and the
assignments in (b)? Which, if any, are illegal?

     (a) int ival = 0;          (b) ival = ri;
         const int &ri = 0;         ri = ival;

Exercise
2.27:

What does the following code print?

     int i, &ri = i;
     i = 5; ri =10;
     std::cout << i << " " << ri << std::endl;

 



 

2.6. Typedef Names

A typedef lets us define a synonym for a type:

     typedef double wages;       //  wages is a synonym for double

     typedef int exam_score;     //  exam_score is a synonym for int

     typedef wages salary;       //  indirect synonym for double

A typedef name can be used as a type specifier:

     wages hourly, weekly;     // double hourly, weekly;

     exam_score test_result;   // int test_result;

A typedef definition begins with the keyword typedef , followed by the data type and identifier.
The identifier, or typedef name, does not introduce a new type but rather a synonym for the
existing data type. A typedef name can appear anywhere in a program that a type name can
appear.

Typedefs are commonly used for one of three purposes:

To hide the implementation of a given type and emphasize instead the purpose for which
the type is used

To streamline complex type definitions, making them easier to understand

To allow a single type to be used for more than one purpose while making the purpose
clear each time the type is used

 



 

2.7. Enumerations

Often we need to define a set of alternative values for some attribute. A file, for example, might
be open in one of three states: input, output, and append. One way to keep track of these state
values might be to associate a unique constant number with each. We might write the following:

     const int input = 0;
     const int output = 1;
     const int append = 2;

Although this approach works, it has a significant weakness: There is no indication that these
values are related in any way. Enumerations provide an alternative method of not only
defining but also grouping sets of integral constants.

Defining and Initializing Enumerations

An enumeration is defined using the enum keyword, followed by an optional enumeration name,
and a comma-separated list of enumerators enclosed in braces.

     // input is 0, output is 1, and append is 2
     enum open_modes {input, output, append};

By default, the first enumerator is assigned the value zero. Each subsequent enumerator is
assigned a value one greater than the value of the enumerator that immediately precedes it.

Enumerators Are const Values

We may supply an initial value for one or more enumerators. The value used to initialize an
enumerator must be a constant expression . A constant expression is an expression of
integral type that the compiler can evaluate at compile time. An integral literal constant is a
constant expression, as is a const object (Section 2.4 , p. 56 ) that is itself initialized from a
constant expression.

For example, we might define the following enumeration:

     // shape is 1, sphere is 2, cylinder is 3, polygon is 4
     enum Forms {shape = 1, sphere, cylinder, polygon};

In the enum Forms we explicitly assigned shape the value 1 . The other enumerators are implicitly
initialized: sphere is initialized to 2, cylinder to 3 , and polygon to 4 .



An enumerator value need not be unique.

     // point2d is 2, point2w is 3, point3d is 3, point3w is 4
     enum Points { point2d = 2, point2w,
                   point3d = 3, point3w };

In this example, the enumerator point2d is explicitly initialized to 2 . The next enumerator,
point2w , is initialized by default, meaning that its value is one more than the value of the
previous enumerator. Thus, point2w is initialized to 3 . The enumerator point3d is explicitly
initialized to 3 , and point3w , again is initialized by default, in this case to 4 .

It is not possible to change the value of an enumerator. As a consequence an enumerator is
itself a constant expression and so can be used where a constant expression is required.

Each enum Defines a Unique Type

Each enum defines a new type. As with any type, we can define and initialize objects of type
Points and can use those objects in various ways. An object of enumeration type may be
initialized or assigned only by one of its enumerators or by another object of the same
enumeration type:

     Points pt3d = point3d; //  ok: point3d is a Points enumerator

     Points pt2w = 3;       //  error: pt2w initialized with int

     pt2w = polygon;        //  error: polygon is not a Points enumerator

     pt2w = pt3d;           //  ok: both are objects of Points enum type

Note that it is illegal to assign the value 3 to a Points object even though 3 is a value associated
with one of the Points enumerators.

 



 

2.8. Class Types

In C++ we define our own data types by defining a class . A class defines the data that an object
of its type contains and the operations that can be executed by objects of that type. The library
types string, istream , and ostream are all defined as classes.

C++ support for classes is extensivein fact, defining classes is so important that we shall devote
Parts III through V to describing C++ support for classes and operations using class types.

In Chapter 1 we used the Sales_item type to solve our bookstore problem. We used objects of type
Sales_item to keep track of sales data associated with a particular ISBN. In this section, we'll take a
first look at how a simple class, such as Sales_item , might be defined.

Class Design Starts with the Operations

Each class defines an interface and implementation . The interface consists of the operations that
we expect code that uses the class to execute. The implementation typically includes the data
needed by the class. The implementation also includes any functions needed to define the class but
that are not intended for general use.

When we define a class, we usually begin by defining its interfacethe operations that the class will
provide. From those operations we can then determine what data the class will require to
accomplish its tasks and whether it will need to define any functions to support the implementation.

The operations our type will support are the operations we used in Chapter 1 . These operations
were outlined in Section 1.5.1 (p. 21 ):

The addition operator to add two Sales_items

The input and output operators to read and write Sales_item objects

The assignment operator to assign one Sales_item object to another

The same_isbn function to determine if two objects refer to the same book

We'll see how to define these operations in Chapters 7 and 14 after we learn how to define
functions and operators. Even though we can't yet implement these functions, we can figure out
what data they'll need by thinking a bit about what these operations must do. Our Sales_item class
must

Keep track of how many copies of a particular book were sold1.

Report the total revenue for that book2.

Calculate the average sales price for that book3.

Looking at this list of tasks, we can see that we'll need an unsigned to keep track of how many
books are sold and a double to keep track of the total revenue. From these data we can calculate
the average sales price as total revenue divided by number sold. Because we also want to know
which book we're reporting on, we'll also need a string to keep track of the ISBN.



Defining the Sales_item Class

Evidently what we need is the ability to define a data type that will have these three data elements
and the operations we used in Chapter 1 . In C++, the way we define such a data type is to define
a class:

     class Sales_item {
     public:

         // operations on Sales_item objects will go here
     private:
         std::string isbn;
         unsigned units_sold;
         double revenue;
     };

A class definition starts with the keyword class followed by an identifier that names the class. The
body of the class appears inside curly braces. The close curly must be followed by a semicolon.

It is a common mistake among new programmers to forget the
semicolon at the end of a class definition.

The class body, which can be empty, defines the data and operations that make up the type. The
operations and data that are part of a class are referred to as its members . The operations are
referred to as the member functions (Section 1.5.2 , p. 24 ) and the data as data members .

The class also may contain zero or more public or private access labels . An access label controls
whether a member is accessible outside the class. Code that uses the class may access only the
public members.

When we define a class, we define a new type. The class name is the name of that type. By naming
our class Sales_item we are saying that Sales_item is a new type and that programs may define
variables of this type.

Each class defines its own scope (Section 2.3.6 , p. 54 ). That is, the names given to the data and
operations inside the class body must be unique within the class but can reuse names defined
outside the class.

Class Data Members

The data members of a class are defined in somewhat the same way that normal variables are
defined. We specify a type and give the member a name just as we do when defining a simple
variable:



     std::string isbn;
     unsigned units_sold;
     double revenue;

Our class has three data members: a member of type string named isbn , an unsigned member
named units_sold , and a member of type double named revenue . The data members of a class
define the contents of the objects of that class type. When we define objects of type Sales_item ,
those objects will contain a string , an unsigned , and a double .

There is one crucially important difference between how we define variables and class data
members: We ordinarily cannot initialize the members of a class as part of their definition. When
we define the data members, we can only name them and say what types they have. Rather than
initializing data members when they are defined inside the class definition, classes control
initialization through special member functions called constructors (Section 2.3.3 , p. 49 ). We will
define the Sales_item constructors in Section 7.7.3 (p. 262 ).

Access Labels

Access labels control whether code that uses the class may use a given member. Member functions
of the class may use any member of their own class, regardless of the access level. The access
labels, public and private , may appear multiple times in a class definition. A given label applies
until the next access label is seen.

The public section of a class defines members that can be accessed by any part of the program.
Ordinarily we put the operations in the public section so that any code in the program may execute
these operations.

Code that is not part of the class does not have access to the private members. By making the
Sales_item data members private , we ensure that code that operates on Sales_item objects
cannot directly manipulate the data members. Programs, such as the one we wrote in Chapter 1 ,
may not access the private members of the class. Objects of type Sales_item may execute the
operations but not change the data directly.

Using the struct Keyword

C++ supports a second keyword, struct , that can be used to define class types. The struct
keyword is inherited from C.

If we define a class using the class keyword, then any members defined before the first access
label are implicitly private ; ifwe usethe struct keyword, then those members are public . Whether
we define a class using the class keyword or the struct keyword affects only the default initial
access level.

We could have defined our Sales_item equivalently by writing

     struct Sales_item {
         // no need for public label, members are public by default

         // operations on Sales_item objects
     private:
         std::string isbn;
         unsigned units_sold;
         double revenue;
     };



There are only two differences between this class definition and our initial class definition: Here we
use the struct keyword, and we eliminate the use of public keyword immediately following the
opening curly brace. Members of a struct are public, unless otherwise specified, so there is no need
for the public label.

The only difference between a class defined with the class keyword or
the struct keyword is the default access level: By default, members in
a struct are public ; those in a class are private .

Exercises Section 2.8

Exercise
2.28:

Compile the following program to determine whether your compiler warns
about a missing semicolon after a class definition:

     class Foo  {

           // empty

     } // Note: no semicolon
     int main()
     {
         return 0;
     }

If the diagnostic is confusing, remember the message for future reference.

Exercise
2.29:

Distinguish between the public and private sections of a class.

Exercise
2.30:

Define the data members of classes to represent the following types:

     (a) a phone number            (b) an address
     (c) an employee or a company  (d) a student at a university

 



 

2.9. Writing Our Own Header Files

We know from Section 1.5 (p. 20 )that ordinarily class definitions go into a header file . In this
section we'll see how to define a header file for the Sales_item class.

In fact, C++ programs use headers to contain more than class definitions. Recall that every
name must be declared or defined before it is used. The programs we've written so far handle
this requirement by putting all their code into a single file. As long as each entity precedes the
code that uses it, this strategy works. However, few programs are so simple that they can be
written in a single file. Programs made up of multiple files need a way to link the use of a name
and its declaration. In C++ that is done through header files.

To allow programs to be broken up into logical parts, C++ supports what is commonly known as
separate compilation . Separate compilation lets us compose a program from several files. To
support separate compilation, we'll put the definition of Sales_item in a header file. The member
functions for Sales_item , which we'll define in Section 7.7 (p. 258 ), will go in a separate source
file. Functions such as main that use Sales_item objects are in other source files. Each of the
source files that use Sales_item must include our Sales_item.h header file.

2.9.1. Designing Our Own Headers

A header provides a centralized location for related declarations. Headers normally contain class
definitions, extern variable declarations, and function declarations, about which we'll learn in
Section 7.4 (p. 251 ). Files that use or define these entities include the appropriate header(s).

Proper use of header files can provide two benefits: All files are guaranteed to use the same
declaration for a given entity; and should a declaration require change, only the header needs to
be updated.

Some care should be taken in designing headers. The declarations in a header should logically
belong together. A header takes time to compile. If it is too large programmers may be
reluctant to incur the compile-time cost of including it.

To reduce the compile time needed to process headers, some
C++ implementations support precompiled header files. For
more details, consult the reference manual of your C++
implementation.

Headers Are for Declarations, Not Definitions

When designing a header it is essential to remember the difference between definitions, which
may only occur once, and declarations, which may occur multiple times (Section 2.3.5 , p. 52 ).
The following statements are definitions and therefore should not appear in a header:



     extern int ival = 10;      // initializer, so it's a definition

     double fica_rate;          // no extern, so it's a definition

Although ival is declared extern , it has an initializer, which means this statement is a
definition. Similarly, the declaration of fica_rate , although it does not have an initializer, is a
definition because the extern keyword is absent. Including either of these definitions in two or
more files of the same program will result in a linker error complaining about multiple
definitions.

Compiling and Linking Multiple Source Files

To produce an executable file, we must tell the compiler not only where to
find our main function but also where to find the definition of the member
functions defined by the Sales_item class. Let's assume that we have two
files: main.cc , which contains the definition of main , and Sales_item.cc ,
which contains the Sales_item member functions. We might compile these

files as follows:

     $ CC -c main.cc Sales_item.cc # by default generates a.exe
                                   # some compilers generate a.out

     # puts the executable in main.exe
     $ CC -c main.cc Sales_item.cc -o main

where $ is our system prompt and # begins a command-line comment. We
can now run the executable file, which will run our main program.

If we have only changed one of our .cc source files, it is more efficient to

recompile only the file that actually changed. Most compilers provide a way
to separately compile each file. This process usually yields a .o file, where
the .o extension implies that the file contains object code.

The compiler lets us link object files together to form an executable. On the
system we use, in which the compiler is invoked by a command named CC ,

we would compile our program as follows:

     $ CC -c main.cc              # generates main.o
     $ CC -c Sales_item.cc        # generates Sales_item.o
     $ CC main.o Sales_item.o     # by default generates a.exe;
                                  # some compilers generate a.out

     # puts the executable in main.exe
     $ CC main.o Sales_item.o -o main

You'll need to check with your compiler's user's guide to understand how to
compile and execute programs made up of multiple source files.



Many compilers offer an option to enhance the
error detection of the compiler. Check your
compiler's user's guide to see what additional
checks are available.

Because headers are included in multiple source files, they should
not contain definitions of variables or functions.

There are three exceptions to the rule that headers should not contain definitions: classes, const
objects whose value is known at compile time, and inline functions (Section 7.6 (p. 256 )
covers inline functions) are all defined in headers. These entities may be defined in more than
one source file as long as the definitions in each file are exactly the same.

These entities are defined in headers because the compiler needs their definitions (not just
declarations) to generate code. For example, to generate code that defines or uses objects of a
class type, the compiler needs to know what data members make up that type. It also needs to
know what operations can be performed on these objects. The class definition provides the
needed information. That const objects are defined in a header may require a bit more
explanation.

Some const Objects Are Defined in Headers

Recall that by default a const variable (Section 2.4 , p. 57 ) is local to the file in which it is
defined. As we shall now see, the reason for this default is to allow const variables to be defined
in header files.

In C++ there are places where constant expression (Section 2.7 , p. 62 ) is required. For
example, the initializer of an enumerator must be a constant expression. We'll see other cases
that require constant expressions in later chapters.

Generally speaking, a constant expression is an expression that the compiler can evaluate at
compile-time. A const variable of integral type may be a constant expression when it is itself
initialized from a constant expression. However, for the const to be a constant expression, the
initializer must be visible to the compiler. To allow multiple files to use the same constant value,
the const and its initializer must be visible in each file. To make the initializer visible, we
normally define such const s inside a header file. That way the compiler can see the initializer
whenever the const is used.



However, there can be only one definition (Section 2.3.5 , p. 52 ) for any variable in a C++
program. A definition allocates storage; all uses of the variable must refer to the same storage.
Because, by default, const objects are local to the file in which they are defined, it is legal to put
their definition in a header file.

There is one important implication of this behavior. When we define a const in a header file,
every source file that includes that header has its own const variable with the same name and
value.

When the const is initialized by a constant expression, then we are guaranteed that all the
variables will have the same value. Moreover, in practice, most compilers will replace any use of
such const variables by their corresponding constant expression at compile time. So, in practice,
there won't be any storage used to hold const variables that are initialized by constant
expressions.

When a const is initialized by a value that is not a constant expression, then it should not be
defined in header file. Instead, as with any other variable, the const should be defined and
initialized in a source file. An extern declaration for that const should be made in the header,
enabling multiple files to share that variable.

2.9.2. A Brief Introduction to the Preprocessor

Now that we know what we want to put in our headers, our next problem is to actually write a
header. We know that to use a header we have to #include it in our source file. In order to
write our own headers, we need to understand a bit more about how a #include directive works.
The #include facility is a part of the C++ preprocessor . The preprocessor manipulates the
source text of our programs and runs before the compiler. C++ inherits a fairly elaborate
preprocessor from C. Modern C++ programs use the preprocessor in a very restricted fashion.

Exercises Section 2.9.1

Exercise
2.31:

Identify which of the following statements are declarations and
which ones are definitions. Explain why they are declarations
or definitions.

     (a) extern int ix = 1024;
     (b) int iy;
     (c) extern int iz;
     (d) extern const int &ri;

Exercise
2.32:

Which of the following declarations and definitions would you
put in a header? In a source file? Explain why.

     (a) int var;
     (b) const double pi = 3.1416;
     (c) extern int total = 255;
     (d) const double sq2 = sqrt(2.0);



Exercise
2.33:

Determine what options your compiler offers for increasing the
warning level. Recompile selected earlier programs using this
option to see whether additional problems are reported.

A #include directive takes a single argument: the name of a header. The pre-processor replaces
each #include by the contents of the specified header. Our own headers are stored in files.
System headers may be stored in a compiler-specific format that is more efficient. Regardless of
the form in which a header is stored, it ordinarily contains class definitions and declarations of
the variables and functions needed to support separate compilation.

Headers Often Need Other Headers

Headers often #include other headers. The entities that a header defines often use facilities
from other headers. For example, the header that defines our Sales_item class must include the
string library. The Sales_item class has a string data member and so must have access to the
string header.

Including other headers is so common that it is not unusual for a header to be included more
than once in the same source file. For example, a program that used the Sales_item header
might also use the string library. That program wouldn'tindeed shouldn'tknow that our
Sales_item header uses the string library. In this case, the string header would be included
twice: once by the program itself and once as a side-effect of including our Sales_item header.

Accordingly, it is important to design header files so that they can be included more than once
in a single source file. We must ensure that including a header file more than once does not
cause multiple definitions of the classes and objects that the header file defines. A common way
to make headers safe uses the preprocessor to define a header guard . The guard is used to
avoid reprocessing the contents of a header file if the header has already been seen.

Avoiding Multiple Inclusions

Before we write our own header, we need to introduce some additional preprocessor facilities.
The preprocessor lets us define our own variables.

Names used for preprocessor variables must be unique within the
program. Any uses of a name that matches a preprocessor variable
is assumed to refer to the preprocessor variable.

To help avoid name clashes, preprocessor variables usually are written in all uppercase letters.



A preprocessor variable has two states: defined or not yet defined. Various preprocessor
directives define and test the state of preprocessor variables. The #define directive takes a
name and defines that name as a preprocessor variable. The #ifndef directive tests whether the
specified preprocessor variable has not yet been defined. If it hasn't, then everything following
the #ifndef is processed up to the next #endif .

We can use these facilities to guard against including a header more than once:

     #ifndef SALESITEM_H
     #define SALESITEM_H

     // Definition of Sales_itemclass and related functions goes here
     #endif

The conditional directive

     #ifndef SALESITEM_H

tests whether the SALESITEM_H preprocessor variable has not been defined. If SALESITEM_H has
not been defined, the #ifndef succeeds and all the lines following #ifndef until the #endif is
found are processed. Conversely, if the variable SALESITEM_H has been defined, then the #ifndef
directive is false. The lines between it and the #endif directive are ignored.

To guarantee that the header is processed only once in a given source file, we start by testing
the #ifndef . The first time the header is processed, this test will succeed, because SALESITEM_H
will not yet have been defined. The next statement defines SALESITEM_H . That way, if the file we
are compiling happens to include this header a second time, the #ifndef directive will discover
that SALESITEM_H is defined and skip the rest of the header file.

Headers should have guards, even if they aren't included
by another header. Header guards are trivial to write and
can avoid mysterious compiler errors if the header
subsequently is included more than once.

This strategy works well provided that no two headers define and use a pre-processor constant
with the same name. We can avoid problems with duplicate preprocessor variables by naming
them for an entity, such as a class, that is defined inside the header. A program can have only
one class named Sales_item . By using the class name to compose the name of the header file
and the preprocessor variable, we make it pretty likely that only one file will use this
preprocessor variable.

Using Our Own Headers

The #include directive takes one of two forms:



     #include <standard_header>
     #include "my_file.h"

If the header name is enclosed by angle brackets (< > ), it is presumed to be a standard
header. The compiler will look for it in a predefined set of locations, which can be modified by
setting a search path environment variable or through a command line option. The search
methods used vary significantly across compilers. We recommend you ask a colleague or consult
your compiler's user's guide for further information. If the header name is enclosed by a pair of
quotation marks, the header is presumed to be a nonsystem header. The search for nonsystem
headers usually begins in the directory in which the source file is located.

 



 

Chapter Summary

Types are fundamental to all programming in C++.

Each type defines the storage requirements and the operations that may be performed on all
objects of that type. The language provides a set of fundamental built-in types such as int and
char . These types are closely tied to their representation on the machine's hardware.

Types can be nonconst or const ; a const object must be initialized and its value may not be
changed. In addition, we can define compound types, such as references. A reference provides
another name for an object. A compound type is a type that is defined in terms of another type.

The language lets us define our own types by defining a class. The library uses the class facility
to provide a set of higher-level abstractions such as the IO and string types.

C++ is a statically typed language: Variables and functions must be declared before they are
used. A variable can be declared many times but defined only once. It is almost always a good
idea to initialize variables when you define them.

 



 

Defined Terms

access labels

Members in a class may be defined to be private , which protects them from access from
code that uses the type. Members may also be defined as public , which makes them
accessible code throughout the program.

address

Number by which a byte in memory can be found.

arithmetic types

The arithmetic types represent numbers: integers and floating point. There are three
types of floating point values: long double, double , and float . These represent
extended, double, and single precision values. It is almost always right to use double . In
particular, float is guaranteed only six significant digits too small for most calculations.
The integral types include bool, char, wchar_t, short, int , and long . Integer types
can be signed or unsigned. It is almost always right to avoid short and char for
arithmetic. Use unsigned for counting. The bool type may hold only two values: true or
false . The whcar_t type is intended for characters from an extended character set; char
type is used for characters that fit in 8 bits, such as Latin-1 or ASCII.

array

Data structure that holds a collection of unnamed objects that can be accessed by an
index. This chapter introduced the use of character arrays to hold string literals. Chapter 4
will discuss arrays in much more detail.

byte

Typically the smallest addressable unit of memory. On most machines a byte is 8 bits.

class

C++ mechanism for defining data types. Classes are defined using either the class or
struct keyword. Classes may have data and function members. Members may be public
or private . Ordinarily, function members that define the operations on the type are made
public ; data members and functions used in the implementation of the class are made
private . By default, members in a class defined using the class keyword are private;
members in a class defined using the struct keyword are public.



class member

A part of a class. Members are either data or operations.

compound type

A type, such as a reference, that is defined in terms of another type. Chapter 4 covers two
additional compound types: pointers and arrays.

const reference

A reference that may be bound to a const object, a nonconst object, or to an rvalue. A
const reference may not change the object to which it refers.

constant expression

An integral expression whose value can be evaluated at compile-time.

constructor

Special member function that is used to initialize newly created objects. The job of a
constructor is to ensure that the data members of an object have safe, sensible initial
values.

copy-initialization

Form of initialization that uses the = symbol to indicate that variable should be initialized
as a copy of the initializer.

data member

The data elements that constitute an object. Data members ordinarily should be private.

declaration

Asserts the existence of a variable, function, or type defined elsewhere in the program.
Some declarations are also definitions; only definitions allocate storage for variables. A
variable may be declared by preceeding its type with the keyword extern . Names may
not be used until they are defined or declared.

default constructor

The constructor that is used when no explicit values are given for an initializer of a class
type object. For example, the default constructor for string initializes the new string as



the empty string . Other string constructors initialize the string with characters specified
when the string is created.

definition

Allocates storage for a variable of a specified type and optionally initializes the variable.
Names may not be used until they are defined or declared.

direct-initialization

Form of initialization that places a comma-separated list of initializers inside a pair of
parentheses.

enumeration

A type that groups a set of named integral constants.

enumerator

The named members of an enumeration. Each enumerator is initialized to an integral
value and the value of the enumerator is const . Enumerators may be used where integral
constant expressions are required, such as the dimension of an array definition.

escape sequence

Alternative mechanism for representing characters. Usually used to represent
nonprintable characters such as newline or tab. An escape sequence is a backslash
followed by a character, a three-digit octal number, or a hexadecimal number. The escape
sequences defined by the language are listed on page 40 . Escape sequences can be used
as a literal character (enclosed in single quotes) or as part of a literal string (enclosed in
double quotes).

global scope

Scope that is outside all other scopes.

header

A mechanism for making class definitions and other declarations available in multiple
source files. User-defined headers are stored as files. System headers may be stored as
files or in some other system-specific format.

header guard



The preprocessor variable defined to prevent a header from being included more than
once in a single source file.

identifier

A name. Each identifier is a nonempty sequence of letters, digits, and underscores that
must not begin with a digit. Identifiers are case-sensitive: Upper- and lowercase letters
are distinct. Identifiers may not use C++ keywords. Identifiers may not contain two
adjacent underscores nor may they begin with an underscore followed by a uppercase
letter.

implementation

The (usually private ) members of a class that define the data and any operations that
are not intended for use by code that uses the type. The istream and ostream classes, for
example, manage an IO buffer that is part of their implementation and not directly
accessible to users of those classes.

initialized

A variable that has an initial value. An initial value may be specified when defining a
variable. Variables usually should be initialized.

integral types

See arithmetic type.

interface

The operations supported by a type. Well-designed classes separate their interface and
implementation, defining the interface in the public part of the class and the
implementation in the private parts. Data members ordinarily are part of the
implementation. Function members are part of the interface (and hence public ) when
they are operations that users of the type are expected to use and part of the
implementation when they perform operations needed by the class but not defined for
general use.

link

Compilation step in which multiple object files are put together to form an executable
program. The link step resolves interfile dependencies, such as linking a function call in
one file to a function definition contained in a second file.

literal constant

A value such as a number, a character, or a string of characters. The value cannot be



changed. Literal characters are enclosed in single quotes, literal strings in double quotes.

local scope

Term used to describe function scope and the scopes nested inside a function.

lvalue

A value that may appear on the left-hand of an assignment. A nonconst lvalue may be
read and written.

magic number

A literal number in a program whose meaning is important but not obvious. It appears as
if by magic.

nonconst reference

A reference that may be bound only to a nonconst lvalue of the same type as the
reference. A nonconst reference may change the value of the underlying object to which it
refers.

nonprintable character

A character with no visible representation, such as a control character, a backspace,
newline, and so on.

object

A region of memory that has a type. A variable is an object that has a name.

preprocessor

The preprocessor is a program that runs as part of compilation of a C++ program. The
preprocessor is inherited from C, and its uses are largely obviated by features in C++.
One essential use of the preprocessor remains: the #include facility, which is used to
incorporate headers into a program.

private member

Member that is inaccessible to code that uses the class.



public member

Member of a class that can be used by any part of the program.

reference

An alias for another object. Defined as follows:

     type &id = object;

Defines id to be another name for object . Any operation on id is translated as an operation on
object .

run time

Refers to the time during which the program is executing.

rvalue

A value that can be used as the right-hand, but not left-hand side of an assignment. An
rvalue may be read but not written.

scope

A portion of a program in which names have meaning. C++ has several levels of scope:

global names defined outside any other scope.

class names defined by a class.

namespace names defined within a namespace.

local names defined within a function.

block names defined within a block of statements, that is, within a pair of curly
braces.

statement names defined within the condition of a statement, such as an if, for ,
or while .

Scopes nest. For example, names declared at global scope are accessible in function and
statement scope.

separate compilation

Ability to split a program into multiple separate source files.



signed

Integer type that holds negative or positive numbers, including zero.

statically typed

Term used to refer to languages such as C++ that do compile-time type checking. C++
verifies at compile-time that the types used in expressions are capable of performing the
operations required by the expression.

struct

Keyword that can be used to define a class. By default, members of a struct are public
until specified otherwise.

type-checking

Term used to describe the process by which the compiler verifies that the way objects of a
given type are used is consistent with the definition of that type.

type specifier

The part of a definition or declaration that names the type of the variables that follow.

typedef

Introduces a synonym for some other type. Form:

     typedef type synonym;

defines synonym as another name for the type named type .

undefined behavior

A usage for which the language does not specify a meaning. The compiler is free to do
whatever it wants. Knowingly or unknowingly relying on undefined behavior is a great
source of hard-to-track run-time errors and portability problems.

uninitialized

Variable with no specified initial value. An uninitialized variable is not zero or "empty;"
instead, it holds whatever bits happen to be in the memory in which it was allocated.
Uninitialized variables are a great source of bugs.



unsigned

Integer type that holds values greater than or equal to zero.

variable initialization

Term used to describe the rules for initializing variables and array elements when no
explicit initializer is given. For class types, objects are initialized by running the class's
default constructor. If there is no default constructor, then there is a compile-time error:
The object must be given an explicit initializer. For built-in types, initialization depends on
scope. Objects defined at global scope are initialized to 0; those defined at local scope are
uninitialized and have undefined values.

void type

Special-purpose type that has no operations and no value. It is not possible to define a
variable of type void . Most commonly used as the return type of a function that does not
return a result.

word

The natural unit of integer computation on a given machine. Usually a word is large
enough to hold an address. Typically on a 32-bit machine machine a word is 4 bytes.
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In addition to the primitive types covered in Chapter 2 , C++ defines a rich library of abstract
data types. Among the most important library types are string and vector , which define
variable-sized character strings and collections, respectively. Associated with string and vector
are companion types known as iterators, which are used to access the characters in a string or
the elements in a vector . These library types are abstractions of more primitive typesarrays
and pointersthat are part of the language.

Another library type, bitset , provides an abstract way to manipulate a collection of bits. This
class provides a more convenient way of dealing with bits than is offered by the built-in bitwise
operators on values of integral type.

This chapter introduces the library vector, string , and bitset types. The next chapter covers
arrays and pointers, and Chapter 5 looks at built-in bitwise operators.

The types that we covered in Chapter 2 are all low-level types: They represent abstractions such
as numbers or characters and are defined in terms of how they are represented on the machine.

In addition to the types defined in the language, the standard library defines a number of higher
level abstract data types . These library types are higher-level in that they mirror more
complex concepts. They are abstract because when we use them we don't need to care about
how the types are represented. We need to know only what operations they support.

Two of the most important library types are string and vector . The string type supports
variable-length character strings. The vector type holds a sequence of objects of a specified
type. These types are important because they offer improvements over more primitive types
defined by the language. Chapter 4 looks at the language-level constructs that are similar to,
but less flexible and more error-prone than, the library string and vector types.

Another library type that offers a more convenient and reasonably efficient abstraction of a
language level facility is the bitset class. This class lets us treat a value as a collection of bits. It
provides a more direct way of operating on bits than do the bitwise operators that we cover in
Section 5.3 (p. 154 ).

Before continuing our exploration of the library types, we'll look at a mechanism for simplifying
access to the names defined in the library.



 



 

3.1. Namespace using Declarations

The programs we've seen so far have referred to names from the library by explicitly noting that
the name comes from the std namespace. For example, when we want to read from the
standard input, we write std::cin . Such names use the :: operator, which is the scope
operator (Section 1.2.2 , p. 8 ). This operator says that we should look for the name of the
right-hand operand in the scope of the left-hand operand. Thus, std::cin says that we want the
name cin that is defined in the namespace std . Referring to library names through this
notation can be cumbersome.

Fortunately, there are easier ways to use namespace members. In this section we'll cover the
safest mechanism: using declarations . We will see other ways to simplify the use of names

from a namespace in Section 17.2 (p. 712 ).

A using declaration allows us to access a name from a namespace without the prefix
namespace_name:: . A using declaration has the following form:

     using namespace::name;

Once the using declaration has been made, we can access name directly without reference to its
namespace:

     #include <string>
     #include <iostream>

     // using declarations states our intent to use these names from the namespace std
     using std::cin;
     using std::string;
     int main()
     {

      string s;       // ok: string is now a synonym for std::string

      cin >> s;       // ok: cin is now a synonym for std::cin

      cout << s;      // error: no using declaration; we must use full name

      std::cout << s; // ok: explicitly use cout from namepsace std
     }

Using the unqualified version of a namespace name without a using declaration is an error,
although some compilers may fail to detect this error.

A Separate Using Declaration Is Required for Each Name

A using declaration introduces only one namespace member at a time. It allows us to be very
specific regarding which names are used in our programs. If we want to use several names from
std or any other namespacethen we must issue a using declaration for each name that we
intend to use. For example, we could rewrite the addition program from page 6 as follows:



     #include <iostream>
     // using declarations for names from the standard library
     using std::cin;
     using std::cout;
     using std::endl;
     int main()
     {
         cout << "Enter two numbers:" << endl;
         int v1, v2;
         cin >> v1 >> v2;
         cout << "The sum of " << v1
              << " and " << v2
              << " is " << v1 + v2 << endl;
         return 0;
     }

The using declarations for cin, cout , and endl mean that we can use those names without the
std:: prefix, making the code easier to read.

From this point on, our examples will assume that using declarations have been provided for the
names we use from the standard library. Thus, we will refer to cin , not std::cin , in the text
and in code examples. To keep the code examples short, we won't show the using declarations
that are needed to compile the examples. Similarly, our code examples will not show the
necessary #include directives. Table A.1 (p. 810 ) in Appendix A lists the library names and
corresponding headers for standard-library names we use in this primer.

Readers should be aware that they must add appropriate #include
and using declarations to our examples before compiling them.

Class Definitions that Use Standard Library Types

There is one case in which we should always use the fully qualified library names: inside header
files. The reason is that the contents of a header are copied into our program text by the
preprocessor. When we #include a file, it is as if the exact text of the header is part of our file.
If we place a using declaration within a header, it is equivalent to placing the same using
declaration in every program that includes the header whether that program wants the using

declaration or not .



In general, it is good practice for headers to define only
what is strictly necessary.

Exercises Section 3.1

Exercise
3.1:

Rewrite the program from Section 2.3 (p. 43 ) that calculated
the result of raising a given number to a given power to use
appropriate using declarations rather than accessing library
names through a std:: prefix.

 



 

3.2. Library string Type

The string type supports variable-length character strings. The library takes care of managing
the memory associated with storing the characters and provides various useful operations. The
library string type is intended to be efficient enough for general use.

As with any library type, programs that use string s must first include the associated header.
Our programs will be shorter if we also provide an appropriate using declaration:

     #include <string>
     using std::string;

3.2.1. Defining and Initializing string s

The string library provides several constructors (Section 2.3.3 , p. 49 ). A constructor is a
special member function that defines how objects of that type can be initialized. Table 3.1 on
the facing page lists the most commonly used string constructors. The default constructor
(Section 2.3.4 , p. 52 ) is used "by default" when no initializer is specified.

Table 3.1. Ways to Initialize a string

string s1; Default constructor; s1 is the empty string

string s2(s1); Initialize s2 as a copy of s1

string s3("value"); Initialize s3 as a copy of the string literal

string s4(n, 'c'); Initialize s4 with n copies of the character 'c'

Caution: Library string Type and String Literals

For historical reasons, and for compatibility with C, character string literals
are not the same type as the standard library string type. This fact can

cause confusion and is important to keep in mind when using a string literal
or the string data type.



Exercises Section 3.2.1

Exercise
3.2:

What is a default constructor?

Exercise
3.3:

Name the three ways to initialize a string .

Exercise
3.4:

What are the values of s and s2 ?

     string s;
     int main() {
      string s2;
     }

3.2.2. Reading and Writing string s

As we saw in Chapter 1 , we use the iostream library to read and write values of built-in types
such as int, double , and so on. Similarly, we can use the iostream and string libraries to allow
us to read and write string s using the standard input and output operators:

     // Note: #include and using declarations must be added to compile this code
     int main()
     {
         string s;          // empty string

         cin >> s;          // read whitespace-separated string into s

         cout << s << endl; // write s to the output
         return 0;
     }

This program begins by defining a string named s . The next line,

     cin >> s;        // read whitespace-separated string into s

reads the standard input storing what is read into s . The string input operator:

Reads and discards any leading whitespace (e.g., spaces, newlines, tabs)

It then reads characters until the next whitespace character is encountered

So, if the input to this program is "Hello World! ", (note leading and trailing spaces) then the



output will be "Hello " with no extra spaces.

The input and output operations behave similarly to the operators on the builtin types. In
particular, the operators return their left-hand operand as their result. Thus, we can chain
together multiple reads or writes:

     string s1, s2;

     cin >> s1 >> s2; // read first input into s1, second into s2

     cout << s1 << s2 << endl; // write both strings

If we give this version of the program the same input as in the previous paragraph, our output
would be

     HelloWorld!

To compile this program, you must add #include directives for both
the iostream and string libraries and must issue using declarations
for all the names used from the library: string, cin, cout , and
endl .

The programs presented from this point on will assume that the needed #include and
using declarations have been made.

Reading an Unknown Number of string s

Like the input operators that read built-in types, the string input operator returns the stream
from which it read. Therefore, we can use a string input operation as a condition, just as we did
when reading int s in the program on page 18. The following program reads a set of string s
from the standard input and writes what it has read, one string per line, to the standard
output:

     int main()
     {
         string word;
         // read until end-of-file, writing each word to a new line
         while (cin >> word)
             cout << word << endl;
         return 0;
     }

In this case, we read into a string using the input operator. That operator returns the istream
from which it read, and the while condition tests the stream after the read completes. If the



stream is validit hasn't hit end-of-file or encountered an invalid inputthen the body of the while
is executed and the value we read is printed to the standard output. Once we hit end-of-file, we
fall out of the while .

Using getline to Read an Entire Line

There is an additional useful string IO operation: getline . This is a function that takes both an

input stream and a string . The getline function reads the next line of input from the stream
and stores what it read, not including the newline, in its string argument. Unlike the input
operator, getline does not ignore leading newlines. Whenever getline encounters a newline,
even if it is the first character in the input, it stops reading the input and returns. The effect of
encountering a newline as the first character in the input is that the string argument is set to
the empty string .

The getline function returns its istream argument so that, like the input operator, it can be
used as a condition. For example, we could rewrite the previous program that wrote one word
per line to write a line at a time instead:

     int main()
     {
         string line;
         // read line at time until end-of-file
         while (getline(cin, line))
             cout << line << endl;
         return 0;
     }

Because line does not contain a newline, we must write our own if we want the string s written
one to a line. As usual, we use endl to write a newline and flush the output buffer.

The newline that causes getline to return is discarded; it does not
get stored in the string .



Exercises Section 3.2.2

Exercise
3.5:

Write a program to read the standard input a line at a time.
Modify your program to read a word at a time.

Exercise
3.6:

Explain how whitespace characters are handled in the string
input operator and in the getline function.

3.2.3. Operations on string s

Table 3.2 on the next page lists the most commonly used string operations.

Table 3.2. string Operations

s.empty() Returns true if s is empty; otherwise returns false

s.size() Returns number of characters in s

s[n] Returns the character at position n in s ; positions start
at 0.

s1 + s2 Returns a string equal to the concatenation of s1 and s2

s1 = s2 Replaces characters in s1 by a copy of s2

v1 == v2 Returns true if v1 and v2 are equal; false otherwise

!=, <, <= ,
>, and >=

Have their normal meanings

The string size and empty Operations

The length of a string is the number of characters in the string . It is returned by the size
operation:

     int main()
     {
         string st("The expense of spirit\n");
         cout << "The size of " << st << "is " << st.size()
              << " characters, including the newline" << endl;
         return 0;
     }

If we compile and execute this program it yields



     The size of The expense of spirit
     is 22 characters, including the newline

Often it is useful to know whether a string is empty. One way we could do so would be to
compare size with 0:

     if (st.size() == 0)
          // ok: empty

In this case, we don't really need to know how many characters are in the string ; we are only
interested in whether the size is zero. We can more directly answer this question by using the
empty member:

     if (st.empty())
          // ok: empty

The empty function returns the bool (Section 2.1 , p. 34 ) value true if the string contains no
characters; otherwise, it returns false .

string::size_type

It might be logical to expect that size returns an int , or, thinking back to the note on page 38 ,
an unsigned . Instead, the size operation returns a value of type string::size_type . This type
requires a bit of explanation.

The string classand many other library typesdefines several companion types. These
companion types make it possible to use the library types in a machine-independent manner.
The type size_type is one of these companion types. It is defined as a synonym for an unsigned

typeeither unsigned int or unsigned long that is guaranteed to be big enough to hold the size of
any string . To use the size_type defined by string , we use the scope operator to say that the
name size_type is defined in the string class.

Any variable used to store the result from the string size
operation ought to be of type string::size_type . It is
particularly important not to assign the return from size to
an int .

Although we don't know the precise type of string::size_type , wedo know that it is an
unsigned type (Section 2.1.1 , p. 34 ). We also know that for a given type, the unsigned version
can hold a positive value twice as large as the corresponding signed type can hold. This fact



implies that the largest string could be twice as large as the size an int can hold.

Another problem with using an int is that on some machines the size of an int is too small to
hold the size of even plausibly large string s. For example, if a machine has 16-bit int s, then
the largest string an int could represent would have 32,767 characters. A string that held the
contents of a file could easily exceed this size. The safest way to hold the size of a string is to
use the type the library defines for this purpose, which is string::size_type .

The string Relational Operators

The string class defines several operators that compare two string values. Each of these
operators works by comparing the characters from each string .

string comparisons are case-sensitivethe upper- and lowercase
versions of a letter are different characters. On most computers, the
uppercase letters come first: Every uppercase letter is less than any
lowercase letter.

The equality operator compares two string s, returning true if they are equal. Two string s are
equal if they are the same length and contain the same characters. The library also defines != to
test whether two string s are unequal.

The relational operators <, <=, >, >= test whether one string is less than, less than or equal,
greater than, or greater than or equal to another:

     string big = "big", small = "small";

     string s1 = big;    // s1 is a copy of big
     if (big == small)   // false
         // ...

     if (big <= s1)      // true, they're equal, so big is less than or equal to s1
         // ...

The relational operators compare string s using the same strategy as in a (case-sensitive)
dictionary:

If two string s have different lengths and if every character in the shorter string is equal
to the corresponding character of the longer string , then the shorter string is less than
the longer one.

If the characters in two string s differ, then we compare them by comparing the first
character at which the string s differ.

As an example, given the string s

     string substr = "Hello";
     string phrase = "Hello World";



     string slang  = "Hiya";

then substr is less than phrase , and slang is greater than either substr or phrase .

Assignment for string s

In general the library types strive to make it as easy to use a library type as it is to use a built-
in type. To this end, most of the library types support assignment. In the case of string s, we
can assign one string object to another:

     // st1 is an empty string, st2 is a copy of the literal
     string st1, st2 = "The expense of spirit";

     st1 = st2; // replace st1 by a copy of st2

After the assignment, st1 contains a copy of the characters in st2 .

Most string library implementations go to some trouble to provide efficient implementations of
operations such as assignment, but it is worth noting that conceptually, assignment requires a
fair bit of work. It must delete the storage containing the characters associated with st1 ,
allocate the storage needed to contain a copy of the characters associated with st2 , and then
copy those characters from st2 into this new storage.

Adding Two string s

Addition on string s is defined as concatenation. That is, it is possible to concatenate two or
more string s through the use of either the plus operator (+ ) or the compound assignment
operator (+= ) (Section 1.4.1 , p. 13 ). Given the two string s

     string s1("hello, ");
     string s2("world\n");

we can concatenate the two string s to create a third string as follows:

     string s3 = s1 + s2;   // s3 is hello, world\n

If we wanted to append s2 to s1 directly, then we would use += :

     s1 += s2;   // equivalent to s1 = s1 + s2

Adding Character String Literals and string s



The string s s1 and s2 included punctuation directly. We could achieve the same result by
mixing string objects and string literals as follows:

     string s1("hello");
     string s2("world");

     string s3 = s1 + ", " + s2 + "\n";

When mixing string s and string literals, at least one operand to each + operator must be of
string type:

     string s1 = "hello";   // no punctuation
     string s2 = "world";

     string s3 = s1 + ", ";           // ok: adding a string and a literal

     string s4 = "hello" + ", ";      // error: no string operand

     string s5 = s1 + ", " + "world"; // ok: each + has string operand

     string s6 = "hello" + ", " + s2; // error: can't add string literals

The initializations of s3 and s4 involve only a single operation. In these cases, it is easy to
determine that the initialization of s3 is legal: We initialize s3 by adding a string and a string
literal. The initialization of s4 attempts to add two string literals and is illegal.

The initialization of s5 may appear surprising, but it works in much the same way as when we
chain together input or output expressions (Section 1.2 , p. 5 ). In this case, the string library
defines addition to return a string . Thus, when we initialize s5 , the subexpression s1 + ", "
returns a string , which can be concatenated with the literal "world\n" . It is as if we had
written

     string tmp = s1 + ", "; // ok: + has a string operand

     s5 = tmp + "world";     // ok: + has a string operand

On the other hand, the initialization of s6 is illegal. Looking at each subexpression in turn, we
see that the first subexpression adds two string literals. There is no way to do so, and so the
statement is in error.

Fetching a Character from a string

The string type uses the subscript ([ ] ) operator to access the individual characters in the
string . The subscript operator takes a size_type value that denotes the character position we
wish to fetch. The value in the subscript is often called "the subscript" or "an index ."

Subscripts for string s start at zero; if s is a string , then if s isn't
empty, s[0] is the first character in the string, s[1] is the second
if there is one, and the last character is in s[s.size() - 1] .



It is an error to use an index outside this range.

We could use the subscript operator to print each character in a string on a separate line:

     string str("some string");
     for (string::size_type ix = 0; ix != str.size(); ++ix)
         cout << str[ix] << endl;

On each trip through the loop we fetch the next character from str , printing it followed by a
newline.

Subscripting Yields an Lvalue

Recall that a variable is an lvalue (Section 2.3.1 , p. 45 ), and that the left-hand side of an
assignment must be an lvalue. Like a variable, the value returned by the subscript operator is
an lvalue. Hence, a subscript can be used on either side of an assignment. The following loop
sets each character in str to an asterisk:

     for (string::size_type ix = 0; ix != str.size(); ++ix)
         str[ix] = '*';

Computing Subscript Values

Any expression that results in an integral value can be used as the index to the subscript
operator. For example, assuming someval and someotherval are integral objects, we could write

     str[someotherval * someval] = someval;

Although any integral type can be used as an index, the actual type of the index is
string::size_type , which is an unsigned type.

The same reasons to use string::size_type as the type
for a variable that holds the return from size apply when
defining a variable to serve as an index. A variable used to
index a string should have type string::size_type .



When we subscript a string , we are responsible for ensuring that the index is "in range." By in
range, we mean that the index is a number that, when assigned to a size_type , is a value in
the range from 0 through the size of the string minus one. By using a string::size_type or
another unsigned type as the index, we ensure that the subscript cannot be less than zero. As
long as our index is an unsigned type, we need only check that it is less than the size of the
string .

The library is not required to check the value of the index. Using an
index that is out of range is undefined and usually results in a
serious run-time error.

3.2.4. Dealing with the Characters of a string

Often we want to process the individual characters of a string . For example, we might want to
know if a particular character is a whitespace character or whether the character is alphabetic or
numeric. Table 3.3 on the facing page lists the functions that can be used on the characters in a
string (or on any other char value). These functions are defined in the cctype header .

Table 3.3. cctype Functions

isalnum(c) TRue if c is a letter or a digit.

isalpha(c) true if c is a letter.

iscntrl(c) true if c is a control character.

isdigit(c) true if c is a digit.

isgraph(c) true if c is not a space but is printable.

islower(c) true if c is a lowercase letter.

isprint(c) TRue if c is a printable character.

ispunct(c) TRue if c is a punctuation character.

isspace(c) true if c is whitespace.

isupper(c) TRue if c is an uppercase letter.

isxdigit(c) true if c is a hexadecimal digit.

tolower(c) If c is an uppercase letter, returns its lowercase
equivalent; otherwise returns c unchanged.

toupper(c) If c is a lowercase letter, returns its uppercase
equivalent; otherwise returns c unchanged.



These functions mostly test the given character and return an int , which acts as a truth value.
Each function returns zero if the test fails; otherwise, they return a (meaningless) nonzero value
indicating that the character is of the requested kind.

For these functions, a printable character is a character with a visible representation;
whitespace is one of space, tab, vertical tab, return, newline, and formfeed; and punctuation is
a printable character that is not a digit, a letter, or (printable) whitespace character such as
space.

As an example, we could use these functions to print the number of punctuation characters in a
given string :

     string s("Hello World!!!");
     string::size_type punct_cnt = 0;

     // count number of punctuation characters in s
     for (string::size_type index = 0; index != s.size(); ++index)
         if (ispunct(s[index]))
             ++punct_cnt;
     cout << punct_cnt
          << " punctuation characters in " << s << endl;

The output of this program is

     3 punctuation characters in Hello World!!!

Rather than returning a truth value, the tolower and toupper functions return a charactereither
the argument unchanged or the lower- or uppercase version of the character. We could use
tolower to change s to lowercase as follows:

     // convert s to lowercase
     for (string::size_type index = 0; index != s.size(); ++index)
         s[index] = tolower(s[index]);
     cout << s << endl;

which generates

     hello world!!!



Advice: Use the C++ Versions of C Library Headers

In addition to facilities defined specifically for C++, the C++ library
incorporates the C library. The cctype header makes available the C library
functions defined in the C header file named ctype.h .

The standard C headers names use the form name .h . The C++ versions of
these headers are named c name the C++ versions remove the .h suffix and
precede the name by the letter c . The c indicates that the header originally
comes from the C library. Hence, cctype has the same contents as ctype.h ,

but in a form that is appropriate for C++ programs. In particular, the
names defined in the c name headers are defined inside the std namespace,
whereas those defined in the .h versions are not.

Ordinarily, C++ programs should use the c name versions of headers and
not the name .h versions. That way names from the standard library are
consistently found in the std namespace. Using the .h headers puts the

burden on the programmer to remember which library names are inherited
from C and which are unique to C++.

Exercises Section 3.2.4

Exercise
3.7:

Write a program to read two string s and report whether the
string s are equal. If not, report which of the two is the
larger. Now, change the program to report whether the string
s have the same length and if not report which is longer.

Exercise
3.8:

Write a program to read string s from the standard input,
concatenating what is read into one large string . Print the
concatenated string . Next, change the program to separate
adjacent input string s by a space.

Exercise
3.9:

What does the following program do? Is it valid? If not, why
not?

     string s;
     cout << s[0] << endl;

Exercise
3.10:

Write a program to strip the punctuation from a string . The
input to the program should be a string of characters including
punctuation; the output should be a string in which the
punctuation is removed.

 



 

3.3. Library vector Type

A vector is a collection of objects of a single type, each of which has an associated integer
index. As with string s, the library takes care of managing the memory associated with storing
the elements. We speak of a vector as a container because it contains other objects. All of the
objects in a container must have the same type. We'll have much more to say about containers
in Chapter 9 .

To use a vector , we must include the appropriate header. In our examples, we also assume an
appropriate using declaration is made:

     #include <vector>
     using std::vector;

A vector is a class template . Templates let us write a single class or function definition that
can be used on a variety of types. Thus, we can define a vector that holds string s, or a vector
to hold int s, or one to hold objects of our own class types, such as Sales_items . We'll see how
to define our own class templates in Chapter 16 . Fortunately, we need to know very little about
how templates are defined in order to use them.

To declare objects of a type generated from a class template, we must supply additional
information. The nature of this information depends on the template. In the case of vector , we
must say what type of objects the vector will contain. We specify the type by putting it between
a pair of angle brackets following the template's name:

     vector<int> ivec;               // ivec holds objects of type int

     vector<Sales_item> Sales_vec;   // holds Sales_items

As in any variable definition, we specify a type and a list of one or more variables. In the first of
these definitions, the type is vector<int> , which is a vector that holds objects of type int . The
name of the variable is ivec . In the second, we define Sales_vec to hold Sales_item objects.

vector is not a type; it is a template that we can use to define any
number of types. Each of vector type specifies an element type.
Hence, vector<int> and vector<string> are types.

3.3.1. Defining and Initializing vector s

The vector class defines several constructors (Section 2.3.3 , p. 49 ), which we use to define



and initialize vector objects. The constructors are listed in Table 3.4 .

Table 3.4. Ways to Initialize a vector

vector<T> v1; vector that holds objects of type T ;

  Default constructor v1 is empty

vector<T> v2(v1); v2 is a copy of v1

vector<T> v3(n, i); v3 has n elements with value i

vector<T> v4(n) ; v4 has n copies of a value-initialized
object

Creating a Specified Number of Elements

When we create a vector that is not empty, we must supply value(s) to use to initialize the
elements. When we copy one vector to another, each element in the new vector is initialized as
a copy of the corresponding element in the original vector . The two vectors must hold the
same element type:

     vector<int> ivec1;           // ivec1 holds objects of type int

     vector<int> ivec2(ivec1);    // ok: copy elements of ivec1 into ivec2

     vector<string> svec(ivec1);  // error: svec holds strings, not ints

We can initialize a vector from a count and an element value. The constructor uses the count to
determine how many elements the vector should have and uses the value to specify the value
each of those elements will have:

     vector<int> ivec4(10, -1);       // 10 elements, each initialized to -1
     vector<string> svec(10, "hi!");  // 10 strings, each initialized to "hi!"



Key Concept: vector S Grow Dynamically

A central property of vector s (and the other library containers) is that they

are required to be implemented so that it is efficient to add elements to
them at run time. Because vector s grow efficiently, it is usually best to let
the vector grow by adding elements to it dynamically as the element values

are known.

As we'll see in Chapter 4 , this behavior is distinctly different from that of
built-in arrays in C and for that matter in most other languages. In
particular, readers accustomed to using C or Java might expect that
because vector elements are stored contiguously, it would be best to
preallocate the vector at its expected size. In fact, the contrary is the case,

for reasons we'll explore in Chapter 9 .

Although we can preallocate a given number of elements in
a vector , it is usually more efficient to define an empty
vector and add elements to it (as we'll learn how to do

shortly).

Value Initialization

When we do not specify an element initializer, then the library creates a value initialized
element initializer for us. This library-generated value is used to initialize each element in the
container. The value of the element initializer depends on the type of the elements stored in the
vector .

If the vector holds elements of a built-in type, such as int , then the library creates an element
initializer with a value of 0:

     vector<string> fvec(10); // 10 elements, each initialized to 0

If the vector holds elements of a class type, such as string , that defines its own constructors,
then the library uses the value type's default constructor to create the element initializer:

     vector<string> svec(10); // 10 elements, each an empty string

As we'll see in Chapter 12 , some classes that define their own
constructors do not define a default constructor. We cannot initialize
a vector of such a type by specifying only a size; we must also
specify an initial element value.



There is a third possibility: The element type might be of a class type that does not define any
constructors. In this case, the library still creates a value-initialized object. It does so by value-
initializing each member of that object.

Exercises Section 3.3.1

Exercise
3.11:

Which, if any, of the following vector definitions are in error?

     (a) vector< vector<int> > ivec;
     (b) vector<string> svec = ivec;
     (c) vector<string> svec(10, "null");

Exercise
3.12:

How many elements are there in each of the following vector
s? What are the values of the elements?

     (a) vector<int> ivec1;
     (b) vector<int> ivec2(10);
     (c) vector<int> ivec3(10, 42);
     (d) vector<string> svec1;
     (e) vector<string> svec2(10);
     (f) vector<string> svec3(10, "hello");

3.3.2. Operations on vector s

The vector library provides various operations, many of which are similar to operations on
string s. Table 3.5 lists the most important vector operations.

Table 3.5. vector Operations



v.empty() Returns true if v is empty; otherwise returns false

v.size() Returns number of elements in v

v.push_back(t) Adds element with value t to end of v

v[n] Returns element at position n in v

v1 = v2 Replaces elements in v1 by a copy of elements in v2

v1 == v2 Returns TRue if v1 and v2 are equal

!=, <, <= ,
>, and >=

Have their normal meanings

The size of a vector

The empty and size operations are similar to the corresponding string operations (Section 3.2.3
, p. 83 ). The size member returns a value of the size_type defined by the corresponding
vector type.

To use size_type , we must name the type in which it is defined. A
vector type always includes the element type of the vector :

     vector<int>::size_type        // ok
     vector::size_type            // error

Adding Elements to a vector

The push_back operation takes an element value and adds that value as a new element at the

back of a vector . In effect it "pushes" an element onto the "back" of the vector :

     // read words from the standard input and store them as elements in a vector
     string word;

     vector<string> text;    // empty vector
     while (cin >> word) {

         text.push_back(word);     // append word to text
     }

This loop reads a sequence of string s from the standard input, appending them one at a time
onto the back of the vector . We start by defining text as an initially empty vector . Each trip
through the loop adds a new element to the vector and gives that element the value of
whatever word was read from the input. When the loop completes, text will have as many



elements as were read.

Subscripting a vector

Objects in the vector are not named. Instead, they can be accessed by their position in the
vector . We can fetch an element using the subscript operator. Subscripting a vector is similar
to subscripting a string (Section 3.2.3 , p. 87 ).

The vector subscript operator takes a value and returns the element at that position in the
vector . Elements in a vector are numbered beginning with 0. The following example uses a for
loop to reset each element in the vector to 0:

     // reset the elements in the vector to zero
     for (vector<int>::size_type ix = 0; ix != ivec.size(); ++ix)
         ivec[ix] = 0;

Like the string subscript operator, the vector subscript yields an lvalue so that we may write to
it, which we do in the body of the loop. Also, as we do for string s, we use the size_type of the
vector as the type for the subscript.

Even if ivec is empty, this for loop executes correctly. If ivec is
empty, the call to size returns 0 and the test in the for compares
ix to 0. Because ix is itself 0 on the first trip, the test would fail and
the loop body would not be executed even once.

Subscripting Does Not Add Elements

Programmers new to C++ sometimes think that subscripting a vector adds elements; it does
not:

     vector<int> ivec;   // empty vector
     for (vector<int>::size_type ix = 0; ix != 10; ++ix)

         ivec[ix] = ix; // disaster: ivec has no elements



Key Concept: Safe, Generic Programming

Programmers coming to C++ from C or Java might be surprised that our
loop used != rather than < to test the index against the size of the vector . C
programmers are probably also suprised that we call the size member in
the for rather than calling it once before the loop and remembering its

value.

C++ programmers tend to write loops using != in preference to < as a

matter of habit. In this case, there is no particular reason to choose one
operator or the other. We'll understand the rationale for this habit once we
cover generic programming in Part II .

Calling size rather than remembering its value is similarly unnecessary in

this case but again reflects a good habit. In C++, data structures such as
vector can grow dynamically. Our loop only reads elements; it does not add

them. However, a loop could easily add new elements. If the loop did add
elements, then testing a saved value of size would failour loop would not

account for the newly added elements. Because a loop might add elements,
we tend to write our loops to test the current size on each pass rather than
store a copy of what the size was when we entered the loop.

As we'll see in Chapter 7 , in C++ functions can be declared to be inline .
When it can do so, the compiler will expand the code for an inline function

directly rather than actually making a function call. Tiny library functions
such as size are almost surely defined to be inline , so we expect that there

is little run-time cost in making this call on each trip through the loop.

This code intended to insert new 10 elements into ivec , giving the elements the values from 0
through 9. However, ivec is an empty vector and subscripts can only be used to fetch existing
elements.

The right way to write this loop would be

     for (vector<int>::size_type ix = 0; ix != 10; ++ix)

         ivec.push_back(ix);  // ok: adds new element with value ix

An element must exist in order to subscript it; elements are not
added when we assign through a subscript.

 



 

3.4. Introducing Iterators

While we can use subscripts to access the elements in a vector , the library also gives us
another way to examine elements: We can use an iterator . An iterator is a type that lets us
examine the elements in a container and navigate from one element to another.

The library defines an iterator type for each of the standard containers, including vector .
Iterators are more general than subscripts: All of the library containers define iterator types, but
only a few of them support subscripting. Because iterators are common to all containers,
modern C++ programs tend to use iterators rather than subscripts to access container
elements, even on types such as vector that support subscripting.

Caution: Only Subscript Elements that Are Known to Exist!

It is crucially important to understand that we may use the subscript
operator, (the [] operator), to fetch only elements that actually exist. For

example,

     vector<int> ivec;      // empty vector
     cout << ivec[0];       // Error: ivec has no elements!

     vector<int> ivec2(10); // vector with 10 elements
     cout << ivec[10];      // Error: ivec has elements 0...9

Attempting to fetch an element that doesn't exist is a run-time error. As
with most such errors, there is no assurance that the implementation will
detect it. The result of executing the program is uncertain. The effect of
fetching a nonexisting element is undefinedwhat happens will vary by
implementation, but the program will almost surely fail in some interesting
way at run time.

This caution applies any time we use a subscript, such as when subscripting
a string and, as we'll see shortly, when subscripting a built-in array.

Attempting to subscript elements that do not exist is, unfortunately, an
extremely common and pernicious programming error. So-called "buffer
overflow" errors are the result of subscripting elements that don't exist.
Such bugs are the most common cause of security problems in PC and other
applications.



Exercises Section 3.3.2

Exercise
3.13:

Read a set of integers into a vector . Calculate and print the
sum of each pair of adjacent elements in the vector . If there
is an odd number, tell the user and print the value of the last
element without summing it. Now change your program so
that it prints the sum of the first and last elements, followed
by the sum of the second and second-to-last and so on.

Exercise
3.14:

Read some text into a vector , storing each word in the input
as an element in the vector . transform each word into
uppercase letters. Print the transformed elements from the
vector , printing eight words to a line.

Exercise
3.15:

Is the following program legal? If not, how might you fix it?

     vector<int> ivec;
     ivec[0] = 42;

Exercise
3.16:

List three ways to define a vector and give it 10 elements,
each with the value 42. Indicate whether there is a preferred
way to do so and why.

The details of how iterators work are discussed in Chapter 11 , but we can use them without
understanding them in their full complexity.

Container iterator Type

Each of the container types, such as vector , defines its own iterator type:

     vector<int>::iterator iter;

This statement defines a variable named iter , whose type is the type named iterator defined
by vector<int> . Each of the library container types defines a member named iterator that is a
synonym for the actual type of its iterator.



Terminology: Iterators and Iterator Types

When first encountered, the nomenclature around iterators can be
confusing. In part the confusion arises because the same term, iterator , is
used to refer to two things. We speak generally of the concept of an
iterator, and we speak specifically of a concrete iterator type defined by a
container, such as vector<int> .

What's important to understand is that there is a collection of types that
serve as iterators. These types are related conceptually. We refer to a type
as an iterator if it supports a certain set of actions. Those actions let us
navigate among the elements of a container and let us access the value of
those elements.

Each container class defines its own iterator type that can be used to

access the elements in the container. That is, each container defines a type
named iterator , and that type supports the actions of an (conceptual)

iterator.

The begin and end Operations

Each container defines a pair of functions named begin and end that return iterators. The
iterator returned by begin refers to the first element, if any, in the container:

     vector<int>::iterator iter = ivec.begin();

This statement initializes iter to the value returned by the vector operation named begin .
Assuming the vector is not empty, after this initialization, iter refers to the same element as
ivec[0] .

The iterator returned by the end operation is an iterator positioned "one past the end" of the
vector . It is often referred to as the off-the-end iterator indicating that it refers to a
nonexistent element "off the end" of the vector . If the vector is empty, the iterator returned by
begin is the same as the iterator returned by end .

The iterator returned by the end operation does not denote an
actual element in the vector . Instead, it is used as a sentinel
indicating when we have processed all the elements in the vector .

Dereference and Increment on vector Iterators

The operations on iterator types let us retrieve the element to which an iterator refers and let us



move an iterator from one element to another.

Iterator types use the dereference operator (the * operator) to access the element to which
the iterator refers:

     *iter = 0;

The dereference operator returns the element that the iterator currently denotes. Assuming iter
refers to the first element of the vector , then *iter is the same element as ivec[0] . The effect
of this statement is to assign 0 to that element.

Iterators use the increment operator (++ ) (Section 1.4.1 , p. 13 ) to advance an iterator to the
next element in the container. Incrementing an iterator is a logically similar operation to the
increment operator when applied to int objects. In the case of int s, the effect is to "add one"
to the int 's value. In the case of iterators, the effect is to "advance the iterator by one
position" in the container. So, if iter refers to the first element, then ++iter denotes the second
element.

Because the iterator returned from end does not denote an element,
it may not be incremented or dereferenced.

Other Iterator Operations

Another pair of useful operations that we can perform on iterators is comparison: Two iterators
can be compared using either == or != . Iterators are equal if they refer to the same element;
they are unequal otherwise.

A Program that Uses Iterators

Assume we had a vector<int> named ivec and we wanted to reset each of its elements to zero.
We might do so by using a subscript:

     // reset all the elements in ivec to 0
     for (vector<int>::size_type ix = 0; ix != ivec.size(); ++ix)
             ivec[ix] = 0;

This program uses a for loop to iterate through the elements in ivec . The for defines an index,
which it increments on each iteration. The body of the for sets each element in ivec to zero.

A more typical way to write this loop would use iterators:



     // equivalent loop using iterators to reset all the elements in ivec to 0
     for (vector<int>::iterator iter = ivec.begin();
                                iter != ivec.end(); ++iter)

         *iter = 0;  // set element to which iter refers to 0

The for loop starts by defining iter and initializing it to refer to the first element in ivec . The
condition in the for tests whether iter is unequal to the iterator returned by the end operation.
Each iteration increments iter . The effect of this for is to start with the first element in ivec
and process in sequence each element in the vector . Eventually, iter will refer to the last
element in ivec . After we process the last element and increment iter , it will become equal to
the value returned by end . At that point, the loop stops.

The statement in the for body uses the dereference operator to access the value of the current
element. As with the subscript operator, the value returned by the dereference operator is an
lvalue. We can assign to this element to change its value. The effect of this loop is to assign the
value zero to each element in ivec .

Having walked through the code in detail, we can see that this program has exactly the same
effect as the version that used subscripts: We start at the first element in the vector and set
each element in the vector to zero.

This program, like the one on page 94 , is safe if the vector is
empty. If ivec is empty, then the iterator returned from begin does
not denote any element; it can't, because there are no elements. In
this case, the iterator returned from begin is the same as the one
returned from end , so the test in the for fails immediately.

const_iterator

The previous program used a vector::iterator to change the values in the vector . Each
container type also defines a type named const_iterator , which should be used when reading,
but not writing to, the container elements.

When we dereference a plain iterator , we get a nonconst reference (Section 2.5 , p. 59 ) to
the element. When we dereference a const_iterator , the value returned is a reference to a
const (Section 2.4 , p. 56 ) object. Just as with any const variable, we may not write to the
value of this element.

For example, if text is a vector<string> , we might want to traverse it, printing each element.
We could do so as follows:

     // use const_iterator because we won't change the elements
     for (vector<string>::const_iterator iter = text.begin();
                                   iter != text.end(); ++iter)

         cout << *iter << endl; // print each element in text



This loop is similar to the previous one, except that we are reading the value from the iterator,
not assigning to it. Because we read, but do not write, through the iterator, we define iter to be
a const_iterator . When we dereference a const_iterator , the value returned is const . We
may not assign to an element using a const_iterator:

     for (vector<string>::const_iterator iter = text.begin();
                                  iter != text.end(); ++ iter)

         *iter = " ";     // error: *iter is const

When we use the const_iterator type, we get an iterator whose own value can be changed but
that cannot be used to change the underlying element value. We can increment the iterator and
use the dereference operator to read a value but not to assign to that value.

A const_iterator should not be confused with an iterator that is const . When we declare an
iterator as const we must initialize the iterator. Once it is initialized, we may not change its
value:

     vector<int> nums(10);  // nums is nonconst
     const vector<int>::iterator cit = nums.begin();

     *cit = 1;               // ok: cit can change its underlying element

     ++cit;                  // error: can't change the value of cit

A const_iterator may be used with either a const or nonconst vector , because it cannot write
an element. An iterator that is const is largely useless: Once it is initialized, we can use it to
write the element it refers to, but cannot make it refer to any other element.

     const vector<int> nines(10, 9);  // cannot change elements in nines

     // error: cit2 could change the element it refers to and nines is const
     const vector<int>::iterator cit2 = nines.begin();

     // ok: it can't change an element value, so it can be used with a const vector<int>
     vector<int>::const_iterator it = nines.begin();

     *it = 10; // error: *it is const

     ++it;     // ok: it isn't const so we can change its value

     // an iterator that cannot write elements
     vector<int>::const_iterator
     // an iterator whose value cannot change
     const vector<int>::iterator



Exercises Section 3.4

Exercise
3.17:

Redo the exercises from Section 3.3.2 (p. 96 ), using iterators
rather than subscripts to access the elements in the vector .

Exercise
3.18:

Write a program to create a vector with 10 elements. Using an
iterator, assign each element a value that is twice its current
value.

Exercise
3.19:

Test your previous program by printing the vector .

Exercise
3.20:

Explain which iterator you used in the previous programs, and
why.

Exercise
3.21:

When would you use an iterator that is const ? When would
you use a const_iterator . Explain the difference between
them.

3.4.1. Iterator Arithmetic

In addition to the increment operator, which moves an iterator one element at a time, vector
iterators (but few of the other library container iterators) also support other arithmetic
operations. These operations are referred to as iterator arithmetic , and include:

iter + n

iter - n

We can add or subtract an integral value to an iterator. Doing so yields a new iterator
positioned n elements ahead of (addition) or behind (subtraction) the element to which
iter refers. The result of the addition or subtraction must refer to an element in the vector
to which iter refers or to one past the end of that vector . The type of the value added or
subtracted ought ordinarily to be the vector 's size_type or difference_type (see below).

iter1 - iter2

Computes the difference between two iterators as a value of a signed integral type named
difference_type , which, like size_type , is defined by vector . The type is signed because

subtraction might have a negative result. This type is guaranteed to be large enough to
hold the distance between any two iterators. Both iter1 and iter2 must refer to elements
in the same vector or the element one past the end of that vector .

We can use iterator arithmetic to move an iterator to an element directly. For example, we
could locate the middle of a vector as follows:

     vector<int>::iterator mid = vi.begin() + vi.size() / 2;



This code initializes mid to refer to the element nearest to the middle of ivec . It is more
efficient to calculate this iterator directly than to write an equivalent program that increments
the iterator one by one until it reaches the middle element.

Any operation that changes the size of a vector makes existing
iterators invalid. For example, after calling push_back , you should
not rely on the value of an iterator into the vector .

Exercises Section 3.4.1

Exercise
3.22:

What happens if we compute mid as follows:

     vector<int>::iterator mid = (vi.begin() + vi.end()) / 2;

 



 

3.5. Library bitset Type

Some programs deal with ordered collections of bits. Each bit can contain either a 0 (off) or a 1
(on) value. Using bits is a compact way to keep yes/no information (sometimes called flags)
about a set of items or conditions. The standard library makes it easy to deal with bits through
the bitset class. To use a bitset we must include its associated header file. In our examples,

we also assume an appropriate using declaration for std::bitset is made:

     #include <bitset>
     using std::bitset;

3.5.1. Defining and Initializing bitset s

Table 3.6 lists the constructors for bitset . Like vector , the bitset class is a class template.
Unlike vector , objects of type bitset differ by size rather than by type. When we define a
bitset , we say how many bits the bitset will contain, which we do by specifying the size
between a pair of angle brackets.

Table 3.6. Ways to Initialize a bitset

bitset<n> b; b has n bits, each bit is 0

bitset<n> b(u); b is a copy of the unsigned long value u

bitset<n> b(s); b is a copy of the bits contained in string s

bitset<n> b(s, pos, n); b is a copy of the bits in n characters from s
starting from position pos

     bitset<32> bitvec; // 32 bits, all zero

The size must be a constant expression (Section 2.7 , p. 62 ). It might be defined, as we did
here, using an integral literal constant or using a const object of integral type that is initialized
from a constant.

This statement defines bitvec as a bitset that holds 32 bits. Just as with the elements of a
vector , the bits in a bitset are not named. Instead, we refer to them positionally. The bits are
numbered starting at 0. Thus, bitvec has bits numbered 0 through 31. The bits starting at 0 are
referred to as the low-order bits, and those ending at 31 are referred to as high-order bits.

Initializing a bitset from an unsigned Value



When we use an unsigned long value as an initializer for a bitset , that value is treated as a bit
pattern. The bits in the bitset are a copy of that pattern. If the size of the bitset is greater
than the number of bits in an unsigned long , then the remaining high-order bits are set to zero.
If the size of the bitset is less than that number of bits, then only the low-order bits from the
unsigned value are used; the high-order bits beyond the size of the bitset object are discarded.

On a machine with 32-bit unsigned long s, the hexadecimal value 0xffff is represented in bits
as a sequence of 16 ones followed by 16 zeroes. (Each 0xf digit is represented as 1111 .) We
can initialize a bitset from 0xffff :

     // bitvec1 is smaller than the initializer
     bitset<16> bitvec1(0xffff);          // bits 0 ... 15 are set to 1

     // bitvec2 same size as initializer
     bitset<32> bitvec2(0xffff);          // bits 0 ... 15 are set to 1; 16 ... 31 are 0

     // on a 32-bit machine, bits 0 to 31 initialized from 0xffff
     bitset<128> bitvec3(0xffff);         // bits 32 through 127 initialized to zero

In all three cases, the bits 0 to 15 are set to one. For bitvec1 , the high-order bits in the
initializer are discarded; bitvec1 has fewer bits than an unsigned long . bitvec2 is the same size
as an unsigned long , so all the bits are used to initialize that object. bitvec3 is larger than an
unsigned long , so its high-order bits above 31 are initialized to zero.

Initializing a bitset from a string

When we initialize a bitset from a string , the string represents the bit pattern directly. The
bits are read from the string from right to left :

     string strval("1100");
     bitset<32> bitvec4(strval);

The bit pattern in bitvec4 has bit positions 2 and 3 set to 1, while the remaining bit positions
are 0. If the string contains fewer characters than the size of the bitset , the high-order bits
are set to zero.

The numbering conventions of string s and bitsets are inversely
related: The rightmost character in the string the one with the
highest subscriptis used to initialize the low-order bit in the bitset
the bit with subscript 0. When initializing a bitset from a string , it
is essential to remember this difference.

We need not use the entire string as the initial value for the bitset . Instead, we can use a
substring as the initializer:



     string str("1111111000000011001101");

     bitset<32> bitvec5(str, 5, 4); // 4 bits starting at str[5], 1100
     bitset<32> bitvec6(str, str.size() - 4);     // use last 4 characters

Here bitvec5 is initialized by a substring of str starting at str[5] and continuing for four
positions. As usual, we start at the rightmost end of this substring when initializing the bitset ,
meaning that bitvec5 is initialized with bit positions 0 through 3 set to 1100 while its remaining
bit positions are set to 0. Leaving off the third parameter says to use characters from the
starting position to the end of the string . In this case, the characters starting four from the
end of str are used to initialize the lower four bits of bitvec6 . The remainder of the bits in
bitvec6 are initialized to zero. We can view these initializations as

3.5.2. Operations on bitset s

The bitset operations (Table 3.7 ) define various operations to test or set one or more bits in
the bitset .

Table 3.7. bitset Operations



b.any() Is any bit in b on?

b.none() Are no bits in b on?

b.count() Number of bits in b that are on

b.size() Number of bits in b

b[pos] Access bit in b at position pos

b.test(pos) Is bit in b in position pos on?

b.set() Turn on all bits in b

b.set(pos) Turn on the bit in b at position pos

b.reset() Turn off all bits in b

b.reset(pos) Turn off the bit in b at position pos

b.flip() Change the state of each bit in b

b.flip(pos) Reverse value of the bit in b in position pos

b.to_ulong() Returns an unsigned long with the same bits as
in b

os << b Prints the bits in b to the stream os

Testing the Entire bitset

The any operation returns true if one or more bits of the bitset object are turned onthat is, are
equal to 1. Conversely, the operation none returns true if all the bits of the object are set to
zero.

     bitset<32> bitvec; // 32 bits, all zero
     bool is_set = bitvec.any();            // false, all bits are zero
     bool is_not_set = bitvec.none();       // true, all bits are zero

If we need to know how many bits are set, we can use the count operation, which returns the
number of bits that are set:

     size_t bits_set = bitvec.count(); // returns number of bits that are on

The return type of the count operation is a library type named size_t . The size_t type is

defined in the cstddef header, which is the C++ version of the stddef.h header from the C
library. It is a machine-specific unsigned type that is guaranteed to be large enough to hold the
size of an object in memory.

The size operation, like the one in vector and string , returns the total number of bits in the
bitset . The value returned has type size_t:



     size_t sz = bitvec.size(); // returns 32

Accessing the Bits in a bitset

The subscript operator lets us read or write the bit at the indexed position. As such, we can use
it to test the value of a given bit or to set that value:

     // assign 1 to even numbered bits
     for (int index = 0; index != 32; index += 2)
                 bitvec[index] = 1;

This loop turns on the even-numbered bits of bitvec .

As with the subscript operator, we can use the set, test , and reset operations to test or set a
given bit value:

     // equivalent loop using set operation
     for (int index = 0; index != 32; index += 2)
                 bitvec.set(index);

To test whether a bit is on, we can use the test operation or test the value returned from the
subscript operator:

     if (bitvec.test(i))
          // bitvec[i] is on
     // equivalent test using subscript
     if (bitvec[i])
          // bitvec[i] is on

The result of testing the value returned from a subscript is true if the bit is 1 or false if the bit
is 0 .

Setting the Entire bitset

The set and reset operations can also be used to turn on or turn off the entire bitset object,
respectively:

     bitvec.reset(); // set all the bits to 0.
     bitvec.set();   // set all the bits to 1

The flip operation reverses the value of an individual bit or the entire bitset :



     bitvec.flip(0);   // reverses value of first bit
     bitvec[0].flip(); // also reverses the first bit
     bitvec.flip();    // reverses value of all bits

Retrieving the Value of a bitset

The to_ulong operation returns an unsigned long that holds the same bit pattern as the bitset
object. We can use this operation only if the size of the bitset is less than or equal to the size of
an unsigned long :

     unsigned long ulong = bitvec3.to_ulong();
     cout << "ulong = " << ulong << endl;

The to_ulong operation is intended to be used when we need to pass a bitset to a C or pre-
Standard C++ program. If the bitset contains more bits than the size of an unsigned long , a
run-time exception is signaled. We'll introduce exceptions in Section 6.13 (p. 215 ) and look at
them in more detail in Section 17.1 (p. 688 ).

Printing the Bits

We can use the output operator to print the bit pattern in a bitset object:

     bitset<32> bitvec2(0xffff); // bits 0 ... 15 are set to 1; 16 ... 31 are 0
     cout << "bitvec2: " << bitvec2 << endl;

will print

     bitvec2: 00000000000000001111111111111111

Using the Bitwise Operators

The bitset class also supports the built-in bitwise operators. As defined by the language, these
operators apply to integral operands. They perform operations similar to the bitset operations
described in this section. Section 5.3 (p. 154 ) describes these operators.



Exercises Section 3.5.2

Exercise
3.23:

Explain the bit pattern each of the following bitset objects
contains:

     (a) bitset<64> bitvec(32);
     (b) bitset<32> bv(1010101);
     (c) string bstr; cin >> bstr; bitset<8>bv(bstr);

Exercise
3.24:

Consider the sequence 1,2,3,5,8,13,21. Initialize a bitset<32>
object that has a one bit in each position corresponding to a
number in this sequence. Alternatively, given an empty bitset
, write a small program to turn on each of the appropriate bits.

 



 

Chapter Summary

The library defines several higher-level abstract data types, including string s and vector s. The
string class provides variable-length character strings, and the vector type manages a
collection of objects of a single type.

Iterators allow indirect access to objects stored in a container. Iterators are used to access and
navigate between the elements in string s and vectors .

In the next chapter we'll cover arrays and pointers, which are types built into the language.
These types provide low-level analogs to the vector and string libraries. In general, the library
classes should be used in preference to low-level array and pointer alternatives built into the
language.

 



 

Defined Terms

abstract data type

A type whose representation is hidden. To use an abstract type, we need know only what
operations the type supports.

bitset

Standard library class that holds a collection of bits and provides operations to test and
set the bits in the collection.

cctype header

Header inherited from C that contains routines to test character values. See page 88 for a
listing of the most common routines.

class template

A blueprint from which many potential class types can be created. To use a class
template, we must specify what actual type(s) or value(s) to use. For example, a vector is
a template that holds objects of a given type. When we create a vector , we must say
what type this vector will hold. vector<int> holds int s, vector<string> holds string s,
and so on.

container

A type whose objects hold a collection of objects of a given type.

difference_type

A signed integral type defined by vector that is capable of holding the distance between
any two iterators.

empty

Function defined by the string and vector types. empty returns a bool indicating whether
the string has any characters or whether the vector has any elements. Returns TRue if
size is zero; false otherwise.



getline

Function defined in the string header that takes an istream and a string . The function
reads the stream up to the next newline, storing what it read into the string , and returns
the istream . The newline is read and discarded.

high-order

Bits in a bitset with the largest indices.

index

Value used in the subscript operator to denote the element to retrieve from a string or
vector .

iterator

A type that can be used to examine the elements of a container and to navigate between
them.

iterator arithmetic

The arithmetic operations that can be applied to some, but not all, iterator types. An
integral type can be added to or subtracted from an iterator, resulting in an iterator
positioned that many elements ahead of or behind the original iterator. Two iterators can
be subtracted, yielding the distance between the iterators. Iterator arithmetic is valid only
on iterators that refer to elements in the same container or the off-the-end iterator of the
container.

low-order

Bits in a bitset with the lowest indices.

off-the-end iterator

The iterator returned by end . It is an iterator that refers to a nonexistent element one
past the end of a container.

push_back

Function defined by vector that appends elements to the back of a vector .

sentinel



Programming technique that uses a value as a guard to control processing. In this
chapter, we showed the use of the iterator returned by end as a guard to stop processing
elements in a vector once we had processed every element in the vector .

size

Function defined by the library types string, vector , and bitset that returns the number
of characters, elements, or bits respectively. The string and vector functions return a
value of the size_type for the type. For example, size of a string returns a
string::size_type . The bitset operation returns a value of type size_t .

size_t

Machine-dependent unsigned integral type defined in cstddef header that is large enough
to hold the size of the largest possible array.

size_type

Type defined by the string and vector classes that is capable of containing the size of any
string or vector , respectively. Library classes that define size_type define it as an
unsigned type.

using declarations

Make a name from a namespace accessible directly.

     using namespace::name;

makes name accessible without the namespace :: prefix.

value initialization

Initialization that happens for container elements when the container size is specified but
there is no explicit element initializer. The elements are initialized as a copy of a compiler-
generated value. If the container holds built-in types, then the value copied into the
elements is zero. For class types, the value is generated by running the class's default
constructor. Container elements that are of class type can be value-initialized only if the
class has a default constructor.

++ operator

The iterator types define the increment operator to "add one" by moving the iterator to
refer to the next element.



:: operator

The scope operator. It finds the name of its right-hand operand in the scope of its left-
hand operand. Used to access names in a namespace, such as std::cout , which
represents the name cout from the namespace std . Similarly, used to obtain names from
a class, such as string::size_type , which is the size_type defined by the string class.

[] operator

An overloaded operator defined by the string, vector , and bitset types. It takes two
operands: The left-hand operand is the name of the object and the right-hand operand is
an index. It fetches the element whose position matches the index. Indices count from
zerothe first element is element 0 and the last is element indexed by obj.size() - 1 .
Subscript returns an lvalue, so we may use a subscript as the left-hand operand of an
assignment. Assigning to the result of a subscript assigns a new value to the indexed
element.

* operator

The iterator types define the dereference operator to return the object to which the
iterator refers. Dereference returns an lvalue, so we may use a dereference operator as
the left-hand operand of an assignment. Assigning to the result of a dereference assigns a
new value to the indexed element.

<< operator

The string and bitset library types define an output operator. The string operator prints
the characters in a string . The bitset operator prints the bit pattern in the bitset .

>> operator

The string and bitset library types define an input operator. The string operator reads
whitespace delimited chunks of characters, storing what is read into the right-hand
(string ) operand. The bitset operator reads a bit sequence into its bitset operand.
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The language defines two lower-level compound typesarrays and pointersthat are similar to
vector s and iterators. Like a vector , an array holds a collection of objects of some type. Unlike
vector s, arrays are fixed size; once an array is created, new elements cannot be added. Like
iterators, pointers can be used to navigate among and examine the elements in an array.

Modern C++ programs should almost always use vector s and iterators in preference to the
lower-level arrays and pointers. Well-designed programs use arrays and pointers only in the
internals of class implementations where speed is essential.

Arrays are data structures that are similar to library vector s but are built into the language.
Like a vector , an array is a container of objects of a single data type. The individual objects are
not named; rather, each one is accessed by its position in the array.

Arrays have significant drawbacks compared to vector s: They are fixed size, and they offer no
help to the programmer in keeping track of how big a given array is. There is no size operation
on arrays. Similarly, there is no push_back to automatically add elements. If the array size needs
to change, then the programmer must allocate a new, larger array and copy the elements into
that new space.

Programs that rely on built-in arrays rather than using the standard
vector are more error-prone and harder to debug.

Prior to the advent of the standard library, C++ programs made heavy use of arrays to hold
collections of objects. Modern C++ programs should almost always use vector s instead of
arrays. Arrays should be restricted to the internals of programs and used only where
performance testing indicates that vector s cannot provide the necessary speed. However, there



will be a large body of existing C++ code that relies on arrays for some time to come. Hence, all
C++ programmers must know a bit about how arrays work.

 



 

4.1. Arrays

An array is a compound type (Section 2.5 , p. 58 ) that consists of a type specifier, an identifier,
and a dimension . The type specifier indicates what type the elements stored in the array will
have. The dimension specifies how many elements the array will contain.

The type specifier can denote a built-in data or class type. With the
exception of references, the element type can also be any
compound type. There are no arrays of references.

4.1.1. Defining and Initializing Arrays

The dimension must be a constant expression (Section 2.7 , p. 62 ) whose value is greater than
or equal to one. A constant expression is any expression that involves only integral literal
constants, enumerators (Section 2.7 , p. 62 ), or const objects of integral type that are
themselves initialized from constant expressions. A nonconst variable, or a const variable whose
value is not known until run time, cannot be used to specify the dimension of an array.

The dimension is specified inside a [] bracket pair:

          // both buf_size and max_files are const
          const unsigned buf_size = 512, max_files = 20;

          int staff_size = 27;            // nonconst

          const unsigned sz = get_size();  // const value not known until run time

          char input_buffer[buf_size];     // ok: const variable
          string fileTable[max_files + 1]; // ok: constant expression

          double salaries[staff_size];     // error: non const variable

          int test_scores[get_size()];     // error: non const expression

          int vals[sz];                    // error: size not known until run time

Although staff_size is initialized with a literal constant, staff_size itself is a nonconst object.
Its value can be known only at run time, so it is illegal as an array dimension. Even though size
is a const object, its value is not known until get_size is called at run time. Therefore, it may
not be used as a dimension. On the other hand, the expression

          max_files + 1

is a constant expression because max_files is a const variable. The expression can be and is



evaluated at compile time to a value of 21.

Explicitly Initializing Array Elements

When we define an array, we can provide a comma-separated list of initializers for its elements.
The initializer list must be enclosed in braces:

          const unsigned array_size = 3;
          int ia[array_size] = {0, 1, 2};

If we do not supply element initializers, then the elements are initialized in the same way that
variables are initialized (Section 2.3.4 , p. 50 ).

Elements of an array of built-in type defined outside the body of a function are initialized to
zero.

Elements of an array of built-in type defined inside the body of a function are uninitialized.

Regardless of where the array is defined, if it holds elements of a class type, then the
elements are initialized by the default constructor for that class if it has one. If the class
does not have a default constructor, then the elements must be explicitly initialized.

Unless we explicitly supply element initializers, the elements of a
local array of built-in type are uninitialized. Using these elements for
any purpose other than to assign a new value is undefined.

An explicitly initialized array need not specify a dimension value. The compiler will infer the
array size from the number of elements listed:

          int ia[] = {0, 1, 2}; // an array of dimension 3

If the dimension size is specified, the number of elements provided must not exceed that size. If
the dimension size is greater than the number of listed elements, the initializers are used for the
first elements. The remaining elements are initialized to zero if the elements are of built-in type
or by running the default constructor if they are of class type:

          const unsigned array_size = 5;

          // Equivalent to ia = {0, 1, 2, 0, 0}

          // ia[3] and ia[4] default initialized to 0
          int ia[array_size] = {0, 1, 2};

          // Equivalent to str_arr = {"hi", "bye", "", "", ""}

          // str_arr[2] through str_arr[4] default initialized to the empty string



          string str_arr[array_size] = {"hi", "bye"};

Character Arrays Are Special

A character array can be initialized with either a list of comma-separated character literals
enclosed in braces or a string literal. Note, however, that the two forms are not equivalent.
Recall that a string literal (Section 2.2 , p. 40 ) contains an additional terminating null character.
When we create a character array from a string literal, the null is also inserted into the array:

          char ca1[] = {'C', '+', '+'};                // no null
          char ca2[] = {'C', '+', '+', '\0'};         // explicit null
          char ca3[] = "C++";     // null terminator added automatically

The dimension of ca1 is 3; the dimension of ca2 and ca3 is 4. It is important to remember the
null-terminator when initializing an array of characters to a literal. For example, the following is
a compile-time error:

          const char ch3[6] = "Daniel"; // error: Daniel is 7 elements

While the literal contains only six explicit characters, the required array size is sevensix to hold
the literal and one for the null.

No Array Copy or Assignment

Unlike a vector , it is not possible to initialize an array as a copy of another array. Nor is it legal
to assign one array to another:

          int ia[] = {0, 1, 2}; // ok: array of ints
          int ia2[](ia);        // error: cannot initialize one array with another

          int main()
          {
              const unsigned array_size = 3;
              int ia3[array_size]; // ok: but elements are uninitialized!

              ia3 = ia;           //  error: cannot assign one array to another
              return 0;
          }



Some compilers allow array assignment as a compiler extension .
If you intend to run a given program on more than one compiler, it
is usually a good idea to avoid using nonstandard compiler-specific
features such as array assignment.

Caution: Arrays Are Fixed Size

Unlike the vector type, there is no push_back or other operation to add

elements to the array. Once we define an array, we cannot add elements to
it.

If we must add elements to the array, then we must manage the memory
ourselves. We have to ask the system for new storage to hold the larger
array and copy the existing elements into that new storage. We'll see how
to do so in Section 4.3.1 (p. 134 ).

Exercises Section 4.1.1

Exercise
4.1:

Assuming get_size is a function that takes no arguments and
returns an int value, which of the following definitions are illegal?
Explain why.

          unsigned buf_size = 1024;

          (a) int ia[buf_size];
          (b) int ia[get_size()];
          (c) int ia[4 * 7 - 14];
          (d) char st[11] = "fundamental";

Exercise
4.2:

What are the values in the following arrays?

          string sa[10];
          int ia[10];
          int main() {
              string sa2[10];
              int    ia2[10];
          }



Exercise
4.3:

Which, if any, of the following definitions are in error?

          (a) int ia[7] = { 0, 1, 1, 2, 3, 5, 8 };
          (b) vector<int> ivec = { 0, 1, 1, 2, 3, 5, 8 };
          (c) int ia2[ ] = ia1;
          (d) int ia3[ ] = ivec;

Exercise
4.4:

How can you initialize some or all the elements of an array?

Exercise
4.5:

List some of the drawbacks of using an array instead of a vector .

4.1.2. Operations on Arrays

Array elements, like vector elements, may be accessed using the subscript operator (Section
3.3.2 , p. 94 ). Like the elements of a vector , the elements of an array are numbered beginning
with 0. For an array of ten elements, the correct index values are 0 through 9, not 1 through
10.

When we subscript a vector , we use vector::size_type as the type for the index. When we
subscript an array, the right type to use for the index is size_t (Section 3.5.2 , p. 104 ).

In the following example, a for loop steps through the 10 elements of an array, assigning to
each the value of its index:

          int main()
          {
              const size_t array_size = 10;
              int ia[array_size]; // 10 ints, elements are uninitialized

              // loop through array, assigning value of its index to each element
              for (size_t ix = 0; ix != array_size; ++ix)
                    ia[ix] = ix;
              return 0;
          }

Using a similar loop, we can copy one array into another:

          int main()
          {
              const size_t array_size = 7;
              int ia1[] = { 0, 1, 2, 3, 4, 5, 6 };
              int ia2[array_size]; // local array, elements uninitialized

              // copy elements from ia1 into ia2
              for (size_t ix = 0; ix != array_size; ++ix)



                    ia2[ix] = ia1[ix];
              return 0;
          }

Checking Subscript Values

As with both string s and vectors , the programmer must guarantee that the subscript value is
in rangethat the array has an element at the index value.

Nothing stops a programmer from stepping across an array boundary except attention to detail
and thorough testing of the code. It is not inconceivable for a program to compile and execute
and still be fatally wrong.

By far, the most common causes of security problems are so-called
"buffer overflow" bugs. These bugs occur when a subscript is not
checked and reference is made to an element outside the bounds of
an array or other similar data structure.

 



 

4.2. Introducing Pointers

Just as we can traverse a vector either by using a subscript or an iterator, we can also traverse
an array by using either a subscript or a pointer . A pointer is a compound type; a pointer
points to an object of some other type. Pointers are iterators for arrays: A pointer can point to
an element in an array. The dereference and increment operators, when applied to a pointer
that points to an array element, have similar behavior as when applied to an iterator. When we
dereference a pointer, we obtain the object to which the pointer points. When we increment a
pointer, we advance the pointer to denote the next element in the array. Before we write
programs using pointers, we need to know a bit more about them.

Exercises Section 4.1.2

Exercise
4.6:

This code fragment intends to assign the value of its index to
each array element. It contains a number of indexing errors.
Identify them.

          const size_t array_size = 10;
          int ia[array_size];
          for (size_t ix = 1; ix <= array_size; ++ix)
                ia[ix] = ix;

Exercise
4.7:

Write the code necessary to assign one array to another. Now,
change the code to use vector s. How might you assign one
vector to another?

Exercise
4.8:

Write a program to compare two arrays for equality. Write a
similar program to compare two vector s.

Exercise
4.9:

Write a program to define an array of 10 int s. Give each
element the same value as its position in the array.

4.2.1. What Is a Pointer?

For newcomers, pointers are often hard to understand. Debugging problems due to pointer
errors bedevil even experienced programmers. However, pointers are an important part of most
C programs and to a much lesser extent remain important in many C++ programs.

Conceptually, pointers are simple: A pointer points at an object. Like an iterator, a pointer offers
indirect access to the object to which it points. However, pointers are a much more general
construct. Unlike iterators, pointers can be used to point at single objects. Iterators are used



only to access elements in a container.

Specifically, a pointer holds the address of another object:

          string s("hello world");

          string *sp = &s; // sp holds the address of s

The second statement defines sp as a pointer to string and initializes sp to point to the string
object named s . The * in *sp indicates that sp is a pointer. The & operator in &s is the address-
of operator. It returns a value that when dereferenced yields the original object. The address-of
operator may be applied only to an lvalue (Section 2.3.1 , p. 45 ). Because a variable is an
lvalue, we may take its address. Similarly, the subscript and dereference operators, when
applied to a vector, string , or built-in array, yield lvalues. Because these operators yield
lvalues, we may apply the address-of to the result of the subscript or dereference operator.
Doing so gives us the address of a particular element.

Advice: Avoid Pointers and Arrays

Pointers and arrays are surprisingly error-prone. Part of the problem is
conceptual: Pointers are used for low-level manipulations and it is easy to
make bookkeeping mistakes. Other problems arise because of the syntax,
particularly the declaration syntax used with pointers.

Many useful programs can be written without needing to use arrays or
pointers. Instead, modern C++ programs should use vector s and iterators
to replace general arrays and string s to replace C-style array-based

character strings.

4.2.2. Defining and Initializing Pointers

Every pointer has an associated type. The type of a pointer determines the type of the objects
to which the pointer may point. A pointer to int , for example, may only point to an object of
type int .

Defining Pointer Variables

We use the * symbol in a declaration to indicate that an identifier is a pointer:

          vector<int>   *pvec;      // pvec can point to a vector<int>

          int           *ip1, *ip2; // ip1 and ip2 can point to an int

          string        *pstring;   // pstring can point to a string

          double        *dp;        // dp can point to a double



When attempting to understand pointer declarations, read them
from right to left.

Reading the definition of pstring from right to left, we see that

          string *pstring;

defines pstring as a pointer that can point to string objects. Similarly,

          int *ip1, *ip2; // ip1 and ip2 can point to an int

defines ip2 as a pointer and ip1 as a pointer. Both pointers point to int s.

The * can come anywhere in a list of objects of a given type:

          double dp, *dp2; // dp2 is a ponter, dp is an object: both type double

defines dp2 as a pointer and dp as an object, both of type double .

A Different Pointer Declaration Style

The * symbol may be separated from its identifier by a space. It is legal to write:

          string* ps; // legal but can be misleading

which says that ps is a pointer to string .

We say that this definition can be misleading because it encourages the belief that string* is
the type and any variable defined in the same definition is a pointer to string . However,

          string* ps1, ps2; // ps1 is a pointer to string,  ps2 is a string

defines ps1 as a pointer, but ps2 is a plain string . If we want to define two pointers in a single
definition, we must repeat the * on each identifier:

          string* ps1, *ps2; // both ps1 and ps2 are pointers to string



Multiple Pointer Declarations Can Be Confusing

There are two common styles for declaring multiple pointers of the same type. One style
requires that a declaration introduce only a single name. In this style, the * is placed with the
type to emphasize that the declaration is declaring a pointer:

          string* ps1;
          string* ps2;

The other style permits multiple declarations in a single statement but places the * adjacent to
the identifier. This style emphasizes that the object is a pointer:

          string *ps1, *ps2;

As with all questions of style, there is no single right way to
declare pointers. The important thing is to choose a style and
stick with it.

In this book we use the second style and place the * with the pointer variable name.

Possible Pointer Values

A valid pointer has one of three states: It can hold the address of a specific object, it can point
one past the end of an object, or it can be zero. A zero-valued pointer points to no object. An
uninitialized pointer is invalid until it is assigned a value. The following definitions and
assignments are all legal:

          int ival = 1024;

          int *pi = 0;       // pi initialized to address no object

          int *pi2 = & ival; // pi2 initialized to address of ival

          int *pi3;          // ok, but dangerous, pi3 is uninitialized

          pi = pi2;          // pi and pi2 address the same object, e.g. ival

          pi2 = 0;           // pi2 now addresses no object

Avoid Uninitialized Pointers



Uninitialized pointers are a common source of run-time errors.

As with any other uninitialized variable, what happens when we use an uninitialized pointer is
undefined. Using an uninitialized pointer almost always results in a run-time crash. However,
the fact that the crash results from using an uninitialized pointer can be quite hard to track
down.

Under most compilers, if we use an uninitialized pointer the effect will be to use whatever bits
are in the memory in which the pointer resides as if it were an address. Using an uninitialized
pointer uses this supposed address to manipulate the underlying data at that supposed location.
Doing so usually leads to a crash as soon as we attempt to dereference the uninitialized pointer.

It is not possible to detect whether a pointer is uninitialized. There is no way to distinguish a
valid address from an address formed from the bits that are in the memory in which the pointer
was allocated. Our recommendation to initialize all variables is particularly important for
pointers.

If possible, do not define a pointer until the object to which
it should point has been defined. That way, there is no
need to define an uninitialized pointer.

If you must define a pointer separately from pointing it at an object, then initialize the
pointer to zero. The reason is that a zero-valued pointer can be tested and the
program can detect that the pointer does not point to an object.

Constraints on Initialization of and Assignment to Pointers

There are only four kinds of values that may be used to initialize or assign to a pointer:

A constant expression (Section 2.7 , p. 62 ) with value 0 (e.g., a const integral object
whose value is zero at compile time or a literal constant 0)

1.

An address of an object of an appropriate type2.

The address one past the end of another object3.

Another valid pointer of the same type4.



3.

4.

It is illegal to assign an int to a pointer, even if the value of the int happens to be 0. It is okay
to assign the literal 0 or a const whose value is known to be 0 at compile time:

          int ival;
          int zero = 0;
          const int c_ival = 0;

          int *pi = ival; // error: pi initialized from int value of ival

          pi = zero;      // error: pi assigned int value of zero

          pi = c_ival;    // ok: c_ival is a const with compile-time value of 0
          pi = 0;         // ok: directly initialize to literal constant 0

In addition to using a literal 0 or a const with a compile-time value of 0, we can also use a
facility that C++ inherits from C. The cstdlib header defines a preprocessor variable (Section
2.9.2 , p. 69 ) named NULL , which is defined as 0. When we use a preprocessor variable in our
code, it is automatically replaced by its value. Hence, initializing a pointer to NULL is equivalent
to initializing it to 0:

          // cstdlib #defines NULL to 0

          int *pi = NULL; // ok: equivalent to int *pi = 0;

As with any preprocessor variable (Section 2.9.2 , p. 71 ) we should not use the name NULL for
our own variables.

Preprocessor variables are not defined in the std namespace and
hence the name is NULL , not std::NULL .

With two exceptions, which we cover in Sections 4.2.5 and 15.3 , we may only initialize or
assign a pointer from an address or another pointer that has the same type as the target
pointer:

          double dval;

          double *pd = &dval;   // ok: initializer is address of a double

          double *pd2 = pd;     // ok: initializer is a pointer to double

          int *pi = pd;   // error: types of pi and pd differ

          pi = &dval;     // error: attempt to assign address of a double to int *

The reason the types must match is that the type of the pointer is used to determine the type of
the object that it addresses. Pointers are used to indirectly access an object. The operations that
the pointer can perform are based on the type of the pointer: A pointer to int treats the



underlying object as if it were an int . If that pointer actually addressed an object of some other
type, such as double , then any operations performed by the pointer would be in error.

void* Pointers

The type void* is a special pointer type that can hold an address of any object:

          double obj = 3.14;
          double *pd = &obj;

          // ok: void* can hold the address value of any data pointer type

          void *pv = &obj;       // obj can be an object of any type

          pv = pd;               // pd can be a pointer to any type

A void* indicates that the associated value is an address but that the type of the object at that
address is unknown.

There are only a limited number of actions we can perform on a void* pointer: We can compare
it to another pointer, we can pass or return it from a function, and we can assign it to another
void* pointer. We cannot use the pointer to operate on the object it addresses. We'll see in
Section 5.12.4 (p. 183 ) how we can retrieve the address stored in a void* pointer.

4.2.3. Operations on Pointers

Pointers allow indirect manipulation of the object to which the pointer points. We can access the
object by dereferencing the pointer. Dereferencing a pointer is similar to dereferencing an
iterator (Section 3.4 , p. 98 ). The * operator (the dereference operator) returns the object to
which the pointer points:

          string s("hello world");

          string *sp = &s; // sp holds the address of s

          cout  <<*sp;     // prints hello world



Exercises Section 4.2.2

Exercise
4.10:

Explain the rationale for preferring the first form of pointer
declaration:

          int *ip; // good practice
          int* ip; // legal but misleading

Exercise
4.11:

Explain each of the following definitions. Indicate whether any
are illegal and if so why.

          (a) int* ip;
          (b) string s, *sp = 0;
          (c) int i; double* dp = &i;
          (d) int* ip, ip2;
          (e) const int i = 0, *p = i;
          (f) string *p = NULL;

Exercise
4.12:

Given a pointer, p , can you determine whether p points to a
valid object? If so, how? If not, why not?

Exercise
4.13:

Why is the first pointer initialization legal and the second
illegal?

          int i = 42;
          void *p = &i;
          long *lp = &i;

When we dereference sp , we fetch the value of s . We hand that value to the output operator.
The last statement, therefore, prints the contents of s that is, hello world .

Dereference Yields an Lvalue

The dereference operator returns the lvalue of the underlying object, so we can use it to change
the value of the object to which the pointer points:

          *sp = "goodbye"; // contents of s now changed



Because we assign to *sp , this statement leaves sp pointing to s and changes the value of s .

We can also assign a new value to sp itself. Assigning to sp causes sp to point to a different
object:

          string s2 = "some value";

          sp = &s2;  // sp now points to s2

We change the value of a pointer by assigning to it directlywithout dereferencing the pointer.

Key Concept: Assigning TO or THROUGH a Pointer

When first using pointers, the difference in whether an assignment is to the
pointer or through the pointer to the value pointed to can be confusing. The
important thing to keep in mind is that if the left-hand operand is
dereferenced, then the value pointed to is changed. If there is no
dereference, then the pointer itself is being changed. A picture can
sometimes help:

Comparing Pointers and References

While both references and pointers are used to indirectly access another value, there are two
important differences between references and pointers. The first is that a reference always
refers to an object: It is an error to define a reference without initializing it. The behavior of
assignment is the second important difference: Assigning to a reference changes the object to
which the reference is bound; it does not rebind the reference to another object. Once
initialized, a reference always refers to the same underlying object.

Consider these two program fragments. In the first, we assign one pointer to another:

          int ival = 1024, ival2 = 2048;



          int *pi = &ival, *pi2 = &ival2;

          pi = pi2;    // pi now points to ival2

After the assignment, ival , the object addressed by pi remains unchanged. The assignment
changes the value of pi , making it point to a different object. Now consider a similar program
that assigns two references:

          int &ri = ival, &ri2 = ival2;

          ri = ri2;    // assigns ival2 to ival

This assignment changes ival , the value referenced by ri , and not the reference itself. After
the assignment, the two references still refer to their original objects, and the value of those
objects is now the same as well.

Pointers to Pointers

Pointers are themselves objects in memory. They, therefore, have addresses that we can store
in a pointer:

          int ival = 1024;
          int *pi = &ival; // pi points to an int
          int **ppi = &pi; // ppi points to a pointer to int

which yields a pointer to a pointer. We designate a pointer to a pointer by using ** . We might
represent these objects as

As usual, dereferencing ppi yields the object to which ppi points. In this case, that object is a
pointer to an int :

          int *pi2 = *ppi; // ppi points to a pointer

To actually access ival , we need to dereference ppi twice:

          cout << "The value of ival\n"
               << "direct value: " << ival << "\n"
               << "indirect value: " << *pi << "\n"
               << "doubly indirect value: " << **ppi
               << endl;



This program prints the value of ival three different ways. First, by direct reference to the
variable. Then, through the pointer to int in pi , and finally, by dereferencing ppi twice to get to
the underlying value in ival .

Exercises Section 4.2.3

Exercise
4.14:

Write code to change the value of a pointer. Write code to
change the value to which the pointer points.

Exercise
4.15:

Explain the key differences between pointers and references.

Exercise
4.16:

What does the following program do?

          int i = 42, j = 1024;
          int *p1 = &i, *p2 = &j;
          *p2 = *p1 * *p2;
          *p1 *= *p1;

4.2.4. Using Pointers to Access Array Elements

Pointers and arrays are closely intertwined in C++. In particular, when we use the name of an
array in an expression, that name is automatically converted into a pointer to the first element
of the array:

          int ia[] = {0,2,4,6,8};

          int *ip = ia; // ip points to ia[0]

If we want to point to another element in the array, we could do so by using the subscript
operator to locate the element and then applying the address-of operator to find its location:

          ip = &ia[4];    // ip points to last element in ia

Pointer Arithmetic

Rather than taking the address of the value returned by subscripting, we could use pointer
arithmetic . Pointer arithmetic works the same way (and has the same constraints) as iterator
arithmetic (Section 3.4.1 , p. 100 ). Using pointer arithmetic, we can compute a pointer to an
element by adding (or subtracting) an integral value to (or from) a pointer to another element
in the array:



          ip = ia;            // ok: ip points to ia[0]

          int *ip2 = ip + 4;  // ok: ip2 points to ia[4], the last element in ia

When we add 4 to the pointer ip , we are computing a new pointer. That new pointer points to
the element four elements further on in the array from the one to which ip currently points.

More generally, when we add (or subtract) an integral value to a pointer, the effect is to
compute a new pointer. The new pointer points to the element as many elements as that
integral value ahead of (or behind) the original pointer.

Pointer arithmetic is legal only if the original pointer and the newly
calculated pointer address elements of the same array or an
element one past the end of that array. If we have a pointer to an
object, we can also compute a pointer that points just after that
object by adding one to the pointer.

Given that ia has 4 elements, adding 10 to ia would be an error:

          // error: ia has only 4 elements, ia + 10 is an invalid address
          int *ip3 = ia + 10;

We can also subtract two pointers as long as they point into the same array or to an element
one past the end of the array:

          ptrdiff_t n = ip2 - ip; // ok: distance between the pointers

The result is four, the distance between the two pointers, measured in objects. The result of
subtracting two pointers is a library type named ptrdiff_t . Like size_t , the ptrdiff_t type is

a machine-specific type and is defined in the cstddef header. The size_t type is an unsigned
type, whereas ptrdiff_t is a signed integral type.

The difference in type reflects how these two types are used: size_t is used to hold the size of
an array, which must be a positive value. The ptrdiff_t type is guaranteed to be large enough
to hold the difference between any two pointers into the same array, which might be a negative
value. For example, had we subtracted ip2 from ip , the result would be -4 .

It is always possible to add or subtract zero to a pointer, which leaves the pointer unchanged.
More interestingly, given a pointer that has a value of zero, it is also legal to add zero to that
pointer. The result is another zero-valued pointer. We can also subtract two pointers that have a
value of zero. The result of subtracting two zero-valued pointers is zero.



Interaction between Dereference and Pointer Arithmetic

The result of adding an integral value to a pointer is itself a pointer. We can dereference the
resulting pointer directly without first assigning it to another pointer:

          int last = *(ia + 4); // ok: initializes last to 8, the value of ia[4]

This expression calculates the address four elements past ia and dereferences that pointer. It is
equivalent to writing ia[4] .

The parentheses around the addition are essential. Writing

          last = *ia + 4;     // ok: last = 4, equivalent to ia[0]+4

means dereference ia and add four to the dereferenced value.

The parentheses are required due to the precedence of the addition and dereference operators.
We'll learn more about precedence in Section 5.10.1 (p. 168 ). Simply put, precedence
stipulates how operands are grouped in expressions with multiple operators. The dereference
operator has a higher precedence than the addition operator.

The operands to operators with higher precedence are grouped more tightly than those of lower
precedence. Without the parentheses, the dereference operator would use ia as its operand.
The expression would be evaluated by dereferencing ia and adding four to the value of the
element at the beginning of ia .

By parenthesizing the expression, we override the normal precedence rules and effectively treat
(ia + 4) as a single operand. That operand is an address of an element four past the one to
which ia points. That new address is dereferenced.

Subscripts and Pointers

We have already seen that when we use an array name in an expression, we are actually using
a pointer to the first element in the array. This fact has a number of implications, which we shall
point out as they arise.

One important implication is that when we subscript an array, we are really subscripting a
pointer:

          int ia[] = {0,2,4,6,8};

          int i = ia[0]; // ia points to the first element in ia



When we write ia[0] , that is an expression that uses the name of an array. When we subscript
an array, we are really subscripting a pointer to an element in that array. We can use the
subscript operator on any pointer, as long as that pointer points to an element in an array:

          int *p = &ia[2];     // ok: p points to the element indexed by 2

          int j = p[1];        // ok: p[1] equivalent to *(p + 1),

                               //    p[1] is the same element as ia[3]

          int k = p[-2];       // ok: p[-2] is the same element as ia[0]

Computing an Off-the-End Pointer

When we use a vector , the end operation returns an iterator that refers just past the end of the
vector . We often use this iterator as a sentinel to control loops that process the elements in the
vector . Similarly, we can compute an off-the-end pointer value:

          const size_t arr_size = 5;
          int arr[arr_size] = {1,2,3,4,5};

          int *p = arr;           // ok: p points to arr[0]

          int *p2 = p + arr_size; // ok: p2 points one past the end of arr
                                  //    use caution -- do not dereference!

In this case, we set p to point to the first element in arr . We then calculate a pointer one past
the end of arr by adding the size of arr to the pointer value in p . When we add 5 to p , the
effect is to calculate the address of that is five int s away from p in other words, p + 5 points
just past the end of arr .

It is legal to compute an address one past the end of an array or
object. It is not legal to dereference a pointer that holds such an
address. Nor is it legal to compute an address more than one past
the end of an array or an address before the beginning of an array.

The address we calculated and stored in p2 acts much like the iterator returned from the end
operation on vector s. The iterator we obtain from end denotes "one past the end" of the vector
. We may not dereference that iterator, but we may compare it to another iterator value to see
whether we have processed all the elements in the vector . Similarly, the value we calculated
for p2 can be used only to compare to another pointer value or as an operand in a pointer
arithmetic expression. If we attempt to dereference p2 , the most likely result is that it would
yield some garbage value. Most compilers, would treat the result of dereferencing p2 as an int ,
using whatever bits happened to be in memory at the location just after the last element in arr .

Printing the Elements of an Array



Now we are ready to write a program that uses pointers:

          const size_t arr_sz = 5;
          int int_arr[arr_sz] = { 0, 1, 2, 3, 4 };

          // pbegin points to first element, pend points just after the last
          for (int *pbegin = int_arr, *pend = int_arr + arr_sz;
                    pbegin != pend; ++pbegin)
              cout << *pbegin << ' '; // print the current element

This program uses a feature of the for loop that we have not yet used: We may define multiple
variables inside the init-statement (Section 1.4.2 , p. 14 ) of a for as long as the variables are
defined using the same type. In this case, we're defining two int pointers named pbegin and
pend .

We use these pointers to traverse the array. Like other built-in types, arrays have no member
functions. Hence, there are no begin and end operations on arrays. Instead, we must position
pointers to denote the first and one past the last elements ourselves. We do so in the
initialization of our two pointers. We initialize pbegin to address the first element of int_arr and
pend to one past the last element in the array:

The pointer pend serves as a sentinel, allowing the for loop to know when to stop. Each iteration
of the for loop increments pbegin to address the next element. On the first trip through the
loop, pbegin denotes the first element, on the second iteration, the second element, and so on.
After processing the last element in the array, pbegin will be incremented once more and will
then equal pend . At that point we know that we have iterated across the entire array.

Pointers Are Iterators for Arrays

Astute readers will note that this program is remarkably similar to the program on page 99 ,
which traversed and printed the contents of a vector of string s. The loop in that program

          // equivalent loop using iterators to reset all the elements in ivec to 0
          for (vector<int>::iterator iter = ivec.begin();
                                     iter != ivec.end(); ++iter)

              *iter = 0; // set element to which iter refers to 0

used iterators in much the same way that pointers are used in the program to print the contents
of the array. This similarity is not a coincidence. In fact, the built-in array type has many of the
properties of a library container, and pointers, when we use them in conjunction with arrays,
are themselves iterators. We'll have much more to say about containers and iterators in Part II .



4.2.5. Pointers and the const Qualifier

There are two kinds of interactions between pointers and the const qualifier discussed in Section
2.4 (p. 56 ): We can have pointers to const objects and pointers that are themselves const .
This section discusses both kinds of pointers.

Pointers to const Objects

The pointers we've seen so far can be used to change the value of the objects to which they
point. But if we have a pointer to a const object, we do not want to allow that pointer to change
the underlying, const value. The language enforces this property by requiring that pointers to
const objects must take the const ness of their target into account:

          const double *cptr;  // cptr may point to a double that is const

Exercises Section 4.2.4

Exercise
4.17:

Given that p1 and p2 point to elements in the same array,
what does the following statement do?

          p1 += p2 - p1;

Are there any values of p1 or p2 that could make this code
illegal?

Exercise
4.18:

Write a program that uses pointers to set the elements in an
array of int s to zero.

Here cptr is a pointer to an object of type const double . The const qualifies the type of the
object to which cptr points, not cptr itself. That is, cptr itself is not const . We need not
initialize it and can assign a new value to it if we so desire. What we cannot do is use cptr to
change the value to which it points:

          *cptr = 42;   // error: *cptr might be const

It is also a compile-time error to assign the address of a const object to a plain, nonconst
pointer:

          const double pi = 3.14;



          double *ptr = &pi;        // error: ptr is a plain pointer

          const double *cptr = &pi; // ok: cptr is a pointer to const

We cannot use a void* pointer (Section 4.2.2 , p. 119 ) to hold the address of a const object.
Instead, we must use the type const void* to hold the address of a const object:

          const int universe = 42;

          const void *cpv = &universe; // ok: cpv is const

          void *pv = &universe;        // error: universe is const

A pointer to a const object can be assigned the address of a nonconst object, such as

          double dval = 3.14; // dval is a double; its value can be changed

          cptr = &dval;       // ok: but can't change dval through cptr

Although dval is not a const , any attempt to modify its value through cptr results in a compile-
time error. When we declared cptr , we said that it would not change the value to which it
points. The fact that it happens to point to a nonconst object is irrelevant.

We cannot use a pointer to const to change the underlying object.
However, if the pointer addresses a nonconst object, it is possible
that some other action will change the object to which the pointer
points.

The fact that values to which a const pointer points can be changed is subtle and can be
confusing. Consider:

          dval = 3.14159;       // dval is not const

          *cptr = 3.14159;      // error: cptr is a pointer to const

          double *ptr = &dval;  // ok: ptr points at non-const double

          *ptr = 2.72;          // ok: ptr is plain pointer
          cout << *cptr;        // ok: prints 2.72

In this case, cptr is defined as a pointer to const but it actually points at a nonconst object.
Even though the object to which it points is nonconst , we cannot use cptr to change the
object's value. Essentially, there is no way for cptr to know whether the object it points to is
const , and so it treats all objects to which it might point as const .

When a pointer to const does point to a nonconst , it is possible that the value of the object
might change: After all, that value is not const . We could either assign to it directly or, as here,



indirectly through another, plain nonconst pointer. It is important to remember that there is no
guarantee that an object pointed to by a pointer to const won't change.

It may be helpful to think of pointers to const as "pointers that
think they point to const ."

In real-world programs, pointers to const occur most often as formal parameters of functions.
Defining a parameter as a pointer to const serves as a contract guaranteeing that the actual
object being passed into the function will not be modified through that parameter.

const Pointers

In addition to pointers to const , we can also have const pointersthat is, pointers whose own
value we may not change:

          int errNumb = 0;

          int *const curErr = &errNumb; // curErr is a constant pointer

Reading this definition from right to left, we see that "curErr is a constant pointer to an object
of type int ." As with any const , we may not change the value of the pointerthat is, we may
not make it point to any other object. Any attempt to assign to a constant pointereven assigning
the same value back to curErr is flagged as an error during compilation:

          curErr = curErr; // error: curErr is const

As with any const , we must initialize a const pointer when we create it.

The fact that a pointer is itself const says nothing about whether we can use the pointer to
change the value to which it points. Whether we can change the value pointed to depends
entirely on the type to which the pointer points. For example, curErr addresses a plain,
nonconst int . We can use curErr to change the value of errNumb :

          if (*curErr) {
              errorHandler();

              *curErr = 0; // ok: reset value of the object to which curErr is bound
          }

const Pointer to a const Object



We can also define a constant pointer to a constant object as follows:

          const double pi = 3.14159;

          // pi_ptr is const and points to a const object
          const double *const pi_ptr = &pi;

In this case, neither the value of the object addressed by pi_ptr nor the address itself can be
changed. We can read its definition from right to left as "pi_ptr is a constant pointer to an
object of type double defined as const ."

Pointers and Typedefs

The use of pointers in typedefs (Section 2.6 , p. 61 ) often leads to surprising results. Here is a
question almost everyone answers incorrectly at least once. Given the following,

          typedef string *pstring;
          const pstring cstr;

what is the type of cstr ? The simple answer is that it is a pointer to const pstring . The deeper
question is: what underlying type does a pointer to const pstring represent? Many think that
the actual type is

          const string *cstr; // wrong interpretation of const pstring cstr

That is, that a const pstring would be a pointer to a constant string . But that is incorrect.

The mistake is in thinking of a typedef as a textual expansion. When we declare a const pstring
, the const modifies the type of pstring , which is a pointer. Therefore, this definition declares
cstr to be a const pointer to string . The definition is equivalent to

          // cstr is a const pointer to string
          string *const cstr; // equivalent to const pstring cstr



Advice: Understanding Complicated const Type Declarations

Part of the problem in reading const declarations arises because the const

can go either before or after the type:

          string const s1;   // s1 and s2 have same type,

          const string s2;   // they're both strings that are const

When writing const definitions using typedefs, the fact that the const can

precede the type can lead to confusion as to the actual type being defined:

[View full width]
          string s;
          typedef string *pstring;
          const pstring cstr1 = &s; // written this way the type

 is obscured
          pstring const cstr2 = &s; // all three decreations are

 the same type
          string *const cstr3 = &s; // they're all const pointers

 to string

Putting the const after pstring and reading the declaration from right to left
makes it clearer that cstr2 is a const pstring , which in turn is a const pointer
to string .

Unfortunately, most readers of C++ programs expect to see the const
before the type. As a result, it is probably a good idea to put the const first,

respecting common practice. But it can be helpful in understanding
declarations to rewrite them to put the const after the type.

 



 

4.3. C-Style Character Strings

Although C++ supports C-style strings, they should not be used by
C++ programs. C-style strings are a surprisingly rich source of
bugs and are the root cause of many, many security problems.

In Section 2.2 (p. 40 ) we first used string literals and learned that the type of a string literal is
array of constant characters. We can now be more explicit and note that the type of a string
literal is an array of const char . A string literal is an instance of a more general construct that
C++ inherits from C: C-style character strings . C-style strings are not actually a type in
either C or C++. Instead, C-style strings are null-terminated arrays of characters:

          char ca1[] = {'C', '+', '+'};        // no null, not C-style string
          char ca2[] = {'C', '+', '+', '\0'};  // explicit null
          char ca3[] = "C++";     // null terminator added automatically
          const char *cp = "C++"; // null terminator added automatically
          char *cp1 = ca1;   // points to first element of a array, but not C-style string

          char *cp2 = ca2;   // points to first element of a null-terminated char array

Neither ca1 nor cp1 are C-style strings: ca1 is a character array, but the array is not null-
terminated. cp1 , which points to ca1 , therefore, does not point to a null-terminated array. The
other declarations are all C-style strings, remembering that the name of an array is treated as a
pointer to the first element of the array. Thus, ca2 and ca3 are pointers to the first elements of
their respective arrays.



Exercises Section 4.3

Exercise
4.19:

Explain the meaning of the following five definitions. Identify
any illegal definitions.

          (a) int i;
          (b) const int ic;
          (c) const int *pic;
          (d) int *const cpi;
          (e) const int *const cpic;

Exercise
4.20:

Which of the following initializations are legal? Explain why.

          (a) int i = -1;
          (b) const int ic = i;
          (c) const int *pic = &ic;
          (d) int *const cpi = &ic;
          (e) const int *const cpic = &ic;

Exercise
4.21:

Based on the definitions in the previous exercise, which of the
following assignments are legal? Explain why.

          (a) i = ic;
          (b) pic = &ic;
          (c) cpi = pic;
          (d) pic = cpic;
          (e) cpic = &ic;
          (f) ic = *cpic;

Using C-style Strings

C-style strings are manipulated through (const ) char* pointers. One frequent usage pattern
uses pointer arithmetic to traverse the C-style string. The traversal tests and increments the
pointer until we reach the terminating null character:

          const char *cp = "some value";
          while (*cp) {

              // do something to *cp
              ++cp;
          }



The condition in the while dereferences the const char* pointer cp and the resulting character is
tested for its true or false value. A true value is any character other than the null. So, the loop
continues until it encounters the null character that terminates the array to which cp points. The
body of the while does whatever processing is needed and concludes by incrementing cp to
advance the pointer to address the next character in the array.

This loop will fail if the array that cp addresses is not null-
terminated. If this case, the loop is apt to read characters starting
at cp until it encounters a null character somewhere in memory.

C Library String Functions

The Standard C library provides a set of functions, listed in Table 4.1 , that operate on C-style
strings. To use these functions, we must include the associated C header file

Table 4.1. C-Style Character String Functions

strlen(s) Returns the length of s , not counting the
null.

strcmp(s1, s2) Compares s1 and s2 for equality. Returns 0 if
s1 == s2 , positive value if s1 > s2 , negative
value if s1 < s2 .

strcat(s1, s2) Appends s2 to s1 . Returns s1 .

strcpy(s1, s2) Copies s2 into s1 . Returns s1 .

strncat(s1, s2,n) Appends n characters from s2 onto s1 .
Returns s1 .

strncpy(s1, s2, n) Copies n characters from s2 into s1 . Returns
s1 .

          #include <cstring>

which is the C++ version of the string.h header from the C library.



These functions do no checking on their string parameters.

The pointer(s) passed to these routines must be nonzero and each pointer must point to the
initial character in a null-terminated array. Some of these functions write to a string they are
passed. These functions assume that the array to which they write is large enough to hold
whatever characters the function generates. It is up to the programmer to ensure that the
target string is big enough.

When we compare library string s, we do so using the normal relational operators. We can use
these operators to compare pointers to C-style strings, but the effect is quite different; what
we're actually comparing is the pointer values, not the strings to which they point:

          if (cp1 < cp2) // compares addresses, not the values pointed to

Assuming cp1 and cp2 point to elements in the same array (or one past that array), then the
effect of this comparison is to compare the address in cp1 with the address in cp2 . If the
pointers do not address the same array, then the comparison is undefined.

To compare the strings, we must use strcmp and interpret the result:

          const char *cp1 = "A string example";
          const char *cp2 = "A different string";

          int i = strcmp(cp1, cp2);    // i is positive

          i = strcmp(cp2, cp1);        // i is negative

          i = strcmp(cp1, cp1);        // i is zero

The strcmp function returns three possible values: 0 if the strings are equal; or a positive or
negative value, depending on whether the first string is larger or smaller than the second.

Never Forget About the Null-Terminator

When using the C library string functions it is essential to remember the strings must be null-
terminated:

          char ca[] = {'C', '+', '+'}; // not null-terminated

          cout << strlen(ca) << endl; // disaster: ca isn't null-terminated

In this case, ca is an array of characters but is not null-terminated. What happens is undefined.



The strlen function assumes that it can rely on finding a null character at the end of its
argument. The most likely effect of this call is that strlen will keep looking through the memory
that follows wherever ca happens to reside until it encounters a null character. In any event, the
return from strlen will not be the correct value.

Caller Is Responsible for Size of a Destination String

The array that we pass as the first argument to strcat and strcpy must be large enough to hold
the generated string. The code we show here, although a common usage pattern, is frought
with the potential for serious error:

          // Dangerous: What happens if we miscalculate the size of largeStr?

          char largeStr[16 + 18 + 2];         // will hold cp1 a space and cp2

          strcpy(largeStr, cp1);              // copies cp1 into largeStr

          strcat(largeStr, " ");              // adds a space at end of largeStr

          strcat(largeStr, cp2);              // concatenates cp2 to largeStr

          // prints A string example A different string
          cout << largeStr << endl;

The problem is that we could easily miscalculate the size needed in largeStr . Similarly, if we
later change the sizes of the strings to which either cp1 or cp2 point, then the calculated size of
largeStr will be wrong. Unfortunately, programs similar to this code are widely distributed.
Programs with such code are error-prone and often lead to serious security leaks.

When Using C-Style Strings, Use the strn Functions

If you must use C-style strings, it is usually safer to use the strncat and strncpy functions
instead of strcat and strcpy :

          char largeStr[16 + 18 + 2]; // to hold cp1 a space and cp2
          strncpy(largeStr, cp1, 17); // size to copy includes the null
          strncat(largeStr, " ", 2);  // pedantic, but a good habit
          strncat(largeStr, cp2, 19); // adds at most 18 characters, plus a null

The trick to using these versions is to properly calculate the value to control how many
characters get copied. In particular, we must always remember to account for the null when
copying or concatenating characters. We must allocate space for the null because that is the
character that terminates largeStr after each call. Let's walk through these calls in detail:

On the call to strncpy , we ask to copy 17 characters: all the characters in cp1 plus the
null. Leaving room for the null is necessary so that largeStr is properly terminated. After
the strncpy call, largeStr has a strlen value of 16. Remember, strlen counts the
characters in a C-style string, not including the null.

When we call strncat , we ask to copy two characters: the space and the null that
terminates the string literal. After this call, largeStr has a strlen of 17. The null that had
ended largeStr is overwritten by the space that we appended. A new null is written after
that space.



When we append cp2 in the second call, we again ask to copy all the characters from cp2 ,
including the null. After this call, the strlen of largeStr would be 35: 16 characters from
cp1 , 18 from cp2 , and 1 for the space that separates the two strings.

The array size of largeStr remains 36 throughout.

These operations are safer than the simpler versions that do not take a size argument as long
as we calculate the size argument correctly. If we ask to copy or concatenate more characters
than the size of the target array, we will still overrun that array. If the string we're copying from
or concatenating is bigger than the requested size, then we'll inadvertently truncate the new
version. Truncating is safer than overrunning the array, but it is still an error.

Whenever Possible, Use Library string s

None of these issues matter if we use C++ library string s:

          string largeStr = cp1; // initialize large Str as a copy of cp1

          largeStr += " ";       // add space at end of largeStr

          largeStr += cp2;       // concatenate cp2 onto end of largeStr

Now the library handles all memory management, and we need no longer worry if the size of
either string changes.

For most applications, in addition to being safer, it is also more
efficient to use library string s rather than C-style strings.

4.3.1. Dynamically Allocating Arrays

A variable of array type has three important limitations: Its size is fixed, the size must be known
at compile time, and the array exists only until the end of the block in which it was defined.
Real-world programs usually cannot live with these restrictionsthey need a way to allocate an
array dynamically at run time. Although all arrays have fixed size, the size of a dynamically
allocated array need not be fixed at compile time. It can be (and usually is) determined at run
time. Unlike an array variable, a dynamically allocated array continues to exist until it is
explicitly freed by the program.



Exercises Section 4.3

Exercise
4.22:

Explain the difference between the following two while loops:

          const char *cp = "hello";
          int cnt;
          while (cp) { ++cnt; ++cp; }
          while (*cp) { ++cnt; ++cp; }

Exercise
4.23:

What does the following program do?

          const char ca[] = {'h', 'e', 'l', 'l', 'o'};
          const char *cp = ca;
          while (*cp) {
              cout << *cp << endl;
              ++cp;
          }

Exercise
4.24:

Explain the differences between strcpy and strncpy . What are
the advantages of each? The disadvantages?

Exercise
4.25:

Write a program to compare two string s. Now write a program
to compare the value of two C-style character strings.

Exercise
4.26:

Write a program to read a string from the standard input. How
might you write a program to read from the standard input into
a C-style character string?

Every program has a pool of available memory it can use during program execution to hold
dynamically allocated objects. This pool of available memory is referred to as the program's
free store or heap . C programs use a pair of functions named malloc and free to allocate
space from the free store. In C++ we use new and delete expressions.

Defining a Dynamic Array

When we define an array variable, we specify a type, a name, and a dimension. When we
dynamically allocate an array, we specify the type and size but do not name the object. Instead,
the new expression returns a pointer to the first element in the newly allocated array:

          int *pia = new int[10]; // array of 10 uninitialized ints



This new expression allocates an array of ten int s and returns a pointer to the first element in
that array, which we use to initialize pia .

A new expression takes a type and optionally an array dimension specified inside a bracket-pair.
The dimension can be an arbitrarily complex expression. When we allocate an array, new returns
a pointer to the first element in the array. Objects allocated on the free store are unnamed. We
use objects on the heap only indirectly through their address.

Initializing a Dynamically Allocated Array

When we allocate an array of objects of a class type, then that type's default constructor
(Section 2.3.4 , p. 50 ) is used to initialize each element. If the array holds elements of built-in
type, then the elements are uninitialized:

          string *psa = new string[10]; // array of 10 empty strings

          int *pia = new int[10];       // array of 10 uninitialized ints

Each of these new expressions allocates an array of ten objects. In the first case, those objects
are string s. After allocating memory to hold the objects, the default string constructor is run
on each element of the array in turn. In the second case, the objects are a built-in type;
memory to hold ten int s is allocated, but the elements are uninitialized.

Alternatively, we can value-initialize (Section 3.3.1 , p. 92 ) the elements by following the array
size by an empty pair of parentheses:

          int *pia2 = new int[10] (); // array of 10 uninitialized ints

The parentheses are effectively a request to the compiler to value-initialize the array, which in
this case sets its elements to 0.

The elements of a dynamically allocated array can be initialized only
to the default value of the element type. The elements cannot be
initialized to separate values as can be done for elements of an
array variable.

Dynamic Arrays of const Objects

If we create an array of const objects of built-in type on the free store, we must initialize that
array: The elements are const , there is no way to assign values to the elements. The only way
to initialize the elements is to value-initialize the array:

          // error: uninitialized const array



          const int *pci_bad = new const int[100];

          // ok: value-initialized const array
          const int *pci_ok = new const int[100]();

It is possible to have a const array of elements of a class type that provides a default
constructor:

          // ok: array of 100 empty strings
          const string *pcs = new const string[100];

In this case, the default constructor is used to initialize the elements of the array.

Of course, once the elements are created, they may not be changedwhich means that such
arrays usually are not very useful.

It Is Legal to Dynamically Allocate an Empty Array

When we dynamically allocate an array, we often do so because we don't know the size of the
array at compile time. We might write code such as

          size_t n = get_size(); // get_size returns number of elements needed
          int* p = new int[n];
          for (int* q = p; q != p + n; ++q)
               /* process the array */ ;

to figure out the size of the array and then allocate and process the array.

An interesting question is: What happens if get_size returns 0? The answer is that our code
works fine. The language specifies that a call to new to create an array of size zero is legal. It is
legal even though we could not create an array variable of size 0:

          char arr[0];            // error: cannot define zero-length array

          char *cp = new char[0]; // ok: but cp can't be dereferenced

When we use new to allocate an array of zero size, new returns a valid, nonzero pointer. This
pointer will be distinct from any other pointer returned by new . The pointer cannot be
dereferencedafter all, it points to no element. The pointer can be compared and so can be used
in a loop such as the preceeding one. It is also legal to add (or subtract) zero to such a pointer
and to subtract the pointer from itself, yielding zero.

In our hypothetical loop, if the call to get_size returned 0, then the call to new would still
succeed. However, p would not address any element; the array is empty. Because n is zero, the
for loop effectively compares q to p . These pointers are equal; q was initialized to p , so the
condition in the for fails and the loop body is not executed.



Freeing Dynamic Memory

When we allocate memory, we must eventually free it. Otherwise, memory is gradually used up
and may be exhausted. When we no longer need the array, we must explicitly return its
memory to the free store. We do so by applying the delete [] expression to a pointer that
addresses the array we want to release:

          delete [] pia;

deallocates the array pointed to by pia , returning the associated memory to the free store. The
empty bracket pair between the delete keyword and the pointer is necessary: It indicates to the
compiler that the pointer addresses an array of elements on the free store and not simply a
single object.

If the empty bracket pair is omitted, it is an error, but an error that
the compiler is unlikely to catch; the program may fail at run time.

The least serious run-time consequence of omitting brackets when freeing an array is that too
little memory will be freed, leading to a memory leak. On some systems and/or for some
element types, more serious run-time problems are possible. It is essential to remember the
bracket-pair when deleting pointers to arrays.

Contrasting C-Style Strings and C++ Library string s

The following two programs illustrate the differences in using C-style
character strings versus using the C++ library string type. The string

version is shorter, easier to understand, and less error-prone:

[View full width]
          // C-style character string implementation
             const char *pc = "a very long literal string";
             const size_t len = strlen(pc +1);      // space to

 allocate
             // performance test on string allocation and copy
             for (size_t ix = 0; ix != 1000000; ++ix) {
                 char *pc2 = new char[len + 1]; // allocate the space
                 strcpy(pc2, pc);               // do the copy
                 if (strcmp(pc2, pc))           // use the new string
                     ;   // do nothing
                 delete [] pc2;                 // free the memory



          }
          // string implementation
             string str("a very long literal string");
             // performance test on string allocation and copy
             for (int ix = 0; ix != 1000000; ++ix) {
                 string str2 = str; // do the copy, automatically

 allocated
                 if (str != str2)           // use the new string
                       ;  // do nothing
          }

                                            // str2 is

 automatically freed

These programs are further explored in the exercises to Section 4.3.1 (p.
139 ).

Using Dynamically Allocated Arrays

A common reason to allocate an array dynamically is if its dimension cannot be known at
compile time. For example, char* pointers are often used to refer to multiple C-style strings
during the execution of a program. The memory used to hold the various strings typically is
allocated dynamically during program execution based on the length of the string to be stored.
This technique is considerably safer than allocating a fixed-size array. Assuming we correctly
calculate the size needed at run time, we no longer need to worry that a given string will
overflow the fixed size of an array variable.

Suppose we have the following C-style strings:

          const char *noerr = "success";
          // ...
          const char *err189 = "Error: a function declaration must "
                               "specify a function return type!";

We might want to copy one or the other of these strings at run time to a new character array.
We could calculate the dimension at run time, as follows:

    const char *errorTxt;
    if (errorFound)
        errorTxt = err189;
    else
        errorTxt = noerr;
    // remember the 1 for the terminating null
    int dimension = strlen(errorTxt) + 1;
    char *errMsg = new char[dimension];

    // copy the text for the error into errMsg
    strncpy (errMsg, errorTxt, dimension);

Recall that strlen returns the length of the string not including the null. It is essential to



remember to add 1 to the length returned from strlen to accommodate the trailing null.

Exercises Section 4.3.1

Exercise
4.27:

Given the following new expression, how would you delete pa ?

     int *pa = new int[10];

Exercise
4.28:

Write a program to read the standard input and build a vector of int s
from values that are read. Allocate an array of the same size as the
vector and copy the elements from the vector into the array.

Exercise
4.29:

Given the two program fragments in the highlighted box on page 138
,

Explain what the programs do.a.

As it happens, on average, the string class implementation
executes considerably faster than the C-style string functions.
The relative average execution times on our more than five-year-
old PC are as follows:

          user       0.47    # string class
          user       2.55    # C-style character string

b.

Did you expect that? How would you account for it?

Exercise
4.30:

Write a program to concatenate two C-style string literals, putting the
result in a C-style string. Write a program to concatenate two library
string s that have the same value as the literals used in the first
program.

4.3.2. Interfacing to Older Code

Many C++ programs exist that predate the standard library and so do not yet use the string
and vector types. Moreover, many C++ programs interface to existing C programs that cannot
use the C++ library. Hence, it is not infrequent to encounter situations where a program written
in modern C++ must interface to code that uses arrays and/or C-style character strings. The
library offers facilities to make the interface easier to manage.

Mixing Library string s and C-Style Strings



As we saw on page 80 we can initialize a string from a string literal:

          string st3("Hello World");  // st3 holds Hello World

More generally, because a C-style string has the same type as a string literal and is null-
terminated in the same way, we can use a C-style string anywhere that a string literal can be
used:

We can initialize or assign to a string from a C-style string.

We can use a C-style string as one of the two operands to the string addition or as the
right-hand operand to the compound assignment operators.

The reverse functionality is not provided: there is no direct way to use a library string when a
C-style string is required. For example, there is no way to initialize a character pointer from a
string:

          char *str = st2; // compile-time type error

There is, however, a string member function named c_str that we can often use to accomplish
what we want:

          char *str = st2.c_str(); // almost ok, but not quite

The name c_str indicates that the function returns a C-style character string. Literally, it says,
"Get me the C-style string representation"that is, a pointer to the beginning of a null-terminated
character array that holds the same data as the characters in the string .

This initialization fails because c_str returns a pointer to an array of const char . It does so to
prevent changes to the array. The correct initialization is:

          const char *str = st2.c_str(); // ok

The array returned by c_str is not guaranteed to be valid
indefinitely. Any subsequent use of st2 that might change the value
of st2 can invalidate the array. If a program needs continuing
access to the data, then the program must copy the array returned
by c_str .



Using an Array to Initialize a vector

On page 112 we noted that it is not possible to initialize an array from another array. Instead,
we have to create the array and then explicitly copy the elements from one array into the other.
It turns out that we can use an array to initialize a vector , although the form of the initialization
may seem strange at first. To initialize a vector from an array, we specify the address of the
first element and one past the last element that we wish to use as initializers:

          const size_t arr_size = 6;
          int int_arr[arr_size] = {0, 1, 2, 3, 4, 5};

          // ivec has 6 elements: each a copy of the corresponding element in int_arr
          vector<int> ivec(int_arr, int_arr + arr_size);

The two pointers passed to ivec mark the range of values with which to initialize the vector .
The second pointer points one past the last element to be copied. The range of elements
marked can also represent a subset of the array:

          // copies 3 elements: int_arr[1], int_arr[2], int_arr[3]
          vector<int> ivec(int_arr + 1, int_arr + 4);

This initialization creates ivec with three elements. The values of these elements are copies of
the values in int_arr[1] through int_arr[3] .

Exercises Section 4.3.2

Exercise
4.31:

Write a program that reads a string into a character array
from the standard input. Describe how your program handles
varying size inputs. Test your program by giving it a string of
data that is longer than the array size you've allocated.

Exercise
4.32:

Write a program to initialize a vector from an array of int s.

Exercise
4.33:

Write a program to copy a vector of int s into an array of int
s.

Exercise
4.34:

Write a program to read string s into a vector . Now, copy
that vector into an array of character pointers. For each
element in the vector , allocate a new character array and
copy the data from the vector element into that character
array. Then insert a pointer to the character array into the
array of character pointers.

Exercise
4.35:

Print the contents of the vector and the array created in the
previous exercise. After printing the array, remember to delete
the character arrays.



 



 

4.4. Multidimensioned Arrays

Strictly speaking, there are no multidimensioned arrays in C++.
What is commonly referred to as a multidimensioned array is
actually an array of arrays:

          // array of size 3, each element is an array of ints of size 4
          int ia[3][4];

It can be helpful to keep this fact in mind when using what appears to be a
multidimensioned array.

An array whose elements are an array is said to have two dimensions. Each dimension is
referred to by its own subscript:

     ia[2][3] // fetches last element from the array in the last row

The first dimension is often referred to as the row and the second as the column. In C++ there
is no limit on how many subscripts are used. That is, we could have an array whose elements
are arrays of elements that are arrays, and so on.

Initializing the Elements of a Multidimensioned Array

As with any array, we can initialize the elements by providing a bracketed list of initializers.
Multidimensioned arrays may be initialized by specifying bracketed values for each row:

     int ia[3][4] = {     /*  3 elements, each element is an array of size 4 */
         {0, 1, 2, 3} ,   /*  initializers for row indexed by 0 */
         {4, 5, 6, 7} ,   /*  initializers for row indexed by 1 */
         {8, 9, 10, 11}   /*  initializers for row indexed by 2 */
     };

The nested braces, which indicate the intended row, are optional. The following initialization is
equivalent, although considerably less clear.

     // equivalent initialization without the optional nested braces for each row



     int ia[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

As is the case for single-dimension arrays, elements may be left out of the initializer list. We
could initialize only the first element of each row as follows:

     // explicitly initialize only element 0 in each row
     int ia[3][4] = {{ 0 } , { 4 } , { 8 } };

The values of the remaining elements depend on the element type and follow the rules descibed
on page 112 .

If the nested braces were omitted, the results would be very different:

     // explicitly initialize row 0
     int ia[3][4] = {0, 3, 6, 9};

initializes the elements of the first row. The remaining elements are initialized to 0.

Subscripting a Multidimensioned Array

Indexing a multidimensioned array requires a subscript for each dimension. As an example, the
following pair of nested for loops initializes a two-dimensioned array:

     const size_t rowSize = 3;
     const size_t colSize = 4;
     int ia [rowSize][colSize];   // 12 uninitialized elements
     // for each row
     for (size_t i = 0; i != rowSize; ++i)
         // for each column within the row
         for (size_t j = 0; j != colSize; ++j)
             // initialize to its positional index
             ia[i][j] = i * colSize + j;

When we want to access a particular element of the array, we must supply both a row and
column index. The row index specifies which of the inner arrays we intend to access. The
column index selects an element from that inner array. Remembering this fact can help in
calculating proper subscript values and in understanding how multidimensioned arrays are
initialized.

If an expression provides only a single index, then the result is the inner-array element at that
row index. Thus, ia[2] fetches the array that is the last row in ia . It does not fetch any
element from that array; it fetches the array itself.

4.4.1. Pointers and Multidimensioned Arrays



As with any array, when we use the name of a multidimensioned array, it is automatically
converted to a pointer to the first element in the array.

When defining a pointer to a multidimensioned array, it is essential
to remember that what we refer to as a multidimensioned array is
really an array of arrays.

Because a multidimensioned array is really an array of arrays, the pointer type to which the
array converts is a pointer to the first inner array. Although conceptually straightforward, the
syntax for declaring such a pointer can be confusing:

     int ia[3][4];      // array of size 3, each element is an array of ints of size 4

     int (*ip)[4] = ia; // ip points to an array of 4 ints

     ip = &ia[2];       // ia[2] is an array of 4 ints

We define a pointer to an array similarly to how we would define the array itself: We start by
declaring the element type followed by a name and a dimension. The trick is that the name is a
pointer, so we must prepend * to the name. We can read the definition of ip from the inside out
as saying that *ip has type int[4] that is, ip is a pointer to an int array of four elements.

The parentheses in this declaration are essential:

     int *ip[4]; // array of pointers to int

     int (*ip)[4]; // pointer to an array of 4 ints

Typedefs Simplify Pointers to Multidimensioned Arrays

Typedefs (Section 2.6 , p. 61 ) can help make pointers to elements in multidimensioned arrays
easier to write, read, and understand. We might write a typedef for the element type of ia as

     typedef int int_array[4];
     int_array *ip = ia;



We might use this typedef to print the elements of ia :

     for (int_array *p = ia; p != ia + 3; ++p)
         for (int *q = *p; q != *p + 4; ++q)
              cout << *q << endl;

The outer for loop starts by initializing p to point to the first array in ia . That loop continues
until we've processed all three rows in ia . The increment, ++p , has the effect of moving p to
point to the next row (e.g., the next element) in ia .

The inner for loop actually fetches the int values stored in the inner arrays. It starts by making
q point to the first element in the array to which p points. When we dereference p , we get an
array of four int s. As usual, when we use an array, it is converted automatically to a pointer to
its first element. In this case, that first element is an int , and we point q at that int . The inner
for loop runs until we've processed every element in the inner array. To obtain a pointer just off
the end of the inner array, we again dereference p to get a pointer to the first element in that
array. We then add 4 to that pointer to process the four elements in each inner array.

Exercises Section 4.4.1

Exercise
4.36:

Rewrite the program to print the contents of the array ia
without using a typedef for the type of the pointer in the outer
loop.

 



 

Chapter Summary

This chapter covered arrays and pointers. These facilities provide functionality similar to that
provided by the library vector and string types and their companion iterators. The vector type
can be thought of as a more flexible, easier to manage array. Similarly, string s are a great
improvement on C-style strings that are implemented as null-terminated character arrays.

Iterators and pointers allow indirect access to objects. Iterators are used to examine elements
and navigate between the elements in vector s. Pointers provide similar access to array
elements. Although conceptually simple, pointers are notoriously hard to use in practice.

Pointers and arrays can be necessary for certain low-level tasks, but they should be avoided
because they are error-prone and hard to debug. In general, the library abstractions should be
used in preference to low-level array and pointer alternatives built into the language. This
advice is especially applicable to using string s instead of C-style null-terminated character
arrays. Modern C++ programs should not use C-style strings.

 



 

Defined Terms

C-style strings

C programs treat pointers to null-terminated character arrays as strings. In C++, string
literals are C-style strings. The C library defines a set of functions that operate on such
strings, which C++ makes available in the cstring header. C++ programs should use
C++ library strings in preference to C-style strings, which are inherently error-prone. A
sizeable majority of security holes in networked programs are due to bugs related to using
C-style strings and arrays.

compiler extension

Feature that is added to the language by a particular compiler. Programs that rely on
compiler extensions cannot be moved easily to other compilers.

compound type

Type that is defined in terms of another type. Arrays, pointers, and references are
compound types.

const void*

A pointer type that can point to any const type. See void* .

delete expression

A delete expression frees memory that was allocated by new :

     delete [] p;

where p must be a pointer to the first element in a dynamically allocated array. The bracket pair
is essential: It indicates to the compiler that the pointer points at an array, not at a single
object. In C++ programs, delete replaces the use of the C library free function.

dimension

The size of an array.

dynamically allocated



An object that is allocated on the program's free store. Objects allocated on the free store
exist until they are explicitly deleted.

free store

Memory pool available to a program to hold dynamically allocated objects.

heap

Synonym for free store.

new expression

Allocates dynamic memory. We allocate an array of n elements as follows:

     new type[n];

The array holds elements of the indicated type . new returns a pointer to the first element in the
array. C++ programs use new in place of the C library malloc function.

pointer

An object that holds the address of an object.

pointer arithmetic

The arithmetic operations that can be applied to pointers. An integral type can be added
to or subtracted from a pointer, resulting in a pointer positioned that many elements
ahead or behind the original pointer. Two pointers can be subtracted, yielding the
difference between the pointers. Pointer arithmetic is valid only on pointers that denote
elements in the same array or an element one past the end of that array.

precedence

Defines the order in which operands are grouped with operators in a compound
expression.

ptrdiff_t

Machine-dependent signed integral type defined in cstddef header that is large enough to
hold the difference between two pointers into the largest possible array.



size_t

Machine-dependent unsigned integral type defined in cstddef header that is large enough
to hold the size of the largest possible array.

* operator

Dereferencing a pointer yields the object to which the pointer points. The dereference
operator returns an lvalue; we may assign to the value returned from the dereference
operator, which has the effect of assigning a new value to the underlying element.

++ operator

When used with a pointer, the increment operator "adds one" by moving the pointer to
refer to the next element in an array.

[] operator

The subscript operator takes two operands: a pointer to an element of an array and an
index. Its result is the element that is offset from the pointer by the index. Indices count
from zerothe first element in an array is element 0, and the last is element size of the
array minus 1. The subscript operator returns an lvalue; we may use a subscript as the
left-hand operand of an assignment, which has the effect of assigning a new value to the
indexed element.

& operator

The address-of operator. Takes a single argument that must be an lvalue. Yields the
address in memory of that object.

void*

A pointer type that can point to any nonconst type. Only limited operations are permitted
on void* pointers. They can be passed or returned from functions and they can be
compared with other pointers. They may not be dereferenced.
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C++ provides a rich set of operators and defines what these operators do when applied to
operands of built-in type. It also allows us to define meanings for the operators when applied to
class types. This facility, known as operator overloading , is used by the library to define the
operators that apply to the library types.

In this chapter our focus is on the operators as defined in the language and applied to operands
of built-in type. We will also look at some of the operators defined by the library. Chapter 14
shows how we can define our own overloaded operators.

An expression is composed of one or more operands that are combined by operators . The
simplest form of an expression consists of a single literal constant or variable. More
complicated expressions are formed from an operator and one or more operands.

Every expression yields a result . In the case of an expression with no operator, the result is
the operand itself, e.g., a literal constant or a variable. When an object is used in a context that
requires a value, then the object is evaluated by fetching the object's value. For example,
assuming ival is an int object,

     if (ival)            // evaluate ival as a condition
         // ....



we could use ival as an expression in the condition of an if . The condition succeeds if the
value of ival is not zero and fails otherwise.

The result of expressions that involve operators is determined by applying each operator to its
operand(s). Except when noted otherwise, the result of an expression is an rvalue (Section
2.3.1 , p. 45 ). We can read the result but cannot assign to it.

The meaning of an operatorwhat operation is performed and the
type of the resultdepends on the types of its operands.

Until one knows the type of the operand(s), it is not possible to know what a particular
expression means. The expression

     i + j

might mean integer addition, concatenation of string s, floating-point addition, or something
else entirely. How the expression is evaluated depends on the types of i and j .

There are both unary operators and binary operators. Unary operators , such as address-of (
& ) and dereference (* ), act on one operand. Binary operators, such as addition (+ ) and

subtraction (- ), act on two operands. There is also one ternary operator that takes three
operands. We'll look at this operator in Section 5.7 (p. 165 ).

Some symbols , such as * , are used to represent both a unary and a binary operator. The *
symbol is used as the (unary) dereference operator and as the (binary) multiplication operator.
The uses of the symbol are independent; it can be helpful to think of them as two different
symbols. The context in which an operator symbol is used always determines whether the
symbol represents a unary or binary operator.

Operators impose requirements on the type(s) of their operand(s). The language defines the
type requirements for the operators when applied to built-in or compound types. For example,
the dereference operator, when applied to an object of built-in type, requires that its operand be
a pointer type. Attempting to dereference an object of any other built-in or compound type is an
error.

The binary operators, when applied to operands of built-in or compound type, usually require
that the operands be the same type, or types that can be converted to a common type. We'll
look at conversions in Section 5.12 (p. 178 ). Although the rules can be complex, for the most
part conversions happen in expected ways. For example, we can convert an integer to floating-
point, and vice versa, but we cannot convert a pointer type to floating-point.

Understanding expressions with multiple operators requires understanding operator
precedence , associativity , and the order of evaluation of the operands. For example, the
expression

     5 + 10 * 20/2;



uses addition, multiplication, and division. The result of this expression depends on how the
operands are grouped to the operators. For example, the operands to the * operator could be 10
and 20 , or 10 and 20/2 , or 15 and 20 or 15 and 20/2 . Associativity and precedence rules specify
the grouping of operators and their operands. In C++ this expression evaluates to 105 , which is
the result of multiplying 10 and 20 , dividing that result by 2 , and then adding 5 .

Knowing how operands and operators are grouped is not always sufficient to determine the
result. It may also be necessary to know in what order the operands to each operator are
evaluated. Each operator controls what assumptions, if any, can be made as to the order in
which the operands will be evaluatedthat is, whether we can assume that the left-hand operand
is always evaluated before the right or not. Most operators do not guarantee a particular order
of evaluation. We will cover these topics in Section 5.10 (p. 168 ).

 



 

5.1. Arithmetic Operators

Table 5.1. Arithmetic Operators

Operator Function Use

+ unary plus + expr

- unary minus - expr

* multiplication expr * expr

/ division expr / expr

% remainder expr % expr

+ addition expr + expr

- subtraction expr - expr

Unless noted otherwise, these operators may be applied to any of the arithmetic types (Section
2.1 , p. 34 ), or any type that can be converted to an arithmetic type.

The table groups the operators by their precedencethe unary operators have the highest
precedence, then the multiplication and division operators, and then the binary addition and
subtraction operators. Operators of higher precedence group more tightly than do operators
with lower precedence. These operators are all left associative, meaning that they group left to
right when the precedence levels are the same.

Applying precedence and associativity to the previous expression:

     5 + 10 * 20/2;

we can see that the operands to the multiplication operator (* ) are 10 and 20 . The result of that
expression and 2 are the operands to the division operator (/ ). The result of that division and 5
are the operands to the addition operator (+ ).

The unary minus operator has the obvious meaning. It negates its operand:

     int i = 1024;

     int k = -i; //  negates the value of its operand

Unary plus returns the operand itself. It makes no change to its operand.



Caution: Overflow and Other Arithmetic Exceptions

The result of evaluating some arithmetic expressions is undefined. Some
expressions are undefined due to the nature of mathematicsfor example,
division by zero. Others are undefined due to the nature of computerssuch
as overflow, in which a value is computed that is too large for its type.

Consider a machine on which short s are 16 bits. In that case, the maximum
short is 32767. Given only 16 bits, the following compound assignment

overflows:

     // max value if shorts are 8 bits
     short short_value = 32767;
     short ival = 1;

     // this calculation overflows
     short_value += ival;
     cout << "short_value: " << short_value << endl;

Representing a signed value of 32768 requires 17 bits, but only 16 are
available. On many systems, there is no compile-time or run-time warning
when an overflow might occur. The actual value put into short_value varies

across different machines. On our system the program completes and
writes

     short_value: -32768

The value "wrapped around:" The sign bit, which had been 0, was set to 1,
resulting in a negative value. Because the arithmetic types have limited
size, it is always possible for some calculations to overflow. Adhering to the
recommendations from the "Advice" box on page 38 can help avoid such
problems.

The binary + and - operators may also be applied to pointer values. The use of these operators
with pointers was described in Section 4.2.4 (p. 123 ).

The arithmetic operators, +, -, * , and / have their obvious meanings: addition, subtraction,
multiplication, and division. Division between integers results in an integer. If the quotient
contains a fractional part, it is truncated:

     int ival1 = 21/6;  //  integral result obtained by truncating the remainder

     int ival2 = 21/7;  //  no remainder, result is an integral value

Both ival1 and ival2 are initialized with a value of 3.

The % operator is known as the "remainder" or the "modulus" operator. It computes the



remainder of dividing the left-hand operand by the right-hand operand. This operator can be
applied only to operands of the integral types: bool, char, short, int, long , and their
associated unsigned types:

     int ival = 42;
     double dval = 3.14;

     ival % 12;   //  ok: returns 6

     ival % dval; //  error: floating point operand

For both division (/ ) and modulus(%) , when both operands are positive, the result is positive
(or zero). If both operands are negative, the result of division is positive (or zero) and the result
of modulus is negative (or zero). If only one operand is negative, then the value of the result is
machine-dependent for both operators. The sign is also machine-dependent for modulus; the
sign is negative (or zero) for division:

     21 % 6;   //  ok: result is 3

     21 % 7;   //  ok: result is 0

     -21 % -8; //  ok: result is -5

     21 % -5;  //  machine-dependent: result is 1 or -4

     21 / 6;   //  ok: result is 3

     21 / 7;   //  ok: result is 3

     -21 / -8; //  ok: result is 2

     21 / -5;  //  machine-dependent: result -4 or -5

When only one operand is negative, the sign and value of the result for the modulus operator
can follow either the sign of the numerator or of the denominator. On a machine where modulus
follows the sign of the numerator then the value of division truncates toward zero. If modulus
matches the sign of the denominator, then the result of division truncates toward minus infinity.

Exercises Section 5.1



Exercise
5.1:

Parenthesize the following expression to indicate how it is
evaluated. Test your answer by compiling the expression and
printing its result.

     12 / 3 * 4 + 5 * 15 + 24 % 4 / 2

Exercise
5.2:

Determine the result of the following expressions and indicate
which results, if any, are machine-dependent.

     -30 * 3 + 21 / 5
     -30 + 3 * 21 / 5
     30 / 3 * 21 % 5
     -30 / 3 * 21 % 4

Exercise
5.3:

Write an expression to determine whether an int value is even
or odd.

Exercise
5.4:

Define the term overflow. Show three expressions that will
overflow.

 



 

5.2. Relational and Logical Operators

Table 5.2. Relational and Logical Operators

Each of these operators yields boolEach of these operators yields bool

Operator Function Use

! logical NOT !expr

< less than expr < expr

<= less than or equal expr <= expr

> greater than expr > expr

>= greater than or equal expr >= expr

== equality expr == expr

!= inequality expr != expr

&& logical AND expr && expr

|| logical OR expr || expr

The relational and logical operators take operands of arithmetic or pointer type and return
values of type bool .

Logical AND and OR Operators

The logical operators treat their operands as conditions (Section 1.4.1 , p. 12 ). The operand is
evaluated; if the result is zero the condition is false , otherwise it is true . The overall result of
the AND operator is TRue if and only if both its operands evaluate to TRue . The logical OR (|| )
operator evaluates to true if either of its operands evaluates to true . Given the forms

     expr1 && expr2 // logical AND

     expr1 || expr2 // logical OR

expr2 is evaluated if and only if expr1 does not by itself determine the result. In other words,
we're guaranteed that expr2 will be evaluated if and only if

In a logical AND expression, expr1 evaluates to TRue . If expr1 is false , then the
expression will be false regardless of the value of expr2 . When expr1 is true , it is
possible for the expression to be true if expr2 is also TRue .



In a logical OR expression, expr1 evaluates to false ; if expr1 is false , then the
expression depends on whether expr2 is true .

The logical AND and OR operators always evaluate their left operand
before the right. The right operand is evaluated only if the left
operand does not determine the result. This evaluation strategy is
often referred to as "short-circuit evaluation."

A valuable use of the logical AND operator is to have expr1 evaluate to false in the presence of a
boundary condition that would make the evaluation of expr2 dangerous. As an example, we
might have a string that contains the characters in a sentence and we might want to make the
first word in the sentence all uppercase. We could do so as follows:

     string s("Expressions in C++ are composed...");
     string::iterator it = s.begin();
     // convert first word in s to uppercase
     while (it != s.end() && !isspace(*it)) {

         *it = toupper(*it); // toupper covered in section 3.2.4 (p. 88)
         ++it;
     }

In this case, we combine our two tests in the condition in the while . First we test whether it
has reached the end of the string . If not, it refers to a character in s . Only if that test
succeeds is the right-hand operand evaluated. We're guaranteed that it refers to an actual
character before we test to see whether the character is a space or not. The loop ends either
when a space is encountered or, if there are no spaces in s , when we reach the end of s .

Logical NOT Operator

The logical NOT operator (! ) treats its operand as a condition. It yields a result that has the
opposite truth value from its operand. If the operand evaluates as nonzero, then ! returns false
. For example, we might determine that a vector has elements by applying the logical NOT
operator to the value returned by empty :

     // assign value of first element in vec to x if there is one
     int x = 0;
     if (!vec.empty())
         x = *vec.begin();

The subexpression

     !vec.empty()



evaluates to TRue if the call to empty returns false .

The Relational Operators Do Not Chain Together

The relational operators (<, <=, >, <= ) are left associative. The fact that they are left
associative is rarely of any use because the relational operators return bool results. If we do
chain these operators together, the result is likely to be surprising:

     // oops! this condition does not determine if the 3 values are unequal
     if (i < j < k) { /* ... */ }

As written, this expression will evaluate as true if k is greater than one! The reason is that the
left operand of the second less-than operator is the TRue / false result of the firstthat is, the
condition compares k to the integer values of 0 or 1. To accomplish the test we intended, we
must rewrite the expression as follows:

     if (i < j && j < k) { /* ... */ }

Equality Tests and the bool Literals

As we'll see in Section 5.12.2 (p. 180 ) a bool can be converted to any arithmetic typethe bool
value false converts to zero and true converts to one.

Because bool converts to one, is almost never right to write an
equality test that tests against the bool literal TRue :

     if (val == true) { /* ... */ }

Either val is itself a bool or it is a type to which a bool can be converted. If val is a bool , then
this test is equivalent to writing

     if (val) { /* ... */ }



which is shorter and more direct (although admittedly when first learning the language this kind
of abbreviation can be perplexing).

More importantly, if val is not a bool , then comparing val with true is equivalent to writing

     if (val == 1) { /* ... */ }

which is very different from

     // condition succeeds if val is any nonzero value
     if (val) { /* ... */ }

in which any nonzero value in val is true. If we write the comparison explicitly, then we are
saying that the condition will succeed only for the specific value 1.

Exercises Section 5.2

Exercise
5.5:

Explain when operands are evaluated in the logical AND
operator, logical OR operator, and equality operator.

Exercise
5.6:

Explain the behavior of the following while condition:

     char *cp = "Hello World";
     while (cp && *cp)

Exercise
5.7:

Write the condition for a while loop that would read int s from
the standard input and stop when the value read is equal to 42
.

Exercise
5.8:

Write an expression that tests four values, a, b, c , and d ,
and ensures that a is greater than b , which is greater than c ,
which is greater than d .

 



 

5.3. The Bitwise Operators

The bitwise operators take operands of integral type. These operators treat their integral
operands as a collection of bits, providing operations to test and set individual bits. In addition,
these operators may be applied to bitset (Section 3.5 , p. 101 ) operands with the behavior as
described here for integral operands.

Table 5.3. Bitwise Operators

Operator Function Use

~ bitwise NOT ~expr

<< left shift expr1 << expr2

>> right shift expr1 >> expr2

& bitwise AND expr1 & expr2

^ bitwise XOR expr1 ^ expr2

| bitwise OR expr1 | expr2

The type of an integer manipulated by the bitwise operators can be either signed or unsigned. If
the value is negative, then the way that the "sign bit" is handled in a number of the bitwise
operations is machine-dependent. It is, therefore, likely to differ across implementations;
programs that work under one implementation may fail under another.

Because there are no guarantees for how the sign bit is
handled, we strongly recommend using an unsigned type
when using an integral value with the bitwise operators.

In the following examples we assume that an unsigned char has 8 bits. The bitwise NOT
operator ( ~ ) is similar in behavior to the bitset flip (Section 3.5.2 , p. 105 ) operation: It

generates a new value with the bits of its operand inverted. Each 1 bit is set to 0; each 0 bit is
set to 1:

unsigned char bits = 0227;

bits = ~bits;



The <<, >> operators are the bitwise shift operators. These operators use their right-hand
operand to indicate by how many bits to shift. They yield a value that is a copy of the left-hand
operand with the bits shifted as directed by the right-hand operand. The bits are shifted left ( <<
) or right ( >> ), discarding the bits that are shifted off the end.

unsigned char bits = 1;

bits << 1; // left shift

bits << 2; // left shift

bits >> 3; // right shift

The left shift operator (<< ) inserts 0-valued bits in from the right. The right shift operator (>> )
inserts 0-valued bits in from the left if the operand is unsigned. If the operand is signed, it can
either insert copies of the sign bit or insert 0-valued bits; which one it uses is implementation
defined. The right-hand operand must not be negative and must be a value that is strictly less
than the number of bits in the left-hand operand. Otherwise, the effect of the operation is
undefined.

The bitwise AND operator (& ) takes two integral operands. For each bit position, the result is 1
if both operands contain 1; otherwise, the result is 0.

It is a common error to confuse the bitwise AND operator (& ) with
the logical AND operator (&& ) (Section 5.2 , p. 152 ). Similarly, it is
common to confuse the bitwise OR operator ( | ) and the logical OR

operator(|| ).

Here we illustrate the result of bitwise AND of two unsigned char values, each of which is
initialized by an octal literal:

unsigned char b1 = 0145;

unsigned char b2 = 0257;

unsigned char result = b1 & b2;

The bitwise XOR (exclusive or) operator ( ^ ) also takes two integral operands. For each bit

position, the result is 1 if either but not both operands contain 1; otherwise, the result is 0.

result = b1 ^ b2;

The bitwise OR (inclusive or) operator (| ) takes two integral operands. For each bit position,
the result is 1 if either or both operands contain 1; otherwise, the result is 0.



result = b1 | b2;

5.3.1. Using bitset Objects or Integral Values

We said that the bitset class was easier to use than the lower-level bitwise operations on
integral values. Let's look at a simple example and show how we might solve a problem using
either a bitset or the bitwise operators. Assume that a teacher has 30 students in a class. Each
week the class is given a pass/fail quiz. We'll track the results of each quiz using one bit per
student to represent the pass or fail grade on a given test. We might represent each quiz in
either a bitset or as an integral value:

     bitset<30> bitset_quiz1;     //  bitset solution
     unsigned long int_quiz1 = 0; // simulated collection of bits

In the bitset case we can define bitset_quiz1 to be exactly the size we need. By default each
of the bits is set to zero. In the case where we use a built-in type to hold our quiz results, we
define int_quiz1 as an unsigned long , meaning that it will have at least 32 bits on any
machine. Finally, we explicitly initialize int_quiz1 to ensure that the bits start out with well-
defined values.

The teacher must be able to set and test individual bits. For example, assuming that the student
represented by position 27 passed, we'd like to be able to set that bit appropriately:

     bitset_quiz1.set(27);   //  indicate student number 27 passed
     int_quiz1 |= 1UL<<27;   //  indicate student number 27 passed

In the bitset case we do so directly by passing the bit we want turned on to set . The unsigned
long case will take a bit more explanation. The way we'll set a specific bit is to OR our quiz data
with another integer that has only one bitthe one we wantturned on. That is, we need an
unsigned long where bit 27 is a one and all the other bits are zero. We can obtain such a value
by using the left shift operator and the integer constant 1:

     1UL << 27;  //  generate a value with only bit number 27 set

Now when we bitwise OR this value with int_quiz1 , all the bits except bit 27 will remain
unchanged. That bit will be turned on. We use a compound assignment (Section 1.4.1 , p. 13 )
to OR this value into int_quiz1 . This operator, |= , executes in the same way that += does. It is
equivalent to the more verbose:

     //  following assignment is equivalent to int_quiz1 |= 1UL << 27;
     int_quiz1 = int_quiz1 | 1UL << 27;

Imagine that the teacher reexamined the quiz and discovered that student 27 actually had failed



the test. The teacher must now turn off bit 27:

     bitset_quiz1.reset(27);   // student number 27 failed
     int_quiz1 &= ~(1UL<<27);  // student number 27 failed

Again, the bitset version is direct. We reset the indicated bit. For the simulated case, we need
to do the inverse of what we did to set the bit: This time we'll need an integer that has bit 27
turned off and all the other bits turned on. We'll bitwise AND this value with our quiz data to
turn off just that bit. We can obtain a value with all but bit 27 turned on by inverting our
previous value. Applying the bitwise NOT to the previous integer will turn on every bit except
the 27th. When we bitwise AND this value with int_quiz1 , all except bit 27 will remain
unchanged.

Finally, we might want to know how the student at position 27 fared. To do so, we could write

     bool status;
     status = bitset_quiz1[27];       // how did student number 27 do?
     status = int_quiz1 & (1UL<<27);  // how did student number 27 do?

In the bitset case we can fetch the value directly to determine how that student did. In the
unsigned long case, the first step is to set the 27th bit of an integer to 1. The bitwise AND of
this value with int_quiz1 evaluates to nonzero if bit 27 of int_quiz1 is also on; otherwise, it
evaluates to zero.

In general, the library bitset operations are more direct,
easier to read, easier to write, and more likely to be used
correctly. Moreover, the size of a bitset is not limited by
the number of bits in an unsigned . Ordinarily bitset
should be used in preference to lower-level direct bit
manipulation of integral values.



Exercises Section 5.3.1

Exercise
5.9:

Assume the following two definitions:

     unsigned long ul1 = 3, ul2 = 7;

What is the result of each of the following expressions?

     (a) ul1 & ul2     (c)  ul1 | ul2
     (b) ul1 && ul2    (d)  ul1 || ul2

Exercise
5.10:

Rewrite the bitset expressions that set and reset the quiz
results using a subscript operator.

5.3.2. Using the Shift Operators for IO

The IO library redefines the bitwise >> and << operators to do input and output. Even though
many programmers never need to use the bitwise operators directly, most programs do make
extensive use of the overloaded versions of these operators for IO. When we use an overloaded
operator, it has the same precedence and associativity as is defined for the built-in version of
the operator. Therefore, programmers need to understand the precedence and associativity of
these operators even if they never use them with their built-in meaning as the shift operators.

The IO Operators Are Left Associative

Like the other binary operators , the shift operators are left associative. These operators group
from left to right, which accounts for the fact that we can concatenate input and output
operations into a single statement:

     cout << "hi" << " there" << endl;

executes as:

     ( (cout << "hi") << " there" ) << endl;

In this statement, the operand "hi" is grouped with the first << symbol. Its result is grouped
with the second, and then that result is grouped to the third.



The shift operators have midlevel precedence: lower precedence than the arithmetic operators
but higher than the relational, assignment, or conditional operators. These relative precedence
levels affect how we write IO expressions involving operands that use operators with lower
precedence. We often need to use parentheses to force the right grouping:

     cout << 42 + 10;   // ok, + has higher precedence, so the sum is printed

     cout << (10 < 42); // ok: parentheses force intended grouping; prints 1

     cout << 10 < 42;   // error: attempt to compare cout to 42!

The second cout is interpreted as

     (cout << 10) < 42;

this expression says to "write 10 onto cout and then compare the result of that operation (e.g.,
cout ) to 42."

 



 

5.4. Assignment Operators

The left-hand operand of an assignment operator must be a nonconst lvalue. Each of these
assignments is illegal:

     int i, j, ival;
     const int ci = i;  // ok: initialization not assignment
     1024 = ival;       // error: literals are rvalues
     i + j = ival;      // error: arithmetic expressions are rvalues

     ci = ival;         // error: can't write to ci

Array names are nonmodifiable lvalues: An array cannot be the target of an assignment. Both
the subscript and dereference operators return lvalues. The result of dereference or subscript,
when applied to a nonconst array, can be the left-hand operand of an assignment:

     int ia[10];
     ia[0] = 0;    // ok: subscript is an lvalue
     *ia = 0;      // ok: dereference also is an lvalue

The result of an assignment is the left-hand operand; the type of the result is the type of the
left-hand operand.

The value assigned to the left-hand operand ordinarily is the value that is in the right-hand
operand. However, assignments where the types of the left and right operands differ may
require conversions that might change the value being assigned. In such cases, the value stored
in the left-hand operand might differ from the value of the right-hand operand:

     ival = 0;        // result: type int value 0

     ival = 3.14159;  // result: type int value 3

Both these assignments yield values of type int . In the first case the value stored in ival is the
same value as in its right-hand operand. In the second case the value stored in ival is different
from the right-hand operand.

5.4.1. Assignment Is Right Associative

Like the subscript and dereference operators, assignment returns an lvalue. As such, we can
perform multiple assignments in a single expression, provided that each of the operands being
assigned is of the same general type:

     int ival, jval;
     ival = jval = 0; // ok: each assigned 0



Unlike the other binary operators, the assignment operators are right associative. We group an
expression with multiple assignment operators from right to left. In this expression, the result of
the rightmost assignment (i.e., jval ) is assigned to ival . The types of the objects in a multiple
assignment either must be the same type or of types that can be converted (Section 5.12 , p.
178 ) to one another:

     int ival; int *pval;

     ival = pval = 0; // error: cannot assign the value of a pointer to an int
     string s1, s2;

     s1 = s2 = "OK";  // ok: "OK" converted to string

The first assignment is illegal because ival and pval are objects of different types. It is illegal
even though zero happens to be a value that could be assigned to either object. The problem is
that the result of the assignment to pval is a value of type int* , which cannot be assigned to
an object of type int . On the other hand, the second assignment is fine. The string literal is
converted to string , and that string is assigned to s2 . The result of that assignment is s2 ,
which is then assigned to s1 .

5.4.2. Assignment Has Low Precedence

Inside a condition is another common place where assignment is used as a part of a larger
expression. Writing an assignment in a condition can shorten programs and clarify the
programmer's intent. For example, the following loop uses a function named get_value , which
we assume returns int values. We can test those values until we obtain some desired valuesay,
42:

     int i = get_value();  // get_value returns an int
     while (i != 42) {
         // do something ...
         i = get_value(); }

The program begins by getting the first value and storing it in i . Then it establishes the loop,
which tests whether i is 42, and if not, does some processing. The last statement in the loop
gets a value from get_value() , and the loop repeats. We can write this loop more succinctly as

     int i;
     while ((i = get_value()) != 42) {
         // do something ...
     }

The condition now more clearly expresses our intent: We want to continue until get_value
returns 42. The condition executes by assigning the result returned by get_value to i and then
comparing the result of that assignment with 42.



The additional parentheses around the assignment are necessary
because assignment has lower precedence than inequality.

Without the parentheses, the operands to != would be the value returned from calling get_value
and 42 . The true or false result of that test would be assigned to i clearly not what we
intended!

Beware of Confusing Equality and Assignment Operators

The fact that we can use assignment in a condition can have surprising effects:

     if (i = 42)

This code is legal: What happens is that 42 is assigned to i and then the result of the
assignment is tested. In this case, 42 is nonzero, which is interpreted as a true value. The
author of this code almost surely intended to test whether i was 42:

     if (i == 42)

Bugs of this sort are notoriously difficult to find. Some, but not all, compilers are kind enough to
warn about code such as this example.

Exercises Section 5.4.2



Exercise
5.11:

What are the values of i and d after the each assignment:

     int i;   double d;
     d = i = 3.5;
     i = d = 3.5;

Exercise
5.12:

Explain what happens in each of the if tests:

     if (42 = i)   // . . .
     if (i = 42)   // . . .

5.4.3. Compound Assignment Operators

We often apply an operator to an object and then reassign the result to that same object. As an
example, consider the sum program from page 14 :

     int sum = 0;
     // sum values from 1 up to 10 inclusive
     for (int val = 1; val <= 10; ++val)

         sum += val; // equivalent to sum = sum + val

This kind of operation is common not just for addition but for the other arithmetic operators and
the bitwise operators. There are compound assignments for each of these operators. The
general syntactic form of a compound assignment operator is

     a op= b;

where op = may be one of the following ten operators:

     +=   -=   *=   /=   %=   // arithmetic operators
     <<= >>=   &=   ^=   |=   // bitwise operators

Each compound operator is essentially equivalent to

     a = a op b;



There is one important difference: When we use the compound assignment, the left-hand
operand is evaluated only once. If we write the similar longer version, that operand is evaluated
twice: once as the right-hand operand and again as the left. In many, perhaps most, contexts
this difference is immaterial aside from possible performance consequences.

Exercises Section 5.4.3

Exercise
5.13:

The following assignment is illegal. Why? How would you
correct it?

     double dval; int ival; int *pi;
     dval = ival = pi = 0;

Exercise
5.14:

Although the following are legal, they probably do not behave
as the programmer expects. Why? Rewrite the expressions as
you think they should be.

     (a) if (ptr = retrieve_pointer() != 0)
     (b) if (ival = 1024)
     (c) ival += ival + 1;

 



 

5.5. Increment and Decrement Operators

The increment ( ++ ) and decrement ( -- ) operators provide a convenient notational shorthand

for adding or subtracting 1 from an object. There are two forms of these operators: prefix and
postfix. So far, we have used only the prefix increment, which increments its operand and yields
the changed value as its result. The prefix decrement operates similarly, except that it
decrements its operand. The postfix versions of these operators increment (or decrement) the
operand but yield a copy of the original, unchanged value as its result:

     int i = 0, j;

     j = ++i; // j = 1, i = 1: prefix yields incremented value

     j = i++; // j = 1, i = 2: postfix yields unincremented value

Because the prefix version returns the incremented value, it returns the object itself as an
lvalue. The postfix versions return an rvalue.

Advice: Use Postfix Operators Only When Necessary

Readers from a C background might be surprised that we use the prefix
increment in the programs we've written. The reason is simple: The prefix
version does less work. It increments the value and returns the
incremented version. The postfix operator must store the original value so
that it can return the unincremented value as its result. For int s and

pointers, the compiler can optimize away this extra work. For more
complex iterator types, this extra work potentially could be more costly. By
habitually favoring the use of the prefix versions, we do not have to worry
if the performance difference matters.

Postfix Operators Return the Unincremented Value

The postfix version of ++ and -- is used most often when we want to use the current value of a
variable and increment it in a single compound expression:

     vector<int> ivec;           // empty vector
     int cnt = 10;
     // add elements 10...1 to ivec
     while (cnt > 0)

         ivec.push_back(cnt--);  // int postfix decrement

This program uses the postfix version of -- to decrement cnt . We want to assign the value of
cnt to the next element in the vector and then decrement cnt before the next iteration. Had the



loop used the prefix version, then the decremented value of cnt would be used when creating
the elements in ivec and the effect would be to add elements from 9 down to 0 .

Combining Dereference and Increment in a Single Expression

The following program, which prints the contents of ivec , represents a very common C++
programming pattern:

     vector<int>::iterator iter = ivec.begin();
     // prints 10 9 8 ... 1
     while (iter != ivec.end())
         cout << *iter++ << endl; // iterator postfix increment

The expression *iter++ is usually very confusing to programmers
new to both C++ and C.

The precedence of postfix increment is higher than that of the dereference operator, so *iter++
is equivalent to *(iter++) . The subexpression iter++ increments iter and yields a copy of the
previous value of iter as its result. Accordingly, the operand of * is a copy of the unincremented
value of iter .

This usage relies on the fact that postfix increment returns a copy of its original, unincremented
operand. If it returned the incremented value, we'd dereference the incremented value, with
disastrous results: The first element of ivec would not get written. Worse, we'd attempt to
dereference one too many elements!



Advice: Brevity Can Be a Virtue

Programmers new to C++ who have not previously programmed in a C-
based language often have trouble with the terseness of some expressions.
In particular, expressions such as *iter++ can be bewilderingat first.

Experienced C++ programmers value being concise. They are much more
likely to write

     cout << *iter++ << endl;

than the more verbose equivalent

     cout << *iter << endl;
     ++iter;

For programmers new to C++, the second form is clearer because the
action of incrementing the iterator and fetching the value to print are kept
separate. However, the first version is much more natural to most C++
programmers.

It is worthwhile to study examples of such code until their meanings are
immediately clear. Most C++ programs use succinct expressions rather
than more verbose equivalents. Therefore, C++ programmers must be
comfortable with such usages. Moreover, once these expressions are
familiar, you will find them less error-prone.

Exercises Section 5.5

Exercise
5.15:

Explain the difference between prefix and postfix increment.

Exercise
5.16:

Why do you think C++ wasn't named ++C?

Exercise
5.17:

What would happen if the while loop that prints the contents
of a vector used the prefix increment operator?

 



 

5.6. The Arrow Operator

The arrow operator (-> ) provides a synonym for expressions involving the dot and dereference
operators. The dot operator (Section 1.5.2 , p. 25 ) fetches an element from an object of class
type:

     item1.same_isbn(item2); // run the same_isbn member of item1

If we had a pointer (or iterator) to a Sales_item , we would have to dereference the pointer (or
iterator) before applying the dot operator:

     Sales_item *sp = &item1;

     (*sp).same_isbn(item2); // run same_isbn on object to which sp points

Here we dereference sp to get the underlying Sales_item . Then we use the dot operator to run
same_isbn on that object. We must parenthesize the dereference because dereference has a
lower precedence than dot. If we omit the parentheses, this code means something quite
different:

     // run the same_isbn member of sp then dereference the result!

     *sp.same_isbn(item2); // error: sp has no member named same_isbn

This expression attempts to fetch the same_isbn member of the object sp . It is equivalent to

     *(sp.same_isbn(item2));  // equivalent to *sp.same_isbn(item2);

However, sp is a pointer, which has no members; this code will not compile.

Because it is easy to forget the parentheses and because this kind of code is a common usage,
the language defines the arrow operator as a synonym for a dereference followed by the dot
operator. Given a pointer (or iterator) to an object of class type, the following expressions are
equivalent:

     (*p).foo; // dereference p to get an object and fetch its member named foo

     p->foo;   // equivalent way to fetch the foo from the object to which p points

More concretely, we can rewrite the call to same_isbn as



     sp->same_isbn(item2); // equivalent to (*sp).same_isbn(item2)

Exercises Section 5.6

Exercise
5.18:

Write a program that defines a vector of pointers to string s.
Read the vector , printing each string and its corresponding
size.

Exercise
5.19:

Assuming that iter is a vector<string>::iterator , indicate
which, if any, of the following expressions is legal. Explain the
behavior of the legal expressions.

     (a) *iter++;         (b) (*iter)++;
     (c) *iter.empty()    (d) iter->empty();
     (e) ++*iter;         (f) iter++->empty();

 



 

5.7. The Conditional Operator

The conditional operator is the only ternary operator in C++. It allows us to embed simple if-
else tests inside an expression. The conditional operator has the following syntactic form

     cond ? expr1 : expr2;

where cond is an expression that is used as a condition (Section 1.4.1 , p. 12 ). The operator
executes by evaluating cond . If cond evaluates to 0, then the condition is false ; any other
value is true . cond is always evaluated. If it is TRue , then expr1 is evaluated; otherwise, expr2
is evaluated. Like the logical AND and OR (&& and || ) operators, the conditional operator
guarantees this order of evaluation for its operands. Only one of expr1 or expr2 is evaluated.
The following program illustrates use of the conditional operator:

     int i = 10, j = 20, k = 30;

     // if i > j then maxVal = i else maxVal = j
     int maxVal = i > j ? i : j;

Avoid Deep Nesting of the Conditional Operator

We could use a set of nested conditional expressions to set max to the largest of three variables:

     int max = i > j
                   ? i > k ? i : k
                   : j > k ? j : k;

We could do the equivalent comparison in the following longer but simpler way:

     int max = i;
     if (j > max)
         max = j;
     if (k > max)
         max = k;

Using a Conditional Operator in an Output Expression

The conditional operator has fairly low precedence. When we embed a conditional expression in
a larger expression, we usually must parenthesize the conditional subexpression. For example,
the conditional operator is often used to print one or another value, depending on the result of a



condition. Incompletely parenthesized uses of the conditional operator in an output expression
can have surprising results:

     cout << (i < j ? i : j);  // ok: prints larger of i and j
     cout << (i < j) ? i : j;  // prints 1 or 0!

     cout << i < j ? i : j;    // error: compares cout to int

The second expression is the most interesting: It treats the comparison between i and j as the
operand to the << operator. The value 1 or 0 is printed, depending on whether i < j is true or
false. The << operator returns cout , which is tested as the condition for the conditional
operator. That is, the second expression is equivalent to

     cout << (i < j); // prints 1 or 0

     cout ? i : j;    // test cout and then evaluate i or j

                      // depending on whether cout evaluates to true or false

Exercises Section 5.7

Exercise
5.20:

Write a program to prompt the user for a pair of numbers and
report which is smaller.

Exercise
5.21:

Write a program to process the elements of a vector<int> .
Replace each element with an odd value by twice that value.

 



 

5.8. The sizeof Operator

The sizeof operator returns a value of type size_t (Section 3.5.2 , p. 104 ) that is the size, in
bytes (Section 2.1 , p. 35 ), of an object or type name. The result of sizeof expression is a
compile-time constant. The sizeof operator takes one of the following forms:

     sizeof (type name);

     sizeof (expr);

     sizeof expr;

Applying sizeof to an expr returns the size of the result type of that expression:

     Sales_item item, *p;

     // three ways to obtain size required to hold an object of type Sales_item

     sizeof(Sales_item); // size required to hold an object of type Sales_item

     sizeof item; // size of item's type, e.g., sizeof(Sales_item)

     sizeof *p;   // size of type to which p points, e.g., sizeof(Sales_item)

Evaluating sizeof expr does not evaluate the expression. In particular, in sizeof *p , the
pointer p may hold an invalid address, because p is not dereferenced.

The result of applying sizeof depends in part on the type involved:

sizeof char or an expression of type char is guaranteed to be 1

sizeof a reference type returns the size of the memory necessary to contain an object of
the referenced type

sizeof a pointer returns the size needed hold a pointer; to obtain the size of the object to
which the pointer points, the pointer must be dereferenced

sizeof an array is equivalent to taking the sizeof the element type times the number of
elements in the array

Because sizeof returns the size of the entire array, we can determine the number of elements
by dividing the sizeof the array by the sizeof an element:

     // sizeof(ia)/sizeof(*ia) returns the number of elements in ia
     int sz = sizeof(ia)/sizeof(*ia);



Exercises Section 5.8

Exercise
5.22:

Write a program to print the size of each of the built-in types.

Exercise
5.23:

Predict the output of the following program and explain your
reasoning. Now run the program. Is the output what you
expected? If not, figure out why.

     int x[10];   int *p = x;
     cout << sizeof(x)/sizeof(*x) << endl;
     cout << sizeof(p)/sizeof(*p) << endl;

 



 

5.9. Comma Operator

A comma expression is a series of expressions separated by commas. The expressions are
evaluated from left to right. The result of a comma expression is the value of the rightmost
expression. The result is an lvalue if the rightmost operand is an lvalue. One common use for
the comma operator is in a for loop.

     int cnt = ivec.size();

     // add elements from size... 1 to ivec
     for(vector<int>::size_type ix = 0;
                     ix != ivec.size(); ++ix, --cnt)
         ivec[ix] = cnt;

This loop increments ix and decrements cnt in the expression in the for header. Both ix and
cnt are changed on each trip through the loop. As long as the test of ix succeeds, we reset the
next element to the current value of cnt .

Exercises Section 5.9

Exercise
5.24:

The program in this section is similar to the program on page
163 that added elements to a vector . Both programs
decremented a counter to generate the element values. In this
program we used the prefix decrement and the earlier one
used postfix. Explain why we used prefix in one and postfix in
the other.

 



 

5.10. Evaluating Compound Expressions

An expression with two or more operators is a compound expression . In a compound
expression, the way in which the operands are grouped to the operators may determine the
result of the overall expression. If the operands group in one way, the result differs from what it
would be if they grouped another way.

Precedence and associativity determine how the operands are grouped. That is, precedence and
associativity determine which part of the expression is the operand for each of the operators in
the expression. Programmers can override these rules by parenthesizing compound expressions
to force a particular grouping.

Precedence specifies how the operands are grouped. It says nothing
about the order in which the operands are evaluated. In most cases,
operands may be evaluated in whatever order is convenient.

5.10.1. Precedence

The value of an expression depends on how the subexpressions are grouped. For example, in
the following expression, a purely left-to-right evaluation yields 20:

     6 + 3 * 4 / 2 + 2;

Other imaginable results include 9, 14, and 36. In C++, the result is 14.

Multiplication and division have higher precedence than addition. Their operands are bound to
the operator in preference to the operands to addition. Multiplication and division have the same
precedence as each other. Operators also have associativity, which determines how operators at
the same precedence level are grouped. The arithmetic operators are left associative, which
means they group left to right. We now can see that our expression is equivalent to

     int temp = 3 * 4;           // 12
     int temp2 = temp / 2;       // 6
     int temp3 = temp2 + 6;      // 12
     int result = temp3 + 2;     // 14

Parentheses Override Precedence



We can override precedence with parentheses. Parenthesized expressions are evaluated by
treating each parenthesized subexpression as a unit and otherwise applying the normal
precedence rules. For example, we can use parentheses on our initial expression to force the
evaluation to result in any of the four possible values:

     // parentheses on this expression match default precedence/associativity
     cout << ((6 + ((3 * 4) / 2)) + 2) << endl; // prints 14
     // parentheses result in alternative groupings
     cout << (6 + 3) * (4 / 2 + 2) << endl;     // prints 36
     cout << ((6 + 3) * 4) / 2 + 2 << endl;     // prints 20
     cout << 6 + 3 * 4 / (2 + 2) << endl;       // prints 9

We have already seen examples where precedence rules affect the correctness of our programs.
For example, consider the expression described in the "Advice" box on page 164 :

     *iter++;

Precedence says that ++ has higher precedence than * . That means that iter++ is grouped first.
The operand of * , therefore, is the result of applying the increment operator to iter . If we
wanted to increment the value that iter denotes, we'd have to use parentheses to force our
intention:

     (*iter)++; // increment value to which iter refers and yield unincremented value

The parentheses specify that the operand of * is iter . The expression now uses *iter as the
operand to ++ .

As another example, recall the condition in the while on page 161 :

     while ((i = get_value()) != 42) {

The parentheses around the assignment were necessary to implement the desired operation,
which was to assign to i the value returned from get_value and then test that value to see
whether it was 42. Had we failed to parenthesize the assignment, the effect would be to test the
return value to see whether it was 42. The true or false value of that test would then be
assigned to i , meaning that i would either be 1 or 0.

5.10.2. Associativity

Associativity specifies how to group operators at the same precedence level. We have also seen
cases where associativity matters. As one example, the assignment operator is right associative.
This fact allows concatenated assignments:

     ival = jval = kval = lval       // right associative



     (ival = (jval = (kval = lval))) // equivalent, parenthesized version

This expression first assigns lval to kval , then the result of that to jval , and finally the result
of that to ival .

The arithmetic operators, on the other hand, are left associative. The expression

     ival * jval / kval * lval       // left associative
     (((ival * jval) / kval) * lval) // equivalent, parenthesized version

multiplies ival and jval , then divides that result by kval , and finally multiplies the result of
the division by lval .

Table 5.4 presents the full set of operators ordered by precedence. The table is organized into
segments separated by double lines. Operators in each segment have the same precedence,
and have higher precedence than operators in sub-sequent segments. For example, the prefix
increment and dereference operators share the same precedence and have higher precedence
than the arithmetic or relational operators. We have seen most of these operators, although a
few will not be defined until later chapters.

Table 5.4. Operator Precedence

Associativity
and Operator Function Use

See
Page

L :: global scope :: name p. 450

L :: class scope class :: name p. 85

L :: namespace scope namespace :: name p. 78

L . member selectors object . member p. 25

L -> member selectors pointer -> member p. 164

L [] subscript variable [ expr ] p. 113

L () function call name ( expr_list) p. 25

L () type construction type ( expr_list) p. 460

R ++ postfix increment lvalue++ p. 162

R -- postfix decrement lvalue-- p. 162

R typeid type ID typeid ( type) p. 775

R typeid run-time type ID typeid ( expr) p. 775

R explicit cast type conversion cast_name
<type>(expr)

p. 183

R sizeof size of object sizeof expr p. 167



Associativity
and Operator Function Use

See
Page

R sizeof size of type sizeof (type) p. 167

R ++ prefix increment ++ lvalue p. 162

R -- prefix decrement -- lvalue p. 162

R ~ bitwise NOT ~ expr p. 154

R ! logical NOT ! expr p. 152

R - unary minus - expr p. 150

R + unary plus + expr p. 150

R * dereference * expr p. 119

R & address-of & expr p. 115

R () type conversion (type) expr p. 186

R new allocate object new type p. 174

R delete deallocate object delete expr p. 176

R delete[] deallocate array delete[] expr p. 137

L ->* ptr to member
select

ptr ->*
ptr_to_member

p. 783

L .* ptr to member
select

obj .* ptr_to_member p. 783

L * multiply expr * expr p. 149

L / divide expr / expr p. 149

L % modulo
(remainder)

expr % expr p. 149

L + add expr + expr p. 149

L - subtract expr - expr p. 149

L << bitwise shift left expr << expr p. 154

L >> bitwise shift right expr >> expr p. 154

L < less than expr < expr p. 152

L <= less than or equal expr <= expr p. 152

L > greater than expr > expr p. 152

L >= greater than or
equal

expr >= expr p. 152

L == equality expr == expr p. 152

L != inequality expr != expr p. 152

L & bitwise AND expr & expr p. 154

R sizeof size of type sizeof (type) p. 167

R ++ prefix increment ++ lvalue p. 162

R -- prefix decrement -- lvalue p. 162

R ~ bitwise NOT ~ expr p. 154

R ! logical NOT ! expr p. 152

R - unary minus - expr p. 150

R + unary plus + expr p. 150

R * dereference * expr p. 119

R & address-of & expr p. 115

R () type conversion (type) expr p. 186

R new allocate object new type p. 174

R delete deallocate object delete expr p. 176

R delete[] deallocate array delete[] expr p. 137

L ->* ptr to member
select

ptr ->*
ptr_to_member

p. 783

L .* ptr to member
select

obj .* ptr_to_member p. 783

L * multiply expr * expr p. 149

L / divide expr / expr p. 149

L % modulo
(remainder)

expr % expr p. 149

L + add expr + expr p. 149

L - subtract expr - expr p. 149

L << bitwise shift left expr << expr p. 154

L >> bitwise shift right expr >> expr p. 154

L < less than expr < expr p. 152

L <= less than or equal expr <= expr p. 152

L > greater than expr > expr p. 152

L >= greater than or
equal

expr >= expr p. 152

L == equality expr == expr p. 152

L != inequality expr != expr p. 152

L & bitwise AND expr & expr p. 154



Associativity
and Operator Function Use

See
Page

L ^ bitwise XOR expr ^ expr p. 154

L | bitwise OR expr | expr p. 154

L && logical AND expr && expr p. 152

L || logical OR expr || expr p. 152

R ?: conditional expr ? expr : expr p. 165

R = assignment lvalue = expr p. 159

R *=, /=, %= , compound assign lvalue += expr, etc. p. 159

R +=, -= ,     p. 159

R <<=, >>= ,     p. 159

R &= ,|=, ^=     p. 159

R throw throw exception throw expr p. 216

L , comma expr , expr p. 168

Exercises Section 5.10.2

Exercise
5.25:

Using Table 5.4 (p. 170 ), parenthesize the following expressions
to indicate the order in which the operands are grouped:

     (a)  ! ptr == ptr->next
     (b)  ch = buf[ bp++ ] != '\n'

Exercise
5.26:

The expressions in the previous exercise evaluate in an order that
is likely to be surprising. Parenthesize these expressions to
evaluate in an order you imagine is intended.

Exercise
5.27:

The following expression fails to compile due to operator
precedence. Using Table 5.4 (p. 170 ), explain why it fails. How
would you fix it?

     string s = "word";
     // add an 's' to the end, if the word doesn't already end in 's'
     string pl = s + s[s.size() - 1] == 's' ? "" : "s" ;

L ^ bitwise XOR expr ^ expr p. 154

L | bitwise OR expr | expr p. 154

L && logical AND expr && expr p. 152

L || logical OR expr || expr p. 152

R ?: conditional expr ? expr : expr p. 165

R = assignment lvalue = expr p. 159

R *=, /=, %= , compound assign lvalue += expr, etc. p. 159

R +=, -= ,     p. 159

R <<=, >>= ,     p. 159

R &= ,|=, ^=     p. 159

R throw throw exception throw expr p. 216

L , comma expr , expr p. 168
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Exercise
5.25:

Using Table 5.4 (p. 170 ), parenthesize the following expressions
to indicate the order in which the operands are grouped:

     (a)  ! ptr == ptr->next
     (b)  ch = buf[ bp++ ] != '\n'

Exercise
5.26:

The expressions in the previous exercise evaluate in an order that
is likely to be surprising. Parenthesize these expressions to
evaluate in an order you imagine is intended.

Exercise
5.27:

The following expression fails to compile due to operator
precedence. Using Table 5.4 (p. 170 ), explain why it fails. How
would you fix it?

     string s = "word";
     // add an 's' to the end, if the word doesn't already end in 's'
     string pl = s + s[s.size() - 1] == 's' ? "" : "s" ;



5.10.3. Order of Evaluation

In Section 5.2 (p. 152 ) we saw that the && and || operators specify the order in which their
operands are evaluated: In both cases the right-hand operand is evaluated if and only if doing
so might affect the truth value of the overall expression. Because we can rely on this property,
we can write code such as

     // iter only dereferenced if it isn't at end
     while (iter != vec.end() && *iter != some_val)

The only other operators that guarantee the order in which operands are evaluated are the
conditional ( ?: ) and comma operators. In all other cases, the order is unspecified.

For example, in the expression

     f1() * f2();

we know that both f1 and f2 must be called before the multiplication can be done. After all,
their results are what is multiplied. However, we have no way to know whether f1 will be called
before f2 or vice versa.

The order of operand evaluation often, perhaps even usually,
doesn't matter. It can matter greatly, though, if the operands refer
to and change the same objects.

The order of operand evaluation matters if one subexpression changes the value of an operand
used in another subexpression:

     // oops! language does not define order of evaluation
     if (ia[index++] < ia[index])

The behavior of this expression is undefined. The problem is that the left- and right-hand
operands to the < both use the variable index . However, the left-hand operand involves
changing the value of that variable. Assuming index is zero, the compiler might evaluate this
expression in one of the following two ways:

     if (ia[0] < ia[0]) // execution if rhs is evaluated first
     if (ia[0] < ia[1]) // execution if lhs is evaluated first



We can guess that the programmer intended that the left operand be evaluated, thereby
incrementing index . If so, the comparison would be between ia[0] and ia[1] . The language,
however, does not guarantee a left-to-right evaluation order. In fact, an expression like this is
undefined. An implementation might evaluate the right-hand operand first, in which case ia[0]
is compared to itself. Or the implementation might do something else entirely.

Advice: Managing Compound Expressions

Beginning C and C++ programmers often have difficulties understanding
order of evaluation and the rules of precedence and associativity.
Misunderstanding how expressions and operands are evaluated is a rich
source of bugs. Moreover, the resulting bugs are difficult to find because
reading the program does not reveal the error unless the programmer
already understands the rules.

Two rules of thumb can be helpful:

When in doubt, parenthesize expressions to force the grouping that
the logic of your program requires.

1.

If you change the value of an operand, don't use that operand
elsewhere in the same statement. If you need to use the changed
value, then break the expression up into separate statements in which
the operand is changed in one statement and then used in a
subsequent statement.

2.

An important exception to the second rule is that subexpressions that use
the result of the subexpression that changes the operand are safe. For
example, in *++iter the increment changes the value of iter , and the
(changed) value of iter is then used as the operand to * . In this, and

similar, expressions, order of evaluation of the operand isn't an issue. To
evaluate the larger expression, the subexpression that changes the
operand must first be evaluated. Such usage poses no problems and is
quite common.

Do not use an increment or decrement operator on the same object
in more than two subexpressions of the same expression.

One safe and machine-independent way to rewrite the previous comparison of two array



elements is

     if (ia[index] < ia[index + 1]) {
         // do whatever
     }
     ++index;

Now neither operand can affect the value of the other.

Exercises Section 5.10.3

Exercise
5.28:

With the exception of the logical AND and OR, the order of
evaluation of the binary operators is left undefined to permit the
compiler freedom to provide an optimal implementation. The trade-
off is between an efficient implementation and a potential pitfall in
the use of the language by the programmer. Do you consider that an
acceptable trade-off? Why or why not?

Exercise
5.29:

Given that ptr points to a class with an int member named ival,
vec is a vector holding int s, and that ival, jval , and kval are
also int s, explain the behavior of each of these expressions. Which,
if any, are likely to be incorrect? Why? How might each be
corrected?

     (a) ptr->ival != 0            (b) ival != jval < kval
     (c) ptr != 0 && *ptr++        (d) ival++ && ival
     (e) vec[ival++] <= vec[ival]

 



 

5.11. The new and delete Expressions

In Section 4.3.1 (p. 134 ) we saw how to use new and delete expressions to dynamically allocate
and free arrays. We can also use new and delete to dynamically allocate and free single objects.

When we define a variable, we specify a type and a name. When we dynamically allocate an
object, we specify a type but do not name the object. Instead, the new expression returns a
pointer to the newly allocated object; we use that pointer to access the object:

     int i;              // named, uninitialized int variable

     int *pi = new int;  // pi points to dynamically allocated,

                         // unnamed, uninitialized int

This new expression allocates one object of type int from the free store and returns the address
of that object. We use that address to initialize the pointer pi .

Initializing Dynamically Allocated Objects

Dynamically allocated objects may be initialized, in much the same way as we initialize
variables:

     int i(1024);              // value of i is 1024

     int *pi = new int(1024);  // object to which pi points is 1024

     string s(10, '9');                   // value of s is "9999999999"

     string *ps = new string(10, '9');    // *ps is "9999999999"

We must use the direct-initialization syntax (Section 2.3.3 , p. 48 ) to initialize dynamically
allocated objects. When an initializer is present, the new expression allocates the required
memory and initializes that memory using the given initializer(s). In the case of pi , the newly
allocated object is initialized to 1024. The object pointed to by ps is initialized to a string of 10
nines.

Default Initialization of Dynamically Allocated Objects

If we do not explicitly state an initializer, then a dynamically allocated object is initialized in the
same way as is a variable that is defined inside a function. (Section 2.3.4 , p. 50 ) If the object
is of class type, it is initialized using the default constructor for the type; if it is of built-in type,
it is uninitialized.

     string *ps = new string; // initialized to empty string

     int *pi = new int;       // pi points to an uninitialized int



As usual, it is undefined to use the value associated with an uninitialized object in any way other
than to assign a good value to it.

Just as we (almost) always initialize the objects we define
as variables, it is (almost) always a good idea to initialize
dynamically allocated objects.

We can also value-initialize (Section 3.3.1 , p. 92 ) a dynamically allocated object:

     string *ps = new string();  // initialized to empty string

     int *pi = new int();  // pi points to an int value-initialized to 0

     cls *pc = new cls();  // pc points to a value-initialized object of type cls

We indicate that we want to value-initialize the newly allocated object by following the type
name by a pair of empty parentheses. The empty parentheses signal that we want initialization
but are not supplying a specific initial value. In the case of class types (such as string ) that
define their own constructors, requesting value-initialization is of no consequence: The object is
initialized by running the default constructor whether we leave it apparently uninitialized or ask
for value-initialization. In the case of built-in types or types that do not define any constructors,
the difference is significant:

     int *pi = new int;         // pi points to an uninitialized int

     int *pi = new int();       // pi points to an int value-initialized to 0

In the first case, the int is uninitialized; in the second case, the int is initialized to zero.

The () syntax for value initialization must follow a type name, not a
variable. As we'll see in Section 7.4 (p. 251 )

     int x(); // does not value initialize x



declares a function named x with no arguments that returns an int .

Memory Exhaustion

Although modern machines tend to have huge memory capacity, it is always possible that the
free store will be exhausted. If the program uses all of available memory, then it is possible for
a new expression to fail. If the new expression cannot acquire the requested memory, it throws
an exception named bad_alloc . We'll look at how exceptions are thrown in Section 6.13 (p. 215
).

Destroying Dynamically Allocated Objects

When our use of the object is complete, we must explicitly return the object's memory to the
free store. We do so by applying the delete expression to a pointer that addresses the object we
want to release.

     delete pi;

frees the memory associated with the int object addressed by pi .

It is illegal to apply delete to a pointer that addresses memory that
was not allocated by new .

The effect of deleting a pointer that addresses memory that was not allocated by new is
undefined. The following are examples of safe and unsafe delete expressions :

     int i;
     int *pi = &i;
     string str = "dwarves";
     double *pd = new double(33);

     delete str; // error: str is not a dynamic object

     delete pi;  // error: pi refers to a local
     delete pd;  // ok

It is worth noting that the compiler might refuse to compile the delete of str . The compiler
knows that str is not a pointer and so can detect this error at compile-time. The second error is
more insidious: In general, compilers cannot tell what kind of object a pointer addresses. Most
compilers will accept this code, even though it is in error.



delete of a Zero-Valued Pointer

It is legal to delete a pointer whose value is zero; doing so has no effect:

     int *ip = 0;
     delete ip; // ok: always ok to delete a pointer that is equal to 0

The language guarantees that deleting a pointer that is equal to zero is safe.

Resetting the Value of a Pointer after a delete

When we write

     delete p;

p becomes undefined. Although p is undefined, on many machines, p still contains the address of
the object to which it pointed. However, the memory to which p points was freed, so p is no
longer valid.

After deleting a pointer, the pointer becomes what is referred to as a dangling pointer . A
dangling pointer is one that refers to memory that once held an object but does so no longer. A
dangling pointer can be the source of program errors that are difficult to detect.

Setting the pointer to 0 after the object it refers to has
been deleted makes it clear that the pointer points to no
object.

Dynamic Allocation and Deallocation of const Objects

It is legal to dynamically create const objects:

     // allocate and initialize a const object
     const int *pci = new const int(1024);

Like any const , a dynamically created const must be initialized when it is created and once
initialized cannot be changed. The value returned from this new expression is a pointer to const
int . Like the address of any other const object, the return from a new that allocates a const



object may only be assigned to a pointer to const .

A const dynamic object of a class type that defines a default constructor may be initialized
implicitly:

     // allocate default initialized const empty string
     const string *pcs = new const string;

This new expression does not explicitly initialize the object pointed to by pcs . Instead, the object
to which pcs points is implicitly initialized to the empty string . Objects of built-in type or of a
class type that does not provide a default constructor must be explicitly initialized.

Caution: Managing Dynamic Memory Is Error-Prone

The following three common program errors are associated with dynamic
memory allocation:

Failing to delete a pointer to dynamically allocated memory, thus

preventing the memory from being returned to the free store. Failure
to delete dynamically allocated memory is spoken of as a "memory
leak." Testing for memory leaks is difficult because they often do not
appear until the application is run for a test period long enough to
actually exhaust memory.

1.

Reading or writing to the object after it has been deleted. This error
can sometimes be detected by setting the pointer to 0 after deleting
the object to which the pointer had pointed.

2.

Applying a delete expression to the same memory location twice. This
error can happen when two pointers address the same dynamically
allocated object. If delete is applied to one of the pointers, then the

object's memory is returned to the free store. If we subsequently
delete the second pointer, then the free store may be corrupted.

3.

These kinds of errors in manipulating dynamically allocated memory are
considerably easier to make than they are to track down and fix.

Deleting a const Object

Although the value of a const object cannot be modified, the object itself can be destroyed. As
with any other dynamic object, a const dynamic object is freed by deleting a pointer that points
to it:

     delete pci; // ok: deletes a const object



Even though the operand of the delete expression is a pointer to const int , the delete
expression is valid and causes the memory to which pci refers to be deallocated.

Exercises Section 5.11

Exercise
5.30:

Which of the following, if any, are illegal or in error?

     (a) vector<string> svec(10);
     (b) vector<string> *pvec1 = new vector<string>(10);
     (c) vector<string> **pvec2 = new vector<string>[10];
     (d) vector<string> *pv1 = &svec;
     (e) vector<string> *pv2 = pvec1;

     (f) delete svec;
     (g) delete pvec1;
     (h) delete [] pvec2;
     (i) delete pv1;
     (j) delete pv2;

 



 

5.12. Type Conversions

The type of the operand(s) determine whether an expression is legal and, if the expression is
legal, determines the meaning of the expression. However, in C++ some types are related to one
another. When two types are related, we can use an object or value of one type where an
operand of the related type is expected. Two types are related if there is a conversion between
them.

As an example, consider

     int ival = 0;
     ival = 3.541 + 3; // typically compiles with a warning

which assigns 6 to ival .

The operands to the addition operator are values of two different types: 3.541 is a literal of type
double , and 3 is a literal of type int . Rather than attempt to add values of the two different
types, C++ defines a set of conversions to transform the operands to a common type before
performing the arithmetic. These conversions are carried out automatically by the compiler
without programmer interventionand sometimes without programmer knowledge. For that
reason, they are referred to as implicit type conversions .

The built-in conversions among the arithmetic types are defined to preserve precision, if possible.
Most often, if an expression has both integral and floating-point values, the integer is converted
to floating-point. In this addition, the integer value 3 is converted to double . Floating-point
addition is performed and the result, 6.541 , is of type double .

The next step is to assign that double value to ival , which is an int . In the case of assignment,
the type of the left-hand operand dominates, because it is not possible to change the type of the
object on the left-hand side. When the left- and right-hand types of an assignment differ, the
right-hand side is converted to the type of the left-hand side. Here the double is converted to int
. Converting a double to an int TRuncates the value; the decimal portion is discarded. 6.541
becomes 6, which is the value assigned to ival . Because the conversion of a double to int may
result in a loss of precision, most compilers issue a warning. For example, the compiler we used
to check the examples in this book warns us:

     warning: assignment to 'int' from 'double'

To understand implicit conversions , we need to know when they occur and what conversions are
possible.

5.12.1. When Implicit Type Conversions Occur

The compiler applies conversions for both built-in and class type objects as necessary. Implicit
type conversions take place in the following situations:



In expressions with operands of mixed types, the types are converted to a common type:

     int ival;
     double dval;

     ival >= dval // ival converted to double

An expression used as a condition is converted to bool :

     int ival;

     if (ival)   // ival converted to bool

     while (cin) // cin converted to bool

Conditions occur as the first operand of the conditional (?: ) operator and as the operand(s)
to the logical NOT (! ), logical AND (&& ), and logical OR (|| ) operators. Conditions also
appear in the if, while, for , and do while statements. (We cover the do while in Chapter
6 )

An expression used to initialize or assign to a variable is converted to the type of the
variable:

     int ival = 3.14; // 3.14 converted to int
     int *ip;

     ip = 0; // the int 0 converted to a null pointer of type int *

In addition, as we'll see in Chapter 7 , implicit conversions also occur during function calls.

5.12.2. The Arithmetic Conversions

The language defines a set of conversions among the built-in types. Among these, the most
common are the arithmetic conversions , which ensure that the two operands of a binary
operator, such as an arithmetic or logical operator, are converted to a common type before the
operator is evaluated. That common type is also the result type of the expression.

The rules define a hierarchy of type conversions in which operands are converted to the widest
type in the expression. The conversion rules are defined so as to preserve the precision of the
values involved in a multi-type expression. For example, if one operand is of type long double ,
then the other is converted to type long double regardless of what the second type is.

The simplest kinds of conversion are integral promotions . Each of the integral types that are
smaller than int char, signed char, unsigned char, short , and unsigned short is promoted to
int if all possible values of that type fit in an int . Otherwise, the value is promoted to unsigned
int . When bool values are promoted to int , a false value promotes to zero and true to one.

Conversions between Signed and Unsigned Types

When an unsigned value is involved in an expression, the conversion rules are defined to
preserve the value of the operands. Conversions involving unsigned operands depend on the
relative sizes of the integral types on the machine. Hence, such conversions are inherently
machine dependent.



In expressions involving short s and ints , values of type short are converted to int .
Expressions involving unsigned short are converted to int if the int type is large enough to
represent all the values of an unsigned short . Otherwise, both operands are converted to
unsigned int . For example, if short s are a half word and int s a word, then any unsigned value
will fit inside an int . On such a machine, unsigned shorts are converted to int .

The same conversion happens among operands of type long and unsigned int . The unsigned int
operand is converted to long if type long on the machine is large enough to represent all the
values of the unsigned int . Otherwise, both operands are converted to unsigned long .

On a 32-bit machine, long and int are typically represented in a word. On such machines,
expressions involving unsigned int s and longs are converted to unsigned long .

Conversions for expressions involving signed and unsigned int can be surprising. In these
expressions the signed value is converted to unsigned . For example, if we compare a plain int
and an unsigned int , the int is first converted to unsigned . If the int happens to hold a
negative value, the result will be converted as described in Section 2.1.1 (p. 36 ), with all the
attendant problems discussed there.

Understanding the Arithmetic Conversions

The best way to understand the arithmetic conversions is to study lots of examples. In most of
the following examples, either the operands are converted to the largest type involved in the
expression or, in the case of assignment expressions, the right-hand operand is converted to the
type of the left-hand operand:

     bool      flag;         char           cval;
     short     sval;         unsigned short usval;
     int       ival;         unsigned int   uival;
     long      lval;         unsigned long  ulval;
     float     fval;         double         dval;

     3.14159L + 'a'; // promote 'a' to int, then convert to long double

     dval + ival;    // ival converted to double

     dval + fval;    // fval converted to double

     ival = dval;    // dval converted (by truncation) to int

     flag = dval;    // if dval is 0, then flag is false, otherwise true

     cval + fval;    // cval promoted to int, that int converted to float

     sval + cval;    // sval and cval promoted to int

     cval + lval;    // cval converted to long

     ival + ulval;   // ival converted to unsigned long

     usval + ival;   // promotion depends on size of unsigned short and int

     uival + lval;   // conversion depends on size of unsigned int and long

In the first addition, the character constant lowercase 'a' has type char , which as we know from
Section 2.1.1 (p. 34 ) is a numeric value. The numeric value that 'a' represents depends on the
machine's character set. On our ASCII machine, 'a' represents the number 97. When we add
'a' to a long double , the char value is promoted to int and then that int value is converted to
a long double . That converted value is added to the long double literal. The other interesting
cases are the last two expressions involving unsigned values.

5.12.3. Other Implicit Conversions



Pointer Conversions

In most cases when we use an array, the array is automatically converted to a pointer to the first
element:

     int ia[10];    // array of 10 ints

     int* ip = ia;  // convert ia to pointer to first element

The exceptions when an array is not converted to a pointer are: as the operand of the address-of
(& ) operator or of sizeof , or when using the array to initialize a reference to the array. We'll see
how to define a reference (or pointer) to an array in Section 7.2.4 (p. 240 ).

There are two other pointer conversions: A pointer to any data type can be converted to a void* ,
and a constant integral value of 0 can be converted to any pointer type.

Conversions to bool

Arithmetic and pointer values can be converted to bool . If the pointer or arithmetic value is zero,
then the bool is false ; any other value converts to TRue :

     if (cp) /* ... */     // true if cp is not zero

     while (*cp) /* ... */ // dereference cp and convert resulting char to bool

Here, the if converts any nonzero value of cp to TRue . The while dereferences cp , which yields a
char . The null character has value zero and converts to false . All other char values convert to
true .

Arithmetic Type and bool Conversions

Arithmetic objects can be converted to bool and bool objects can be converted to int . When an
arithmetic type is converted to bool , zero converts as false and any other value converts as
TRue . When a bool is converted to an arithmetic type, true becomes one and false becomes
zero:

     bool b = true;

     int ival = b;   // ival == 1
     double pi = 3.14;

     bool b2 = pi;   // b2 is true

     pi = false;     // pi == 0

Conversions and Enumeration Types

Objects of an enumeration type (Section 2.7 , p. 62 ) or an enumerator can be automatically
converted to an integral type. As a result, they can be used where an integral value is requiredfor
example, in an arithmetic expression:



     // point2d is 2, point2w is 3, point3d is 3, point3w is 4
     enum Points { point2d = 2, point2w,
                   point3d = 3, point3w };
     const size_t array_size = 1024;
     // ok: pt2w promoted to int
     int chunk_size = array_size * pt2w;
     int array_3d = array_size * point3d;

The type to which an enum object or enumerator is promoted is machine-defined and depends on
the value of the largest enumerator. Regardless of that value, an enum or enumerator is always
promoted at least to int . If the largest enumerator does not fit in an int , then the promotion is
to the smallest type larger than int (unsigned int, long or unsigned long ) that can hold the
enumerator value.

Conversion to const

A nonconst object can be converted to a const object, which happens when we use a nonconst
object to initialize a reference to const object. We can also convert the address of a nonconst
object (or convert a nonconst pointer) to a pointer to the related const type:

     int i;
     const int ci = 0;

     const int &j = i;   // ok: convert non-const to reference to const int

     const int *p = &ci; // ok: convert address of non-const to address of a const

Conversions Defined by the Library Types

Class types can define conversions that the compiler will apply automatically. Of the library types
we've used so far, there is one important conversion that we have used. When we read from an
istream as a condition

     string s;
     while (cin >> s)

we are implicitly using a conversion defined by the IO library. In a condition such as this one, the
expression cin >> s is evaluated, meaning cin is read. Whether the read succeeds or fails, the
result of the expression is cin .

The condition in the while expects a value of type bool , but it is given a value of type istream .
That istream value is converted to bool . The effect of converting an istream to bool is to test the
state of the stream. If the last attempt to read from cin succeeded, then the state of the stream
will cause the conversion to bool to be true the while test will succeed. If the last attempt
failedsay because we hit end-of-filethen the conversion to bool will yield false and the while
condition will fail.



Exercises Section 5.12.3

Exercise
5.31:

Given the variable definitions on page 180 , explain what
conversions take place when evaluating the following
expressions:

     (a) if (fval)
     (b) dval = fval + ival;
     (c) dval + ival + cval;

Remember that you may need to consider associativity of the operators in order to
determine the answer in the case of expressions involving more than one operator.

5.12.4. Explicit Conversions

An explicit conversion is spoken of as a cast and is supported by the following set of named cast
operators: static_cast , dynamic_cast , const_cast , and reinterpret_cast .

Although necessary at times, casts are inherently dangerous
constructs.

5.12.5. When Casts Might Be Useful

One reason to perform an explicit cast is to override the usual standard conversions. The
following compound assignment

     double dval;
     int ival;

     ival *= dval; // ival = ival * dval

converts ival to double in order to multiply it by dval . That double result is then truncated to
int in order to assign it to ival . We can eliminate the unnecessary conversion of ival to double
by explicitly casting dval to int :



     ival *= static_cast<int>(dval); // converts dval to int

Another reason for an explicit cast is to select a specific conversion when more than one
conversion is possible. We will look at this case more closely in Chapter 14 .

5.12.6. Named Casts

The general form for the named cast notation is the following:

     cast-name<type>(expression);

cast-name may be one of static_cast, const_cast, dynamic_cast , or reinterpret_cast . type is
the target type of the conversion, and expression is the value to be cast. The type of cast
determines the specific kind of conversion that is performed on the expression .

dynamic_cast

A dynamic_cast supports the run-time identification of objects addressed either by a pointer or
reference. We cover dynamic_cast in Section 18.2 (p. 772 ).

const_cast

A const_cast , as its name implies, casts away the const ness of its expression. For example, we
might have a function named string_copy that we are certain reads, but does not write, its single
parameter of type char* . If we have access to the code, the best alternative would be to correct
it to take a const char* . If that is not possible, we could call string_copy on a const value using
a const_cast:

     const char *pc_str;
     char *pc = string_copy(const_cast<char*>(pc_str));

Only a const_cast can be used to cast away const ness. Using any of the other three forms of
cast in this case would result in a compile-time error. Similarly, it is a compile-time error to use
the const_cast notation to perform any type conversion other than adding or removing const .

static_cast

Any type conversion that the compiler performs implicitly can be explicitly requested by using a
static_cast:

     double d = 97.0;
     // cast specified to indicate that the conversion is intentional
     char ch = static_cast<char>(d);

Such casts are useful when assigning a larger arithmetic type to a smaller type. The cast informs



both the reader of the program and the compiler that we are aware of and are not concerned
about the potential loss of precision. Compilers often generate a warning for assignments of a
larger arithmetic type to a smaller type. When we provide the explicit cast, the warning message
is turned off.

A static_cast is also useful to perform a conversion that the compiler will not generate
automatically. For example, we can use a static_cast to retrieve a pointer value that was stored
in a void* pointer (Section 4.2.2 , p. 119 ):

     void* p = &d; // ok: address of any data object can be stored in a void*

     // ok: converts void* back to the original pointer type
     double *dp = static_cast<double*>(p);

When we store a pointer in a void* and then use a static_cast to cast the pointer back to its
original type, we are guaranteed that the pointer value is preserved. That is, the result of the
cast will be equal to the original address value.

reinterpret_cast

A reinterpret_cast generally performs a low-level reinterpretation of the bit pattern of its
operands.

A reinterpret_cast is inherently machine-dependent. Safely using
reinterpret_cast requires completely understanding the types
involved as well as the details of how the compiler implements the
cast.

As an example, in the following cast

     int *ip;
     char *pc = reinterpret_cast<char*>(ip);

the programmer must never forget that the actual object addressed by pc is an int , not a
character array. Any use of pc that assumes it's an ordinary character pointer is likely to fail at
run time in interesting ways. For example, using it to initialize a string object such as

     string str(pc);

is likely to result in bizarre run-time behavior.

The use of pc to initialize str is a good example of why explicit casts are dangerous. The problem



is that types are changed, yet there are no warnings or errors from the compiler. When we
initialized pc with the address of an int , there is no error or warning from the compiler because
we explicitly said the conversion was okay. Any subsequent use of pc will assume that the value
it holds is a char* . The compiler has no way of knowing that it actually holds a pointer to an int
. Thus, the initialization of str with pc is absolutely correctalbeit in this case meaningless or
worse! Tracking down the cause of this sort of problem can prove extremely difficult, especially if
the cast of ip to pc occurs in a file separate from the one in which pc is used to initialize a string
.

Advice: Avoid Casts

By using a cast, the programmer turns off or dampens normal type-checking
(Section 2.3 , p. 44 ). We strongly recommend that programmers avoid casts
and believe that most well-formed C++ programs can be written without
relying on casts.

This advice is particularly important regarding use of reinterpret_casts . Such
casts are always hazardous. Similarly, use of const_cast almost always

indicates a design flaw. Properly designed systems should not need to cast
away const . The other casts, static_cast and dynamic_cast , have their uses

but should be needed infrequently. Every time you write a cast, you should
think hard about whether you can achieve the same result in a different
way. If the cast is unavoidable, errors can be mitigated by limiting the scope
in which the cast value is used and by documenting all assumptions about
the types involved.

5.12.7. Old-Style Casts

Prior to the introduction of named cast operators, an explicit cast was performed by enclosing a
type in parentheses:

     char *pc = (char*) ip;

The effect of this cast is the same as using the reinterpret_cast notation. However, the visibility
of this cast is considerably less, making it even more difficult to track down the rogue cast.

Standard C++ introduced the named cast operators to make casts more visible and to give the
programmer a more finely tuned tool to use when casts are necessary. For example, nonpointer
static_casts and const_casts tend to be safer than reinterpret_casts . As a result, the
programmer (as well as readers and tools operating on the program) can clearly identify the
potential risk level of each explicit cast in code.

Although the old-style cast notation is supported by
Standard C++, we recommend it be used only when writing
code to be compiled either under the C language or pre-
Standard C++.



The old-style cast notation takes one of the following two forms:

     type (expr); // Function-style cast notation
     (type) expr; // C-language-style cast notation

Depending on the types involved, an old-style cast has the same behavior as a const_cast , a
static_cast , ora reinterpret_cast . When used where a static_cast or a const_cast would be
legal, an old-style cast does the same conversion as the respective named cast. If neither is
legal, then an old-style cast performs a reinterpret_cast . For example, we might rewrite the
casts from the previous section less clearly using old-style notation:

     int ival; double dval;

     ival += int (dval); // static_cast: converts double to int
     const char* pc_str;

     string_copy((char*)pc_str); // const_cast: casts away const
     int *ip;

     char *pc = (char*)ip; // reinterpret_cast: treats int* as char*

The old-style cast notation remains supported for backward compatibility with programs written
under pre-Standard C++ and to maintain compatibility with the C language.

Exercises Section 5.12.7

Exercise
5.32:

Given the following set of definitions,

     char cval;  int ival;   unsigned int ui;
     float fval;             double dval;

identify the implicit type conversions, if any, taking place:

     (a) cval = 'a' + 3;        (b) fval = ui - ival * 1.0;
     (c) dval = ui * fval;      (d) cval = ival + fval + dval;

Exercise
5.33:

Given the following set of definitions,

     int ival;                         double dval;
     const string *ps;    char *pc;    void *pv;



rewrite each of the following using a named cast notation:

     (a) pv = (void*)ps;     (b) ival = int(*pc);
     (c) pv = &dval;         (d) pc = (char*) pv;

 



 

Chapter Summary

C++ provides a rich set of operators and defines their meaning when applied to values of the
built-in types. Additionally, the language supports operator overloading, which allows us to
define the meaning of the operators for class types. We'll see in Chapter 14 how to define
operators for our own types.

To understand compound expressionsexpressions involving more than one operatorit is
necessary to understand precedence, associativity, and order of operand evaluation. Each
operator has a precedence level and associativity. Precedence determines how operators are
grouped in a compound expression. Associativity determines how operators at the same
precedence level are grouped.

Most operators do not specify the order in which operands are evaluated: The compiler is free to
evaluate either the left- or right-hand operand first. Often, the order of operand evaluation has
no impact on the result of the expression. However, if both operands refer to the same object
and one of the operands changes that object, then the program has a serious bugand a bug that
may be hard to find.

Finally, it is possible to write an expression that is given one type but where a value of another
type is required. In such cases, the compiler will automatically apply a conversion (either built-
in or defined for a class type) to transform the given type into the type that is required.
Conversions can also be requested explicitly by using a cast.

 



 

Defined Terms

arithmetic conversion

A conversion from one arithmetic type to another. In the context of the binary arithmetic
operators, arithmetic conversions usually attempt to preserve precision by converting a
smaller type to a larger type (e.g., small integral types, such as char and short , are
converted to int ).

associativity

Determines how operators of the same precedence are grouped. Operators can be either
right associative (operators are grouped from right to left) or left associative (operators
are grouped from left to right).

binary operators

Operators that take two operands.

cast

An explicit conversion.

compound expression

An expression involving more than one operator.

const_cast

A cast that converts a const object to the corresponding nonconst type.

conversion

Process whereby a value of one type is transformed into a value of another type. The
language defines conversions among the built-in types. Conversions to and from class
types are also possible.

dangling pointer

A pointer that refers to memory that once had an object but no longer does. Dangling



pointers are the source of program errors that are quite difficult to detect.

delete expression

A delete expression frees memory that was allocated by new . There are two forms of
delete :

     delete p;      // delete object

     delete [] p;    // delete array

In the first case, p must be a pointer to a dynamically allocated object; in the second, p must
point to the first element in a dynamically allocated array. In C++ programs, delete replaces
the use of the C library free function.

dynamic_cast

Used in combination with inheritance and run-time type identification. See Section 18.2
(p. 772 ).

expression

The lowest level of computation in a C++ program. Expressions generally apply an
operator to one or more operands. Each expression yields a result. Expressions can be
used as operands, so we can write compound expressions requiring the evaluation of
multiple operators.

implicit conversion

A conversion that is automatically generated by the compiler. Given an expression that
needs a particular type but has an operand of a differing type, the compiler will
automatically convert the operand to the desired type if an appropriate conversion exists.

integral promotions

Subset of the standard conversions that take a smaller integral type to its most closely
related larger type. Integral types (e.g. short, char , etc.) are promoted to int or
unsigned int .

new expression

A new expression allocates memory at run time from the free store. This chapter looked at
the form that allocates a single object:

     new type;
     new type(inits);



allocates an object of the indicated type and optionally initializes that object using the initializers
in inits . Returns a pointer to the object. In C++ programs, new replaces use of the C library
malloc function.

operands

Values on which an expression

operator

Symbol that determines what action an expression performs. The language defines a set
of operators and what those operators mean when applied to values of built-in type. The
language also defines the precedence and associativity of each operator and specifies how
many operands each operator takes. Operators may be overloaded and applied to values
of class type.

operator overloading

The ability to redefine an operator to apply to class types. We'll see in Chapter 14 how to
define overloaded versions of operators.

order of evaluation

Order, if any, in which the operands to an operator are evaluated. In most cases in C++
the compiler is free to evaluate operands in any order.

precedence

Defines the order in which different operators in a compound expression are grouped.
Operators with higher precedence are grouped more tightly than operators with lower
precedence.

reinterpret_cast

Interprets the contents of the operand as a different type. Inherently machine-dependent
and dangerous.

result

The value or object obtained by evaluating an expression.

static_cast



An explicit request for a type conversion that the compiler would do implicitly. Often used
to override an implicit conversion that the compiler would otherwise perform.

unary operators

Operators that take a single operand.

~ operator

The bitwise NOT operator. Inverts the bits of its operand.

, operator

The comma operator. Expressions separated by a comma are evaluated left to right.
Result of a comma expression is the value of the right-most expression.

?: operator

The conditional operator. If-then-else expression of the form: operates.

     cond ? expr1 : expr2;

If the condition cond is true then expr1 is evaluated. Otherwise, expr2 is evaluated.

& operator

Bitwise AND operator. Generates a new integral value in which each bit position is 1 if
both operands have a 1 in that position; otherwise the bit is 0.

^ operator

The bitwise exclusive or operator. Generates a new integral value in which each bit
position is 1 if either but not both operands contain a 1 in that bit position; otherwise, the
bit is 0.

| operator

The bitwise OR operator. Generates a new integral value in which each bit position is 1 if
either operand has a 1 in that position; otherwise the bit is 0.

++ operator



The increment operator. The increment operator has two forms, prefix and postfix. Prefix
increment yields an lvalue. It adds one to the operand and returns the changed value of
the operand. Postfix increment yields an rvalue. It adds one to the operand and returns
the original, unchanged value of the operand.

-- operator

The decrement operator. has two forms, prefix and postfix. Prefix decrement yields an
lvalue. It subtracts one from the operand and returns the changed value of the operand.
Postfix decrement yields an rvalue. It subtracts one from the operand and returns the
original, unchanged value of the operand.

<< operator

The left-shift operator. Shifts bits in the left-hand operand to the left. Shifts as many bits
as indicated by the right-hand operand. The right-hand operand must be zero or positive
and strictly less than the number of bits in the left-hand operand.

>> operator

The right-shift operator. Like the left-shift operator except that bits are shifted to the
right. The right-hand operand must be zero or positive and strictly less than the number
of bits in the left-hand operand.
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Statements are analogous to sentences in a natural language. In C++ there are simple
statements that execute a single task and compound statements that consist of a block of
statements that execute as a unit. Like most languages, C++ provides statements for
conditional execution and loops that repeatedly execute the same body of code. This chapter
looks in detail at the statements supported by C++.

By default, statements are executed sequentially. Except for the simplest programs, sequential
execution is inadequate. Therefore, C++ also defines a set of flow-of-control statements that
allow statements to be executed conditionally or repeatedly. The if and switch statements
support conditional execution. The for, while , and do while statements support repetitive
execution. These latter statements are often referred to as loops or iteration statements.

 



 

6.1. Simple Statements

Most statements in C++ end with a semicolon. An expression, such as ival + 5 , becomes an
expression statement by following it with a semicolon. Expression statements cause the
expression to be evaluated. In the case of

     ival + 5;    // expression statement

evaluating this expression is useless: The result is calculated but not assigned or otherwise
used. More commonly, expression statements contain expressions that when evaluated affect
the program's state. Examples of such expressions are those that use assignment, increment,
input, or output operators.

Null Statements

The simplest form of statement is the empty, or null statement . It takes the following form (a
single semicolon):

     ;  // null statement

A null statement is useful where the language requires a statement but the program's logic does
not. Such usage is most common when a loop's work can be done within the condition. For
example, we might want to read an input stream, ignoring everything we read until we
encounter a particular value:

     // read until we hit end-of-file or find an input equal to sought
     while (cin >> s && s != sought)
         ; // null statement

The condition reads a value from the standard input and implicitly tests cin to see whether the
read was successful. Assuming the read succeeded, the second part of the condition tests
whether the value we read is equal to the value in sought . If we found the value we want, then
the while loop is exited; otherwise, the condition is tested again, which involves reading another
value from cin .

A null statement should be commented, so that anyone
reading the code can see that the statement was omitted
intentionally.



Because a null statement is a statement, it is legal anywhere a statement is expected. For this
reason, semicolons that might appear illegal are often nothing more than null statements:

     // ok: second semicolon is superfluous null statement
     ival = v1 + v2;;

This fragment is composed of two statements: the expression statement and the null statement.

Extraneous null statements are not always harmless.

An extra semicolon following the condition in a while or if can drastically alter the
programmer's intent:

     // disaster: extra semicolon: loop body is this null statement
     while (iter != svec.end()) ; // null statement--while body is empty!
         ++iter;     // increment is not part of the loop

This program will loop indefinitely. Contrary to the indentation, the increment is not part of the
loop. The loop body is a null statement caused by the extra semicolon following the condition.

 



 

6.2. Declaration Statements

Defining or declaring an object or a class is a statement. Definition statements are usually
referred to as declaration statements although definition statement might be more accurate.
We covered definitions and declarations of variables in Section 2.3 (p. 43 ). Class definitions
were introduced in Section 2.8 (p. 63 ) and will be covered in more detail in Chapter 12 .

 



 

6.3. Compound Statements (Blocks)

A compound statement , usually referred to as a block , is a (possibly empty) sequence of
statements surrounded by a pair of curly braces. A block is a scope. Names introduced within a
block are accessible only from within that block or from blocks nested inside the block. As usual,
a name is visible only from its point of definition until the end of the enclosing block.

Compound statements can be used where the rules of the language require a single statement,
but the logic of our program needs to execute more than one. For example, the body of a while
or for loop must be a single statement. Yet, we often need to execute more than one statement
in the body of a loop. We can do so by enclosing the statements in a pair of braces, thus turning
the sequence of statements into a block.

As an example, recall the while loop from our solution to the bookstore problem on page 26 :

     // if so, read the transaction records
     while (std::cin >> trans)
         if (total.same_isbn(trans))

             // match: update the running total
             total = total + trans;
        else {

             // no match: print & assign to total
             std::cout << total << std::endl;
             total = trans;
     }

In the else branch, the logic of our program requires that we print total and then reset it from
TRans . An else may be followed by only a single statement. By enclosing both statements in
curly braces, we transform them into a single (com-pound) statement. This statement satisfies
the rules of the language and the needs of our program.

Unlike most other statements, a block is not terminated by a
semicolon.

Just as there is a null statement, we also can define an empty block. We do so by using a pair of
curlies with no statements:

     while (cin >> s && s != sought)
         { } // empty block



Exercises Section 6.3

Exercise
6.1:

What is a null statement? Give an example of when you might
use a null statement.

Exercise
6.2:

What is a block? Give an example of when you might use a
block.

Exercise
6.3:

Use the comma operator (Section 5.9 , p. 168 ) to rewrite the
else branch in the while loop from the bookstore problem so
that it no longer requires a block. Explain whether this rewrite
improves or diminishes the readability of this code.

Exercise
6.4:

In the while loop that solved the bookstore problem, what
effect, if any, would removing the curly brace following the
while and its corresponding close curly have on the program?

 



 

6.4. Statement Scope

Some statements permit variable definitions within their control structure:

     while (int i = get_num())
         cout << i << endl;
     i = 0; // error: i is not accessible outside the loop

Variables defined in a condition must be initialized. The value tested
by the condition is the value of the initialized object.

Variables defined as part of the control structure of a statement are visible only until the end of
the statement in which they are defined. The scope of such variables is limited to the statement
body. Often the statement body itself is a block, which in turn may contain other blocks. A name
introduced in a control structure is local to the statement and the scopes nested inside the
statement:

     // index is visible only within the for statement
     for (vector<int>::size_type index = 0;
                     index != vec.size(); ++index)

     { // new scope, nested within the scope of this for statement
         int square = 0;

         if (index % 2)                      // ok: index is in scope
             square = index * index;
         vec[index] = square;
     }

     if (index != vec.size()) // error: index is not visible here

If the program needs to access the value of a variable used in the control statement, then that
variable must be defined outside the control structure:

     vector<int>::size_type index = 0;
     for ( /* empty */ ; index != vec.size(); ++index)
         // as before

     if  (index != vec.size()) // ok: now index is in scope
         // as before



Earlier versions of C++ treated the scope of variables defined inside
a for differently: Variables defined in the for header were treated
as if they were defined just before the for . Older C++ programs
may have code that relies on being able to access these control
variables outside the scope of the for .

One advantage of limiting the scope of variables defined within a control statement to that
statement is that the names of such variables can be reused without worrying about whether
their current value is correct at each use. If the name is not in scope, then it is impossible to
use that name with an incorrect, leftover value.

 



 

6.5. The if Statement

An if statement conditionally executes another statement based on whether a specified

expression is true. There are two forms of the if : one with an else branch and one without.
The syntactic form of the plain if is the following:

     if (condition)

          statement

The condition must be enclosed in parentheses. It can be an expression, such as

     if (a + b > c) {/* ... */}

or an initialized declaration, such as

     // ival only accessible within the if statement
     if (int ival = compute_value()) {/* ... */}

As usual, statement could be a compound statementthat is, a block of statements enclosed in
curly braces.

When a condition defines a variable, the variable must be initialized. The value of the initialized
variable is converted to bool (Section 5.12.3 , p. 181 ) and the resulting bool determines the
value of the condition. The variable can be of any type that can be converted to bool , which
means it can be an arithmetic or pointer type. As we'll see in Chapter 14 , whether a class type
can be used in a condition depends on the class. Of the types we've used so far, the IO types
can be used in a condition, but the vector and string types may not be used as a condition.

To illustrate the use of the if statement, we'll find the smallest value in a vector<int> , keeping
a count of how many times that minimum value occurs. To solve this problem, we'll need two if
statements: one to determine whether we have a new minimum and the other to increment a
count of the number of occurrences of the current minimum value:

     if (minVal > ivec[i])  { /* process new minVal */ }
     if (minVal == ivec[i]) { /* increment occurrence count */ }

Statement Block as Target of an if

We'll start by considering each if in isolation. One of these if statements will determine
whether there is a new minimum and, if so, reset the counter and update minVal :



     if (minVal > ivec[i]) { // execute both statements if condition is true
          minVal = ivec[i];
          occurs = 1;
     }

The other conditionally updates the counter. This if needs only one statement, so it need not be
enclosed in curlies:

     if (minVal == ivec[i])
          ++occurs;

It is a somewhat common error to forget the curly braces when
multiple statements must be executed as a single statement.

In the following program, contrary to the indentation and intention of the programmer, the
assignment to occurs is not part of the if statement:

     // error: missing curly brackets to make a block!
     if (minVal > ivec[i])
          minVal = ivec[i];

          occurs = 1; // executed unconditionally: not part of the if

Written this way, the assignment to occurs will be executed unconditionally. Uncovering this
kind of error can be very difficult because the text of the program looks correct.

Many editors and development environments have tools to
automatically indent source code to match its structure. It
is a good idea to use such tools if they are available.



6.5.1. The if Statement else Branch

Our next task is to put these if statements together into an execution sequence. The order of
the if statements is significant. If we use the following order

     if (minVal > ivec[i]) {
          minVal = ivec[i];
          occurs = 1;
     }

     // potential error if minVal has just been set to ivec[i]
     if (minVal == ivec[i])
          ++occurs;

our count will always be off by 1. This code double-counts the first occurrence of the minimum.

Not only is the execution of both if statements on the same value potentially dangerous, it is
also unnecessary. The same element cannot be both less than minVal and equal to it. If one
condition is true, the other condition can be safely ignored. The if statement allows for this kind
of either-or condition by providing an else clause.

The syntactic form of the if else statement is

     if (condition)

          statement1
     else

          statement2

If condition is true, then statement1 is executed; otherwise, statement2 is executed:

     if (minVal == ivec[i])
          ++occurs;
     else if (minVal > ivec[i]) {
              minVal = ivec[i];
              occurs = 1;
     }

It is worth noting that statement2 can be any statement or a block of statements enclosed in
curly braces. In this example, statement2 is itself an if statement.

Dangling else

There is one important complexity in using if statements that we have not yet covered. Notice
that neither if directly handles the case where the current element is greater than minVal .
Logically, ignoring these elements is finethere is nothing to do if the element is greater than the
minimum we've found so far. However, it is often the case that an if needs to do something on
all three cases: Unique steps may be required if one value is greater than, less than, or equal to
some other value. We've rewritten our loop to explicitly handle all three cases:



     // note: indented to make clear how the else branches align with the corresponding if
     if (minVal < ivec[i])
         { }                       // empty block
     else if (minVal == ivec[i])
             ++occurs;

     else {                        // minVal > ivec[i]
         minVal = ivec[i];
         occurs = 1;
     }

This three-way test handles each case correctly. However, a simple rewrite that collapses the
first two tests into a single, nested if runs into problems:

     // oops: incorrect rewrite: This code won't work!
     if (minVal <= ivec[i])
          if (minVal == ivec[i])
               ++occurs;

     else {      // this else goes with the inner if, not the outer one!
          minVal = ivec[i];
          occurs = 1;
     }

This version illustrates a source of potential ambiguity common to
if statements in all languages. The problem, usually referred to as
the dangling-else problem, occurs when a statement contains
more if clauses than else clauses. The question then arises: To
which if does each else clause belong?

The indentation in our code indicates the expectation that the else should match up with the
outer if clause. In C++, however, the dangling-else ambiguity is resolved by matching the else
with the last occurring unmatched if . In this case, the actual evaluation of the if else
statement is as follows:

     // oops: still wrong, but now the indentation matches execution path
     if (minVal <= ivec[i])
         // indented to match handling of dangling-else
         if (minVal == ivec[i])
              ++occurs;
         else {
             minVal = ivec[i];
             occurs = 1;
         }



We can force an else to match an outer if by enclosing the inner if in a compound statement:

     if (minVal <= ivec[i]) {
         if (minVal == ivec[i])
               ++occurs;
     } else {
         minVal = ivec[i];
         occurs = 1;
     }

Some coding styles recommend always using braces after any
if . Doing so avoids any possible confusion and error in later
modifications of the code. At a minimum, it is nearly always a
good idea to use braces after an if (or while ) when the
statement in the body is anything other than a simple
expression statement, such as an assignment or output
expression.

Exercises Section 6.5.1

Exercise
6.5:

Correct each of the following:

     (a) if (ival1 != ival2)
              ival1 = ival2
         else ival1 = ival2 = 0;

     (b) if (ival < minval)
              minval = ival;  // remember new minimum
              occurs = 1;     // reset occurrence counter

     (c) if (int ival = get_value())
              cout << "ival = " << ival << endl;
         if (!ival)
              cout << "ival = 0\n";

     (d) if (ival = 0)
              ival = get_value();

Exercise
6.6:

What is a "dangling else"? How are else clauses resolved in
C++?



 



 

6.6. The switch Statement

Deeply nested if else statements can often be correct syntactically and yet not correctly reflect
the programmer's logic. For example, mistaken else if matchings are more likely to pass
unnoticed. Adding a new condition and associated logic or making other changes to the
statements is also hard to get right. A switch statement provides a more convenient way to

write deeply nested if/else logic.

Suppose that we have been asked to count how often each of the five vowels appears in some
segment of text. Our program logic is as follows:

Read each character until there are no more characters to read

Compare each character to the set of vowels

If the character matches one of the vowels, add 1 to that vowel's count

Display the results

The program was used to analyze this chapter. Here is the output:

     Number of vowel a: 3499
     Number of vowel e: 7132
     Number of vowel i: 3577
     Number of vowel o: 3530
     Number of vowel u: 1185

6.6.1. Using a switch

We can solve our problem most directly using a switch statement:

     char ch;
     // initialize counters for each vowel
     int aCnt = 0, eCnt = 0, iCnt = 0,
         oCnt = 0, uCnt = 0;
     while (cin >> ch) {

         // if ch is a vowel, increment the appropriate counter
         switch (ch) {
             case 'a':
                 ++aCnt;
                 break;
             case 'e':
                 ++eCnt;
                 break;
             case 'i':
                 ++iCnt;
                 break;
             case 'o':



                 ++oCnt;
                 break;
             case 'u':
                 ++uCnt;
                 break;
         }
     }
     // print results
     cout  << "Number of vowel a: \t" << aCnt << '\n'
           << "Number of vowel e: \t" << eCnt << '\n'
           << "Number of vowel i: \t" << iCnt << '\n'
           << "Number of vowel o: \t" << oCnt << '\n'
           << "Number of vowel u: \t" << uCnt << endl;

A switch statement executes by evaluating the parenthesized expression that follows the
keyword switch . That expression must yield an integral result. The result of the expression is
compared with the value associated with each case . The case keyword and its associated value
together are known as the case label . Each case label's value must be a constant expression
(Section 2.7 , p. 62 ). There is also a special case label, the default label, which we cover on
page 203 .

If the expression matches the value of a case label, execution begins with the first statement
following that label. Execution continues normally from that statement through the end of the
switch or until a break statement. If no match is found, (and if there is no default label),
execution falls through to the first statement following the switch . In this program, the switch
is the only statement in the body of a while . Here, falling through the switch returns control to
the while condition.

We'll look at break statements in Section 6.10 (p. 212 ). Briefly, a break statement interrupts
the current control flow. In this case, the break TRansfers control out of the switch . Execution
continues at the first statement following the switch . In this example, as we already know,
transferring control to the statement following the switch returns control to the while .

6.6.2. Control Flow within a switch

It is essential to understand that execution flows across case labels.

It is a common misunderstanding to expect that only the
statements associated with the matched case label are executed.
However, execution continues across case boundaries until the end
of the switch statement or a break is encountered.

Sometimes this behavior is indeed correct. We want to execute the code for a particular label as
well as the code for following labels. More often, we want to execute only the code particular to
a given label. To avoid executing code for subsequent cases, the programmer must explicitly tell
the compiler to stop execution by specifying a break statement. Under most conditions, the last
statement before the next case label is break . For example, here is an incorrect implementation
of our vowel-counting switch statement:



     // warning: deliberately incorrect!
     switch (ch) {
          case 'a':

               ++aCnt;   // oops: should have a break statement
          case 'e':

               ++eCnt;   // oops: should have a break statement
          case 'i':

               ++iCnt;   // oops: should have a break statement
          case 'o':

               ++oCnt;   // oops: should have a break statement
          case 'u':

               ++uCnt;   // oops: should have a break statement
     }

To understand what happens, we'll trace through this version assuming that value of ch is 'i' .
Execution begins following case 'i' thus incrementing iCnt . Execution does not stop there but
continues across the case labels incrementing oCnt and uCnt as well. If ch had been 'e' , then
eCnt, iCnt, oCnt , and uCnt would all be incremented.

Forgetting to provide a break is a common source of bugs in switch
statements.

Although it is not strictly necessary to specify a break
statement after the last label of a switch , the safest
course is to provide a break after every label, even the
last. If an additional case label is added later, then the
break is already in place.

break Statements Aren't Always Appropriate

There is one common situation where the programmer might wish to omit a break statement
from a case label, allowing the program to fall through multiple case labels. That happens when
two or more values are to be handled by the same sequence of actions. Only a single value can
be associated with a case label. To indicate a range, therefore, we typically stack case labels
following one another. For example, if we wished only to count vowels seen rather than count
the individual vowels, we might write the following:



     int vowelCnt = 0;
     // ...
     switch (ch)
     {

         // any occurrence of a,e,i,o,u increments vowelCnt
         case 'a':
         case 'e':
         case 'i':
         case 'o':
         case 'u':
             ++vowelCnt;
             break;
     }

Case labels need not appear on a new line. We could emphasize that the cases represent a
range of values by listing them all on a single line:

     switch (ch)
     {
         // alternative legal syntax
         case 'a': case 'e': case 'i': case 'o': case 'u':
             ++vowelCnt;
             break;
     }

Less frequently, we deliberately omit a break because we want to execute code for one case and
then continue into the next case, executing that code as well.

Deliberately omitting a break at the end of a case happens
rarely enough that a comment explaining the logic should
be provided.

6.6.3. The default Label

The default label provides the equivalent of an else clause. If no case label matches the value

of the switch expression and there is a default label, then the statements following the default
are executed. For example, we might add a counter to track how many nonvowels we read.
We'll increment this counter, which we'll name otherCnt , in the default case:

         // if ch is a vowel, increment the appropriate counter
         switch (ch) {



             case 'a':
                 ++aCnt;
                 break;
             // remaining vowel cases as before
             default:
                 ++otherCnt;
                 break;
         }
     }

In this version, if ch is not a vowel, execution will fall through to the default label, and we'll
increment otherCnt .

It can be useful always to define a default label even if
there is no processing to be done in the default case.
Defining the label indicates to subsequent readers that the
case was considered but that there is no work to be done.

A label may not stand alone; it must precede a statement. If a switch ends with the default
case in which there is no work to be done, then the default label must be followed by a null
statement.

6.6.4. switch Expression and Case Labels

The expression evaluated by a switch can be arbitrarily complex. In particular, the expression
can define and intialize a variable:

     switch(int ival = get_response())

In this case, ival is initialized, and the value of ival is compared with each case label. The
variable ival exists throughout the entire switch statement but not outside it.

Case labels must be constant integral expressions (Section 2.7 , p. 62 ). For example, the
following labels result in compile-time errors:

     // illegal case label values
     case 3.14:  // noninteger
     case ival:  // nonconstant

It is also an error for any two case labels to have the same value.



6.6.5. Variable Definitions inside a switch

Variables can be defined following only the last case or default label:

     case true:
          // error: declaration precedes a case label
          string file_name = get_file_name();
          break;
     case false:
          // ...

The reason for this rule is to prevent code that might jump over the definition and initialization
of a variable.

Recall that a variable can be used from its point of definition until the end of the block in which
it is defined. Now, consider what would happen if we could define a variable between two case
labels. That variable would continue to exist until the end of the enclosing block. It could be
used by code in case labels following the one in which it was defined. If the switch begins
executing in one of these subsequent case labels, then the variable might be used even though
it had not been defined.

If we need to define a variable for a particular case, we can do so by defining the variable inside
a block, thereby ensuring that the variable can be used only where it is guaranteed to have
been defined and initialized:

     case true:
         {
             // ok: declaration statement within a statement block
             string file_name = get_file_name();
             // ...
         }
       break;
         case false:
             // ...

 



 

6.7. The while Statement

A while statement repeatedly executes a target statement as long as a condition is true. Its

syntactic form is

     while (condition)

              statement

Exercises Section 6.6.5

Exercise
6.7:

There is one problem with our vowel-counting program as
we've implemented it: It doesn't count capital letters as
vowels. Write a program that counts both lower- and
uppercase letters as the appropriate vowelthat is, your
program should count both 'a' and 'A' as part of aCnt , and
so forth.

Exercise
6.8:

Modify our vowel-count program so that it also counts the
number of blank spaces, tabs, and newlines read.

Exercise
6.9:

Modify our vowel-count program so that it counts the number
of occurrences of the following two-character sequences: ff,
fl , and fi .

Exercise
6.10:

Each of the programs in the highlighted text on page 206
contains a common programming error. Identify and correct
each error.

The statement (which is often a block) is executed as long as the condition evaluates as true .
The condition may not be empty. If the first evaluation of condition yields false , statement is
not executed.

The condition can be an expression or an initialized variable definition:

     bool quit = false;
     while (!quit) {                  // expression as condition
         quit = do_something();
     }
     while (int loc = search(name)) { // initialized variable as condition
             // do something
     }



Any variable defined in the condition is visible only within the block associated with the while .
On each trip through the loop, the initialized value is converted to bool (Section 5.12.3 , p. 182
). If the value evaluates as TRue , the while body is executed. Ordinarily, the condition itself or
the loop body must do something to change the value of the expression. Otherwise, the loop
might never terminate.

Variables defined in the condition are created and destroyed on
each trip through the loop.

Using a while Loop

We have already seen a number of while loops, but for completeness, here is an example that
copies the contents of one array into another:

     // arr1 is an array of ints
     int *source = arr1;
     size_t sz = sizeof(arr1)/sizeof(*arr1); // number of elements
     int *dest = new int[sz];                // uninitialized elements
     while (source != arr1 + sz)
         *dest++ = *source++; //  copy element and increment pointers

Code for Exercises in Section 6.6.5

     (a) switch (ival) {
             case 'a': aCnt++;
             case 'e': eCnt++;
             default: iouCnt++;
         }

     (b) switch (ival) {
             case 1:
                 int ix = get_value();
                 ivec[ ix ] = ival;
                 break;
             default:
                 ix = ivec.size()-1;
                 ivec[ ix ] = ival;
         }

     (c) switch (ival) {



             case 1, 3, 5, 7, 9:
                 oddcnt++;
                 break;
             case 2, 4, 6, 8, 10:
                 evencnt++;
                 break;
         }

     (d) int ival=512 jval=1024, kval=4096;
         int bufsize;
         // ...
         switch(swt) {
             case ival:
                 bufsize = ival * sizeof(int);
                 break;
             case jval:
                 bufsize = jval * sizeof(int);
                 break;
             case kval:
                 bufsize = kval * sizeof(int);
                 break;
         }

We start by initializing source and dest to point to the first element of their respective arrays.
The condition in the while tests whether we've reached the end of the array from which we are
copying. If not, we execute the body of the loop. The body contains only a single statement,
which copies the element and increments both pointers so that they point to the next element in
their corresponding arrays.

As we saw in the "Advice" box on page 164 , C++ programmers tend to write terse expressions.
The statement in the body of the while

     *dest++ = *source++;

is a classic example. This expression is equivalent to

     {
         *dest = *source; // copy element
         ++dest;  // increment the pointers
         ++source;
     }

The assignment in the while loop represents a very common
usage. Because such code is widespread, it is important to
study this expression until its meaning is immediately clear.



 



 

6.8. The for Loop Statement

The syntactic form of a for statement is

     for (init-statement condition; expression)

           statement

The init-statement must be a declaration statement, an expression statement, or a null
statement. Each of these statements is terminated by a semicolon, so the syntactic form can also
be thought of as

     for (initializer; condition; expression)

           statement

although technically speaking, the semicolon after the initializer is part of the statement that
begins the for header.

In general, the init-statement is used to initialize or assign a starting value that is modified over
the course of the loop. The condition serves as the loop control. As long as condition evaluates as
true, statement is executed. If the first evaluation of condition evaluates to false , statement is
not executed. The expression usually is used to modify the variable(s) initialized in init-statement
and tested in condition . It is evaluated after each iteration of the loop. If condition evaluates to
false on the first iteration, expression is never executed. As usual, statement can be either a
single or a compound statement.

Exercises Section 6.7



Exercise
6.11:

Explain each of the following loops. Correct any problems you
detect.

     (a) string bufString, word;
         while (cin >> bufString >> word) { /* ... */ }

     (b) while (vector<int>::iterator iter != ivec.end())
         {/*... */ }

     (c) while (ptr = 0)
             ptr = find_a_value();

     (d) while (bool status = find(word))
         { word = get_next_word(); }
         if (!status)
              cout << "Did not find any words\n";

Exercise
6.12:

Write a small program to read a sequence of string s from
standard input looking for duplicated words. The program should
find places in the input where one word is followed immediately by
itself. Keep track of the largest number of times a single repetition
occurs and which word is repeated. Print the maximum number of
duplicates, or else print a message saying that no word was
repeated. For example, if the input is

     how, now now now brown cow cow

the output should indicate that the word "now" occurred three
times.

Exercise
6.13:

Explain in detail how the statement in the while loop is executed:

     *dest++ = *source++;

Using a for Loop

Given the following for loop, which prints the contents of a vector ,

     for (vector<string>::size_type ind = 0;
                   ind != svec.size(); ++ind) {
         cout << svec[ind]; // print current element
         // if not the last element, print a space to separate from the next one
         if (ind + 1 != svec.size())



            cout << " ";
     }

the order of evaluation is as follows:

1. The init-statement is executed once at the start of the loop. In this example, ind is defined
and initialized to zero.

2. Next, condition is evaluated. If ind is not equal to svec.size() , then the for body is
executed. Otherwise, the loop terminates. If the condition is false on the first trip, then the
for body is not executed.

3. If the condition is true, the for body executes. In this case, the for body prints the current
element and then tests whether this element is the last one. If not, it prints a space to
separate it from the next element.

4. Finally, expression is evaluated. In this example, ind is incremented by 1.

These four steps represent the first iteration of the for loop. Step 2 is now repeated, followed by
steps 3 and 4, until the condition evaluates to false that is, when ind is equal to svec.size() .

It is worth remembering that the visibility of any object defined
within the for header is limited to the body of the for loop. Thus, in
this example, ind is inaccessible after the for completes.

6.8.1. Omitting Parts of the for Header

A for header can omit any (or all) of init-statement, condition , or expression.

The init-statement is omitted if an initialization is unnecessary or occurs elsewhere. For example,
if we rewrote the program to print the contents of a vector using iterators instead of subscripts,
we might, for readability reasons, move the initialization outside the loop:

     vector<string>::iterator iter = svec.begin();
     for( /* null */ ; iter != svec.end(); ++iter) {
         cout << *iter; // print current element
         // if not the last element, print a space to separate from the next one
         if (iter+1 != svec.end())
             cout << " ";
     }

Note that the semicolon is necessary to indicate the absence of the init-statement more
precisely, the semicolon represents a null init-statement.



If the condition is omitted, then it is equivalent to having written true as the condition:

     for (int i = 0; /* no condition */ ; ++i)

It is as if the program were written as

     for (int i = 0; true ; ++i)

It is essential that the body of the loop contain a break or return statement. Otherwise the loop
will execute until it exhausts the system resources. Similarly, if the expression is omitted, then
the loop must exit through a break or return or the loop body must arrange to change the value
tested in the condition:

     for (int i = 0; i != 10; /* no expression */ ) {
        // body must change i or the loop won't terminate
     }

If the body doesn't change the value of i , then i remains 0 and the test will always succeed.

6.8.2. Multiple Definitions in the for Header

Multiple objects may be defined in the init-statement; however, only one statement may
appear, so all the objects must be of the same general type:

     const int size = 42;
     int val = 0, ia[size];

     // declare 3 variables local to the for loop:

     // ival is an int, pi a pointer to int, and ri a reference to int
     for (int ival = 0, *pi = ia, &ri = val;
           ival != size;
           ++ival, ++pi, ++ri)
                   // ...



Exercises Section 6.8.2

Exercise
6.14:

Explain each of the following loops. Correct any problems you detect.

     (a) for (int *ptr = &ia, ix = 0;
               ix != size && ptr != ia+size;
               ++ix, ++ptr)   { /* ... */ }
     (b) for (; ;) {
               if (some_condition) return;
               // ...
         }
     (c) for (int ix = 0; ix != sz; ++ix) { /* ... */ }
         if (ix != sz)
              // ...
     (d) int ix;
         for (ix != sz; ++ix) { /* ... */ }
     (e) for (int ix = 0; ix != sz; ++ix, ++ sz) { /* ... */ }

Exercise
6.15:

The while loop is particularly good at executing while some condition
holds; for example, while the end-of-file is not reached, read a next
value. The for loop is generally thought of as a step loop: An index steps
through a range of values in a collection. Write an idiomatic use of each
loop and then rewrite each using the other loop construct. If you were
able to program with only one loop, which construct would you choose?
Why?

Exercise
6.16:

Given two vector s of ints , write a program to determine whether one
vector s is a prefix of the other. For vector s of unequal length, compare
the number of elements of the smaller vector . For example, given the
vector s (0,1,1,2) and (0,1,1,2,3,5,8), your program should return TRue .

 



 

6.9. The do while Statement

We might want to write a program that interactively performs some calculation for its user. As a
simple example, we might want to do sums for the user: Our program prompts the user for a
pair of numbers and produces their sum. Having generated one sum, we'd like the program to
give the user the option to repeat the process and generate another.

The body of this program is pretty easy. We'll need to write a prompt, then read a pair of values
and print the sum of the values we read. After we print the sum, we'll ask the user whether to
continue.

The hard part is deciding on a control structure. The problem is that we want to execute the
loop until the user asks to exit. In particular, we want to do a sum even on the first iteration.
The do while loop does exactly what we need. It guarantees that its body is always executed at
least once. The syntactic form is as follows:

     do

             statement

     while   (condition);

Unlike a while statement, a do -while statement always ends with a
semicolon.

The statement in a do is executed before condition is evaluated. The condition cannot be empty.
If condition evaluates as false , then the loop terminates; otherwise, the loop is repeated.
Using a do while , we can write our program:

     // repeatedly ask user for pair of numbers to sum

     string rsp; // used in the condition; can't be defined inside the do
     do {
        cout << "please enter two values: ";
        int val1, val2;
        cin  >> val1 >> val2;
        cout << "The sum of " << val1 << " and " << val2
             << " = " << val1 + val2 << "\n\n"
             << "More? [yes][no] ";
        cin  >> rsp;
     } while (!rsp.empty() && rsp[0] != 'n');

The body of this loop is similar to others we've written and so should be easy to follow. What



might be a bit surprising is that we defined rsp before the do rather than defining it inside the
loop. Had we defined rsp inside the do , then rsp would go out of scope at the close curly brace
before the while . Any variable referenced inside the condition must exist before the do
statement itself.

Because the condition is not evaluated until after the statement or block is executed, the do
while loop does not allow variable definitions:

     // error: declaration statement within do condition is not supported
     do {
         // ...
         mumble(foo);

     } while (int foo = get_foo()); // error: declaration in do condition

If we could define variables in the condition, then any use of the variable would happen before
the variable was defined!

Exercises Section 6.9

Exercise
6.17:

Explain each of the following loops. Correct any problems you
detect.

     (a) do
              int v1, v2;
              cout << "Please enter two numbers to sum:" ;
              cin >> v1 >> v2;
              if (cin)
                  cout << "Sum is: "
                       << v1 + v2 << endl;
         while (cin);

     (b) do {
             // ...
         } while (int ival = get_response());

     (c) do {
             int ival = get_response();
             if (ival == some_value())
                  break;
         } while (ival);
          if (!ival)
              // ...

Exercise
6.18:

Write a small program that requests two string s from the user and
reports which string is lexicographically less than the other (that is,
comes before the other alphabetically). Continue to solicit the user
until the user requests to quit. Use the string type, the string less-
than operator, and a do while loop.



 



 

6.10. The break Statement

A break statement terminates the nearest enclosing while, do while, for , or switch

statement. Execution resumes at the statement immediately following the terminated
statement. For example, the following loop searches a vector for the first occurrence of a
particular value. Once it's found, the loop is exited:

     vector<int>::iterator iter = vec.begin();
     while (iter != vec.end()) {
        if (value == *iter)
             break; // ok: found it!
        else
             ++iter; // not found: keep looking
     }// end of while
     if (iter != vec.end()) // break to here ...
         // continue processing

In this example, the break terminates the while loop. Execution resumes at the if statement
immediately following the while .

A break can appear only within a loop or switch statement or in a statement nested inside a
loop or switch . A break may appear within an if only when the if is inside a switch or a loop. A
break occurring outside a loop or switch is a compile-time error. When a break occurs inside a
nested switch or loop statement, the enclosing loop or switch statement is unaffected by the
termination of the inner switch or loop:

     string inBuf;
     while (cin >> inBuf && !inBuf.empty()) {
         switch(inBuf[0]) {
         case '-':
             // process up to the first blank
             for (string::size_type ix = 1;
                         ix != inBuf.size(); ++ix) {
                   if (inBuf[ix] == ' ')
                        break; // #1, leaves the for loop
                   // ...
             }
             // remaining '-' processing: break #1 transfers control here
             break; // #2, leaves the switch statement
         case '+':
             // ...
         } // end switch
         // end of switch: break #2 transfers control here
     }  // end while

The break labeled #1 terminates the for loop within the hyphen case label. It does not terminate
the enclosing switch statement and in fact does not even terminate the processing for the



current case. Processing continues with the first statement following the for , which might be
additional code to handle the hyphen case or the break that completes that section.

The break labeled #2 terminates the switch statement after handling the hyphen case but does
not terminate the enclosing while loop. Processing continues after that break by executing the
condition in the while , which reads the next string from the standard input.

Exercises Section 6.10

Exercise
6.19:

The first program in this section could be written more
succinctly. In fact, its action could be contained entirely in the
condition in the while . Rewrite the loop so that it has an
empty body and does the work of finding the element in the
condition.

Exercise
6.20:

Write a program to read a sequence of string s from standard
input until either the same word occurs twice in succession or
all the words have been read. Use a while loop to read the
text one word at a time. Use the break statement to terminate
the loop if a word occurs twice in succession. Print the word if
it occurs twice in succession, or else print a message saying
that no word was repeated.

 



 

6.11. The continue Statement

A continue statement causes the current iteration of the nearest enclosing loop to terminate.

Execution resumes with the evaluation of the condition in the case of a while or do while
statement. In a for loop, execution continues by evaluating the expression inside the for
header.

For example, the following loop reads the standard input one word at a time. Only words that
begin with an underscore will be processed. For any other value, we terminate the current
iteration and get the next input:

     string inBuf;
     while (cin >> inBuf && !inBuf.empty()) {
             if (inBuf[0] != '_')
                  continue; // get another input
             // still here? process string ...
     }

A continue can appear only inside a for, while , or do while loop, including inside blocks
nested inside such loops.

Exercises Section 6.11

Exercise
6.21:

Revise the program from the last exercise in Section 6.10 (p.
213 ) so that it looks only for duplicated words that start with
an uppercase letter.

 



 

6.12. The goto Statement

A goto statement provides an unconditional jump from the goto to a label ed statement in the

same function.

Use of goto s has been discouraged since the late 1960s. goto s
make it difficult to trace the control flow of a program, making the
program hard to understand and hard to modify. Any program that
uses a goto can be rewritten so that it doesn't need the goto .

The syntactic form of a goto statement is

     goto label;

where label is an identifier that identifies a labeled statement. A labeled statement is any
statement that is preceded by an identifier followed by a colon:

     end: return; // labeled statement, may be target of a goto

The identifier that forms the label may be used only as the target of a goto . For this reason,
label identifiers may be the same as variable names or other identifiers in the program without
interfering with other uses of those identifiers. The goto and the labeled statement to which it
transfers control must be in the same function.

A goto may not jump forward over a variable definition:

     // ...
     goto end;

     int ix = 10; // error: goto bypasses declaration statement
 end:

     // error: code here could use ix but the goto bypassed its declaration
     ix = 42;

If definitions are needed between a goto and its corresponding label, the definitions must be
enclosed in a block:



         // ...

         goto end; // ok: jumps to a point where ix is not defined
         {
            int ix = 10;
            // ... code using ix
         }

     end: // ix no longer visible here

A jump backward over an already executed definition is okay. Why? Jumping over an
unexecuted definition would mean that a variable could be used even though it was never
defined. Jumping back to a point before a variable is defined destroys the variable and
constructs it again:

     // backward jump over declaration statement ok
       begin:
         int sz = get_size();
         if (sz <= 0) {
               goto begin;
         }

Note that sz is destroyed when the goto executes and is defined and initialized anew when
control jumps back to begin: .

Exercises Section 6.12

Exercise
6.22:

The last example in this section that jumped back to begin
could be better written using a loop. Rewrite the code to
eliminate the goto .

 



 

6.13. try Blocks and Exception Handling

Handling errors and other anomalous behavior in programs can be one of the most difficult parts
of designing any system. Long-lived, interactive systems such as communication switches and
routers can devote as much as 90 percent of their code to error detection and error handling.
With the proliferation of Web-based applications that run indefinitely, attention to error handling
is becoming more important to more and more programmers.

Exceptions are run-time anomalies, such as running out of memory or encountering unexpected
input. Exceptions exist outside the normal functioning of the program and require immediate
handling by the program.

In well-designed systems, exceptions represent a subset of the program's error handling.
Exceptions are most useful when the code that detects a problem cannot handle it. In such
cases, the part of the program that detects the problem needs a way to transfer control to the
part of the program that can handle the problem. The error-detecting part also needs to be able
to indicate what kind of problem occurred and may want to provide additional information.

Exceptions support this kind of communication between the error-detecting and error-handling
parts of a program. In C++ exception handling involves:

tHRow expressions , which the error-detecting part uses to indicate that it encountered an

error that it cannot handle. We say that a throw raises an exceptional condition.

1.

try blocks , which the error-handling part uses to deal with an exception. A TRy block
starts with keyword TRy and ends with one or more catch clauses . Exceptions thrown

from code executed inside a try block are usually handled by one of the catch clauses.
Because they "handle" the exception, catch clauses are known as handlers .

2.

A set of exception classes defined by the library, which are used to pass the information

about an error between a throw and an associated catch .

3.

In the remainder of this section we'll introduce these three components of exception handling.
We'll have more to say about exceptions in Section 17.1 (p. 688 ).

6.13.1. A tHRow Expression

An exception is thrown using a throw expression, which consists of the keyword tHRow followed
by an expression. A throw expression is usually followed by a semicolon, making it into an
expression statement. The type of the expression determines what kind of exception is thrown.

As a simple example, recall the program on page 24 that added two objects of type Sales_item .
That program checked whether the records it read referred to the same book. If not, it printed a
message and exited.

     Sales_item item1, item2;
     std::cin >> item1 >> item2;

     // first check that item1 and item2 represent the same book
     if (item1.same_isbn(item2)) {
         std::cout << item1 + item2 << std::endl;



         return 0; // indicate success
     } else {
         std::cerr << "Data must refer to same ISBN"
                   << std::endl;
         return -1; // indicate failure
     }

In a less simple program that used Sales_items , the part that adds the objects might be
separated from the part that manages the interaction with a user. In this case, we might rewrite
the test to throw an exception instead:

     // first check that data is for the same item
     if (!item1.same_isbn(item2))
         throw runtime_error("Data must refer to same ISBN");
     // ok, if we're still here the ISBNs are the same
     std::cout << item1 + item2 << std::endl;

In this code we check whether the ISBNs differ. If so, we discontinue execution and transfer
control to a handler that will know how to handle this error.

A throw takes an expression. In this case, that expression is an object of type runtime_error .
The runtime_error type is one of the standard library exception types and is defined in the
stdexcept header. We'll have more to say about these types shortly. We create a runtime_error
by giving it a string , which provides additional information about the kind of problem that
occurred.

6.13.2. The try Block

The general form of a try block is

     try {

         program-statements

     } catch (exception-specifier) {

         handler-statements

     } catch (exception-specifier) {

         handler-statements
     } //...

A TRy block begins with the keyword try followed by a block enclosed in braces. Following the
TRy block is a list of one or more catch clauses. A catch clause consists of three parts: the
keyword catch , the declaration of a single type or single object within parentheses (referred to
as an exception specifier ), and a block, which as usual must be enclosed in curly braces. If
the catch clause is selected to handle an exception, the associated block is executed. Once the
catch clause finishes, execution continues with the statement immediately following the last
catch clause.

The program-statements inside the TRy constitute the normal logic of the program. They can
contain any C++ statement, including declarations. Like any block, a TRy block introduces a
local scope, and variables declared within a try block cannot be referred to outside the try ,



including within the catch clauses.

Writing a Handler

In the preceeding example we used a tHRow to avoid adding two Sales_items that represented
different books. We imagined that the part of the program that added to Sales_items was
separate from the part that communicated with the user. The part that interacts with the user
might contain code something like the following to handle the exception that was thrown:

     while (cin >> item1 >> item2) {
         try {

             // execute code that will add the two Sales_items

             // if the addition fails, the code throws a runtime_error exception
         } catch (runtime_error err) {
             // remind the user that ISBN must match and prompt for another pair
             cout << err.what()
                  << "\nTry Again? Enter y or n" << endl;
             char c;
             cin >> c;
             if (cin && c == 'n')

                 break;     // break out of the while loop
         }
     }

Following the TRy keyword is a block. That block would invoke the part of the program that
processes Sales_item objects. That part might throw an exception of type runtime_error .

This try block has a single catch clause, which handles exceptions of type runtime_error . The
statements in the block following the catch define the actions that will be executed if code inside
the TRy block throws a runtime_error . Our catch handles the error by printing a message and
asking the user to indicate whether to continue. If the user enters an 'n ', then we break out of
the while . Otherwise the loop continues by reading two new Sales_items .

The prompt to the user prints the return from err.what() . We know that err has type
runtime_error , so we can infer that what is a member function (Section 1.5.2 , p. 24 ) of the
runtime_error class. Each of the library exception classes defines a member function named
what . This function takes no arguments and returns a C-style character string. In the case of
runtime_error , the C-style string that what returns is a copy of the string that was used to
initialize the runtime_error . If the code described in the previous section threw an exception,
then the output printed by this catch would be

     Data must refer to same ISBN
     Try Again? Enter y or n

Functions Are Exited during the Search for a Handler

In complex systems the execution path of a program may pass through multiple TRy blocks
before encountering code that actually throws an exception. For example, a try block might call
a function that contains a try , that calls another function with its own TRy , and so on.



The search for a handler reverses the call chain. When an exception is thrown, the function that
threw the exception is searched first. If no matching catch is found, the function terminates,
and the function that called the one that threw is searched for a matching catch . If no handler
is found, then that function also exits and the function that called it is searched; and so on back
up the execution path until a catch of an appropriate type is found.

If no catch clause capable of handling the exception exists, program execution is transferred to
a library function named terminate , which is defined in the exception header. The behavior of

that function is system dependent, but it usually aborts the program.

Exceptions that occur in programs that define no TRy blocks are handled in the same manner:
After all, if there are no try blocks, there can be no handlers for any exception that might be
thrown. If an exception occurs, then terminate is called and the program (ordinarily) is aborted.

Exercises Section 6.13.2

Exercise
6.23:

The bitset operation to_ulong tHRows an overflow_error
exception if the bitset is larger than the size of an unsigned
long . Write a program that generates this exception.

Exercise
6.24:

Revise your program to catch this exception and print a
message.

6.13.3. Standard Exceptions

The C++ library defines a set of classes that it uses to report problems encountered in the
functions in the standard library. These standard exception classes are also intended to be used
in the programs we write. Library exception classes are defined in four headers:

The exception header defines the most general kind of exception class named exception .
It communicates only that an exception occurs but provides no additional information.

1.

The stdexcept header defines several general purpose exception classes. These types are
listed in Table 6.1 on the following page.

Table 6.1. Standard Exception Classes Defined in
<stdexcept>

2.



exception The most general kind of problem.

runtime_error Problem that can be detected only at run
time.

range_error Run-time error: result generated outside the
range of values that are meaningful.

overflow_error Run-time error: computation that
overflowed.

underflow_error Run-time error: computation that
underflowed.

logic_error Problem that could be detected before run
time.

domain_error Logic error: argument for which no result
exists.

invalid_argument Logic error: inappropriate argument.

length_error Logic error: attempt to create an object
larger than the maximum size for that type.

out_of_range Logic error: used a value outside the valid
range.

The new header defines the bad_alloc exception type, which is the exception thrown by new
(Section 5.11 , p. 174 ) if it cannot allocate memory.

3.

The type_info header defines the bad_cast exception type, which we will discuss in Section
18.2 (p. 772 ).

4.

Standard Library Exception Classes

The library exception classes have only a few operations. We can create, copy, and assign
objects of any of the exception types. The exception, bad_alloc , and bad_cast types define
only a default constructor (Section 2.3.4 , p. 50 ); it is not possible to provide an initializer for
objects of these types. The other exception types define only a single constructor that takes a
string initializer. When we define any of these other exception types, we must supply a string
argument. That string initializer is used to provide additional information about the error that
occurred.

The exception types define only a single operation named what . That function takes no
arguments and returns a const char* . The pointer it returns points to a C-style character string
(Section 4.3 , p. 130 ). The purpose of this C-style character string is to provide some sort of
textual description of the exception thrown.

The contents of the C-style character array to which what returns a pointer depends on the type
of the exception object. For the types that take a string initializer, the what function returns
that string as a C-style character array. For the other types, the value returned varies by
compiler.

 



 

6.14. Using the Preprocessor for Debugging

In Section 2.9.2 (p. 71 ) we learned how to use preprocessor variables to prevent header files
being included more than once. C++ programmers sometimes use a technique similar to header
guards to conditionally execute debugging code. The idea is that the program will contain
debugging code that is executed only while the program is being developed. When the
application is completed and ready to ship, the debugging code is turned off. We can write
conditional debugging code using the NDEBUG preprocessor variable:

     int main()
     {
     #ifndef NDEBUG
     cerr << "starting main" << endl;
     #endif
     // ...

If NDEBUG is not defined, then the program writes the message to cerr . If NDEBUG is defined, then
the program executes without ever passing through the code between the #ifndef and the
#endif .

By default, NDEBUG is not defined, meaning that by default, the code inside the #ifndef and
#endif is processed. When the program is being developed, we leave NDEBUG undefined so that
the debugging statements are executed. When the program is built for delivery to customers,
these debugging statements can be (effectively) removed by defining the NDEBUG preprocessor
variable. Most compilers provide a command line option that defines NDEBUG :

     $ CC -DNDEBUG main.C

has the same effect as writing #define NDEBUG at the beginning of main.C .

The preprocessor defines four other constants that can be useful in debugging:

_ _FILE_ _ name of the file.

_ _LINE_ _ current line number.

_ _TIME_ _ time the file was compiled.

_ _DATE_ _ date the file was compiled.

We might use these constants to report additional information in error messages:

     if (word.size() < threshold)
         cerr << "Error: " << _ _FILE_ _
              << " : line " << _ _LINE_ _ << endl
              << "       Compiled on " << _ _DATE_ _
              << " at " << _ _TIME_ _ << endl



              << "      Word read was " << word
              << ": Length too short" << endl;

If we give this program a string that is shorter than the tHReshold , then the following error
message will be generated:

     Error: wdebug.cc : line 21
               Compiled on Jan 12 2005 at 19:44:40
               Word read was "foo": Length too short

Another common debugging technique uses the NDEBUG preprocessor variable and the assert
preprocessor macro . The assert macro is defined in the cassert header, which we must
include in any file that uses assert .

A preprocessor macro acts something like a function call. The assert macro takes a single
expression, which it uses as a condition:

     assert(expr)

As long as NDEBUG is not defined, the assert macro evaluates the condtion and if the result is
false, then assert writes a message and terminates the program. If the expression has a
nonzero (e.g., true) value, then assert does nothing.

Unlike exceptions, which deal with errors that a program expects might happen in production,
programmers use assert to test conditions that "cannot happen." For example, a program that
does some manipulation of input text might know that all words it is given are always longer
than a threshold. That program might contain a statement such as:

     assert(word.size() > threshold);

During testing the assert has the effect of verifying that the data are always of the expected
size. Once development and test are complete, the program is built and NDEBUG is defined. In
production code, assert does nothing, so there is no run-time cost. Of course, there is also no
run-time check. assert should be used only to verify things that truly should not be possible. It
can be useful as an aid in getting a program debugged but should not be used to substitute for
run-time logic checks or error checking that the program should be doing.



Exercises Section 6.14

Exercise
6.25:

Revise the program you wrote for the exercise in Section 6.11
(p. 214 ) to conditionally print information about its execution.
For example, you might print each word as it is read to let you
determine whether the loop correctly finds the first duplicated
word that begins with an uppercase letter. Compile and run
the program with debugging turned on and again with it
turned off.

Exercise
6.26:

What happens in the following loop:

     string s;
     while (cin >> s) {
        assert(cin);

        // process s
     }

Explain whether this usage seems like a good application of
the assert macro.

Exercise
6.27:

Explain this loop:

     string s;
     while (cin >> s && s != sought) { } // empty body
     assert(cin);

     // process s

 



 

Chapter Summary

C++ provides a fairly limited number of statements. Most of these affect the flow of control
within a program:

while, for , and do while statements, which implement iterative loops

if and switch , which provide conditional execution

continue , which stops the current iteration of a loop

break , which exits a loop or switch statement

goto , which transfers control to a labeled statement

TRy, catch , which define a TRy block enclosing a sequence of statements that might throw
an exception. The catch clause(s) are intended to handle the exception(s) that the
enclosed code might throw.

throw expressions, which exit a block of code, transferring control to an associated catch
clause

There is also a return statement, which will be covered in Chapter 7 .

In addition, there are expression statements and declaration statements. An expression
statement causes the subject expression to be evaluated. Declarations and definitions of
variables were described in Chapter 2 .

 



 

Defined Terms

assert

Preprocessor macro that takes a single expression, which it uses as a condition. If the
preprocessor variable NDEBUG is not defined, then assert evaluates the condition. If the
condition is false, assert writes a message and terminates the program.

block

A sequence of statements enclosed in curly braces. A block is a statement, so it can
appear anywhere a statement is expected.

break statement

Terminates the nearest enclosing loop or switch statement. Execution transfers to the first
statement following the terminated loop or switch .

case label

Integral constant value that follows the keyword case in a switch statement. No two case
labels in the same switch statement may have the same value. If the value in the switch
condition is equal to that in one of the case labels, control transfers to the first statement
following the matched label. Execution continues from that point until a break is
encountered or it flows off the end of the switch statement.

catch clause

The catch keyword, an exception specifier in parentheses, and a block of statements. The
code inside a catch clause does whatever is necessary to handle an exception of the type
defined in its exception specifier.

compound statement

Synonym for block.

continue statement

Terminates the current iteration of the nearest enclosing loop. Execution transfers to the
loop condition in a while or do or to the expression in the for header.



dangling else

Colloquial term used to refer to the problem of how to process nested if statements in
which there are more if s than elses . In C++, an else is always paired with the closest
preceding unmatched if . Note that curly braces can be used to effectively hide an inner
if so that the programmer can control with which if a given else should be matched.

declaration statement

A statement that defines or declares a variable. Declarations were covered in Chapter 2 .

default label

The switch case label that matches any otherwise unmatched value computed in the
switch condition.

exception classes

Set of classes defined by the standard library to be used to represent errors. Table 6.1 (p.
220) lists the general purpose exceptions.

exception handler

Code that deals with an exception raised in another part of the program. Synonym for
catch clause.

exception specifier

The declaration of an object or a type that indicates the kind of exceptions a catch clause
can handle.

expression statement

An expression followed by a semicolon. An expression statement causes the expression to
be evaluated.

flow of control

Execution path through a program.

goto statement

Statement that causes an unconditional transfer of control to a specified labeled
statement elsewhere in the program. goto s obfuscate the flow of control within a



program and should be avoided.

if else statement

Conditional execution of code following the if or the else , depending on the truth value
of the condition.

if statement

Conditional execution based on the value of the specified condition. If the condition is
true, then the if body is executed. If not, control flows to the statement following the if .

labeled statement

A statement preceded by a label. A label is an identifier followed by a colon.

null statement

An empty statement. Indicated by a single semicolon.

preprocessor macro

Function like facility defined by the preprocessor. assert is a macro. Modern C++
programs make very little use of the preprocessor macros.

raise

Often used as a synonym for throw. C++ programmers speak of "throwing" or "raising"
an exception interchangably.

switch statement

A conditional execution statement that starts by evaluating the expression that follows the
switch keyword. Control passes to the labeled statement with a case label that matches
the value of the expression. If there is no matching label, execution either branches to the
default label, if there is one, or falls out of the switch if there is no default label.

terminate

Library function that is called if an exception is not caught. Usually aborts the program.

throw expression



Expression that interrupts the current execution path. Each throw tHRows an object and
transfers control to the nearest enclosing catch clause that can handle the type of
exception that is thrown.

try block

A block enclosed by the keyword try and one or more catch clauses. If the code inside the
try block raises an exception and one of the catch clauses matches the type of the
exception, then the exception is handled by that catch. Otherwise, the exception is
handled by an enclosing try block or the program terminates.

while loop

Control statement that executes its target statement as long as a specified condition is
true. The statement is executed zero or more times, depending on the truth value of the
condition.
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This chapter describes how to define and declare functions . We'll cover how arguments are
passed to and values are returned from a function. We'll then look at three special kinds of
functions: inline functions, class member functions, and overloaded functions. The chapter
closes with a more advanced topic: function pointers.

A function can be thought of as a programmer-defined operation. Like the built-in operators,
each function performs some computation and (usually) yields a result. Unlike the operators,
functions have names and may take an unlimited number of operands. Like operators, functions
can be overloaded, meaning that the same name may refer to multiple different functions.

 



 

7.1. Defining a Function

A function is uniquely represented by a name and a set of operand types. Its operands, referred
to as parameters , are specified in a comma-separated list enclosed in parentheses. The
actions that the function performs are specified in a block, referred to as the function body .
Every function has an associated return type .

As an example, we could write the following function to find the greatest common divisor of two
int s:

     // return the greatest common divisor
     int gcd(int v1, int v2)
     {
         while (v2) {
             int temp = v2;
             v2 = v1 % v2;
             v1 = temp;
         }
         return v1;
     }

Here we define a function named gcd that returns an int and has two int parameters. To call
gcd , we must supply two int values and we get an int in return.

Calling a Function

To invoke a function we use the call operator , which is a pair of parentheses. As with any
operator, the call operator takes operands and yields a result. The operands to the call operator
are the name of the function and a (possibly empty) comma-separated list of arguments . The
result type of a call is the return type of the called function, and the result itself is the value
returned by the function:

     // get values from standard input
     cout << "Enter two values: \n";
     int i, j;
     cin >> i >> j;

     // call gcd on arguments i and j
     // and print their greatest common divisor
     cout << "gcd: " << gcd(i, j) << endl;

If we gave this program 15 and 123 as input, the output would be 3.

Calling a function does two things: It initializes the function parameters from the corresponding
arguments and transfers control to the function being invoked. Execution of the calling function
is suspended and execution of the called function begins. Execution of a function begins with the
(implicit) definition and initialization of its parameters. That is, when we invoke gcd , the first



thing that happens is that variables of type int named v1 and v2 are created. These variables
are initialized with the values passed in the call to gcd . In this case, v1 is initialized by the value
of i and v2 by the value of j .

Function Body Is a Scope

The body of a function is a statement block, which defines the function's operation. As usual, the
block is enclosed by a pair of curly braces and hence forms a new scope. As with any block, the
body of a function can define variables. Names defined inside a function body are accessible
only within the function itself. Such variables are referred to as local variables . They are
"local" to that function; their names are visible only in the scope of the function. They exist only
while the function is executing. Section 7.5 (p. 254 ) covers local variables in more detail.

Execution completes when a return statement is encountered. When the called function finishes,
it yields as its result the value specified in the return statement. After the return is executed,
the suspended, calling function resumes execution at the point of the call. It uses the return
value as the result of evaluating the call operator and continues processing whatever remains of
the statement in which the call was performed.

Parameters and Arguments

Like local variables, the parameters of a function provide named, local storage for use by the
function. The difference is that parameters are defined inside the function's parameter list and
are initialized by arguments passed to the function when the function is called.

An argument is an expression. It might be a variable, a literal constant or an expression
involving one or more operators. We must pass exactly the same number of arguments as the
function has parameters. The type of each argument must match the corresponding parameter
in the same way that the type of an initializer must match the type of the object it initializes:
The argument must have the same type or have a type that can be implicitly converted (Section
5.12 , p. 178 ) to the parameter type. We'll cover how arguments match a parameter in detail in
Section 7.8.2 (p. 269 ).

7.1.1. Function Return Type

The return type of a function can be a built-in type, such as int or double , a class type, or a
compound type, such as int& or string* . A return type also can be void , which means that the
function does not return a value. The following are example definitions of possible function
return types:

     bool is_present(int *, int);       // returns bool

     int count(const string &, char);   // returns int

     Date &calendar(const char*);       // returns reference to Date

     void process();                    // process does not return a value

A function may not return another function or a built-in array type. Instead, the function may
return a pointer to the function or to a pointer to an element in the array:

     // ok: pointer to first element of the array



     int *foo_bar() { /* ... */ }

This function returns a pointer to int and that pointer could point to an element in an array.

We'll learn about function pointers in Section 7.9 (p. 276 ).

Functions Must Specify a Return Type

It is illegal to define or declare a function without an explicit return type:

     // error: missing return type
     test(double v1, double v2) { /* ... */ }

Eariler versions of C++ would accept this program and implicitly define the return type of test
as an int . Under Standard C++, this program is an error.

In pre-Standard C++, a function without an explicit return type was
assumed to return an int . C++ programs compiled under earlier,
non-standard compilers may still contain functions that implicitly
return int .

7.1.2. Function Parameter List

The parameter list of a function can be empty but cannot be omitted. A function with no
parameters can be written either with an empty parameter list or a parameter list containing the
single keyword void . For example, the following declarations of process are equivalent:

     void process() { /* ... */ }      // implicit void parameter list

     void process(void){ /* ... */ }  // equivalent declaration

A parameter list consists of a comma-separated list of parameter types and (optional)
parameter names. Even when the types of two parameters are the same, the type must be
repeated:

     int manip(int v1, v2) { /* ... */ }      // error
     int manip(int v1, int v2) { /* ... */ }  // ok



No two parameters can have the same name. Similarly, a variable local to a function may not
use the same name as the name of any of the function's parameters.

Names are optional, but in a function definition, normally all parameters are named. A
parameter must be named to be used.

Parameter Type-Checking

C++ is a statically typed language (Section 2.3 , p. 44 ). The
arguments of every call are checked during compilation.

When we call a function, the type of each argument must be either the same type as the
corresponding parameter or a type that can be converted (Section 5.12 , p. 178 ) to that type.
The function's parameter list provides the compiler with the type information needed to check
the arguments. For example, the function gcd , which we defined on page 226 , takes two
parameters of type int :

     gcd("hello", "world"); // error: wrong argument types
     gcd(24312);            // error: too few arguments
     gcd(42, 10, 0);        // error: too many arguments

Each of these calls is a compile-time error. In the first call, the arguments are of type const
char* . There is no conversion from const char* to int , so the call is illegal. In the second and
third calls, gcd is passed the wrong number of arguments. The function must be called with two
arguments; it is an error to call it with any other number.

But what happens if the call supplies two arguments of type double ? Is this call legal?

     gcd(3.14, 6.29);      // ok: arguments are converted to int

In C++, the answer is yes; the call is legal. In Section 5.12.1 (p. 179 ) we saw that a value of
type double can be converted to a value of type int . This call involves such a conversionwe
want to use double values to initialize int objects. Therefore, flagging the call as an error would
be too severe. Rather, the arguments are implicitly converted to int (tHRough truncation).
Because this conversion might lose precision, most compilers will issue a warning. In this case,
the call becomes

     gcd(3, 6);

and returns a value of 3.



A call that passes too many arguments, omits an argument, or passes an argument of the
wrong type almost certainly would result in serious run-time errors. Catching these so-called
interface errors at compile time greatly reduces the compile-debug-test cycle for large
programs.

 



 

7.2. Argument Passing

Each parameter is created anew on each call to the function. The value used to initialize a
parameter is the corresponding argument passed in the call.

Parameters are initialized the same way that variables are. If the
parameter has a nonreference type, then the argument is copied. If
the parameter is a reference (Section 2.5 , p. 58 ), then the
parameter is just another name for the argument.

Exercises Section 7.1.2

Exercise
7.1:

What is the difference between a parameter and an argument?

Exercise
7.2:

Indicate which of the following functions are in error and why.
Suggest how you might correct the problems.

     (a) int f() {
             string s;
             // ...
             return s;
         }
     (b) f2(int i) { /* ... */ }
     (c) int calc(int v1, int v1) /* ... */ }
     (d) double square(double x) return x * x;

Exercise
7.3:

Write a program to take two int parameters and generate the
result of raising the first parameter to the power of the
second. Write a program to call your function passing it two
int s. Verify the result.

Exercise
7.4:

Write a program to return the absolute value of its parameter.



7.2.1. Nonreference Parameters

Parameters that are plain, nonreference types are initialized by copying the corresponding
argument. When a parameter is initialized with a copy, the function has no access to the actual
arguments of the call. It cannot change the arguments. Let's look again at the definition of gcd :

     // return the greatest common divisor
     int gcd(int v1, int v2)
     {
         while (v2) {
             int temp = v2;
             v2 = v1 % v2;
             v1 = temp;
         }
         return v1;
     }

Inside the body of the while , we change the values of both v1 and v2 . However, these changes
are made to the local parameters and are not reflected in the arguments used to call gcd . Thus,
when we call

     gcd(i, j)

the values i and j are unaffected by the assignments performed inside gcd .

Nonreference parameters represent local copies of the
corresponding argument. Changes made to the parameter are made
to the local copy. Once the function terminates, these local values
are gone.

Pointer Parameters

A parameter can be a pointer (Section 4.2 , p. 114 ), in which case the argument pointer is
copied. As with any nonreference type parameter, changes made to the parameter are made to
the local copy. If the function assigns a new pointer value to the parameter, the calling pointer
value is unchanged.

Recalling the discussion in Section 4.2.3 (p. 121 ), the fact that the pointer is copied affects only
assignments to the pointer. If the function takes a pointer to a nonconst type, then the function
can assign through the pointer and change the value of the object to which the pointer points:

     void reset(int *ip)
     {



         *ip = 0; // changes the value of the object to which ip points

         ip = 0;   // changes only the local value of ip; the argument is unchanged
     }

After a call to reset , the argument is unchanged but the object to which the argument points
will be 0:

     int i = 42;
     int *p = &i;

     cout << "i: " << *p << '\n';   // prints i: 42

     reset(p);                      // changes *p but not p

     cout << "i: " << *p << endl;   // ok: prints i: 0

If we want to prevent changes to the value to which the pointer points, then the parameter
should be defined as a pointer to const :

     void use_ptr(const int *p)
     {

          // use_ptr may read but not write to *p
     }

Whether a pointer parameter points to a const or nonconst type affects the arguments that we
can use to call the function. We can call use_ptr on either an int* or a const int* ; we can pass
only on an int* to reset . This distinction follows from the initialization rules for pointers
(Section 4.2.5 , p. 126 ). We may initialize a pointer to const to point to a nonconst object but
may not use a pointer to nonconst to point to a const object.

const Parameters

We can call a function that takes a nonreference, nonconst parameter passing either a const or
nonconst argument. For example, we could pass two const int s to our gcd function:

     const int i = 3, j = 6;

     int k = rgcd(3, 6);   // ok: k initialized to 3

This behavior follows from the normal initialization rules for const objects (Section 2.4 , p. 56 ).
Because the initialization copies the value of the initializer, we can initialize a nonconst object
from a const object, or vice versa.

If we make the parameter a const nonreference type:

     void fcn(const int i) { /* fcn can read but not write to i */ }



then the function cannot change its local copy of the argument. The argument is still passed as
a copy so we can pass fcn either a const or nonconst object.

What may be surprising, is that although the parameter is a const inside the function, the
compiler otherwise treats the definition of fcn as if we had defined the parameter as a plain int
:

     void fcn(const int i) { /* fcn can read but not write to i */ }

     void fcn(int i) { /* ... */ }            // error: redefines fcn(int)

This usage exists to support compatibility with the C language, which makes no distinction
between functions taking const or nonconst parameters.

Limitations of Copying Arguments

Copying an argument is not suitable for every situation. Cases where copying doesn't work
include:

When we want the function to be able to change the value of an argument.

When we want to pass a large object as an argument. The time and space costs to copy
the object are often too high for real-world applications.

When there is no way to copy the object.

In these cases we can instead define the parameters as references or pointers.

Exercises Section 7.2.1

Exercise
7.5:

Write a function that takes an int and a pointer to an int and
returns the larger of the int value of the value to which the
pointer points. What type should you use for the pointer?

Exercise
7.6:

Write a function to swap the values pointed to by two pointers
to int . Test the function by calling it and printing the
swapped values.

7.2.2. Reference Parameters

As an example of a situation where copying the argument doesn't work, consider a function to
swap the values of its two arguments:

      // incorrect version of swap: The arguments are not changed!
     void swap(int v1, int v2)



     {
         int tmp = v2;
         v2 = v1;    // assigns new value to local copy of the argument
         v1 = tmp;

     }               // local objects v1 and v2 no longer exist

In this case, we want to change the arguments themselves. As defined, though, swap cannot
affect those arguments. When it executes, swap exchanges the local copies of its arguments. The
arguments passed to swap are unchanged:

     int main()
     {
         int i = 10;
         int j = 20;
         cout << "Before swap():\ti: "
              << i << "\tj: " << j << endl;
         swap(i, j);
         cout << "After swap():\ti: "
              << i << "\tj: " << j << endl;
         return 0;
     }

Compiling and executing this program results in the following output:

     Before swap(): i: 10 j: 20
     After  swap(): i: 10 j: 20

For swap to work as intended and swap the values of its arguments, we need to make the
parameters references:

     // ok: swap acts on references to its arguments
     void swap(int &v1, int &v2)
     {
         int tmp = v2;
         v2 = v1;
         v1 = tmp;
     }

Like all references, reference parameters refer directly to the objects to which they are bound
rather than to copies of those objects. When we define a reference, we must initialize it with the
object to which the reference will be bound. Reference parameters work exactly the same way.
Each time the function is called, the reference parameter is created and bound to its
corresponding argument. Now, when we call swap

     swap(i, j);



the parameter v1 is just another name for the object i and v2 is another name for j . Any
change to v1 is actually a change to the argument i . Similarly, changes to v2 are actually made
to j . If we recompile main using this revised version of swap , we can see that the output is now
correct:

     Before swap(): i: 10 j: 20
     After  swap(): i: 20 j: 10

Programmers who come to C++ from a C background are used
to passing pointers to obtain access to the argument. In C++ it
is safer and more natural to use reference parameters.

Using Reference Parameters to Return Additional Information

We've seen one example, swap , in which reference parameters were used to allow the function
to change the value of its arguments. Another use of reference parameters is to return an
additional result to the calling function.

Functions can return only a single value, but sometimes a function has more than one thing to
return. For example, let's define a function named find_val that searches for a particular value
in the elements of a vector of integers. It returns an iterator that refers to the element, if the
element was found, or to the end value if the element isn't found. We'd also like the function to
return an occurrence count if the value occurs more than once. In this case the iterator returned
should be to the first element that has the value for which we're looking.

How can we define a function that returns both an iterator and an occurrence count? We could
define a new type that contains an iterator and a count. An easier solution is to pass an
additional reference argument that find_val can use to return a count of the number of
occurrences:

     // returns an iterator that refers to the first occurrence of value

     // the reference parameter occurs contains a second return value
     vector<int>::const_iterator find_val(
         vector<int>::const_iterator beg,             // first element
         vector<int>::const_iterator end,             // one past last element
         int value,                                    // the value we want
         vector<int>::size_type &occurs)              // number of times it occurs
     {

         // res_iter will hold first occurrence, if any
         vector<int>::const_iterator res_iter = end;
         occurs = 0; // set occurrence count parameter
         for ( ; beg != end; ++beg)
             if (*beg == value) {

                 // remember first occurrence of value
                 if (res_iter == end)



                    res_iter = beg;
                 ++occurs; // increment occurrence count
             }

         return res_iter;  // count returned implicitly in occurs
     }

When we call find_val , we have to pass four arguments: a pair of iterators that denote the
range of elements (Section 9.2.1 , p. 314 ) in the vector in which to look, the value to look for,
and a size_type (Section 3.2.3 , p. 84 ) object to hold the occurrence count. Assuming ivec is a
vector<int>, it is an iterator of the right type, and ctr is a size_type , we could call find_val
as follows:

     it = find_val(ivec.begin(), ivec.end(), 42, ctr);

After the call, the value of ctr will be the number of times 42 occurs, and it will refer to the
first occurrence if there is one. Otherwise, it will be equal to ivec.end() and ctr will be zero.

Using (const ) References to Avoid Copies

The other circumstance in which reference parameters are useful is when passing a large object
to a function. Although copying an argument is okay for objects of built-in data types and for
objects of class types that are small in size, it is (often) too inefficient for objects of most class
types or large arrays. Moreover, as we'll learn in Chapter 13 , some class types cannot be
copied. By using a reference parameter, the function can access the object directly without
copying it.

As an example, we'll write a function that compares the length of two string s. Such a function
needs to access the size of each string but has no need to write to the string s. Because
string s can be long, we'd like to avoid copying them. Using const references we can avoid the
copy:

     // compare the length of two strings
     bool isShorter(const string &s1, const string &s2)
     {
         return s1.size() < s2.size();
     }

Each parameter is a reference to const string . Because the parameters are references the
arguments are not copied. Because the parameters are const references, is Shorter may not
use the references to change the arguments.

When the only reason to make a parameter a reference is to avoid
copying the argument, the parameter should be const reference.



References to const Are More Flexible

It should be obvious that a function that takes a plain, nonconst reference may not be called on
behalf of a const object. After all, the function might change the object it is passed and thus
violate the const ness of the argument.

What may be less obvisous is that we also cannot call such a function with an rvalue (Section
2.3.1 , p. 45 ) or with an object of a type that requires a conversion:

     // function takes a non-const reference parameter
     int incr(int &val)
     {
         return ++val;
     }
     int main()
     {
         short v1 = 0;
         const int v2 = 42;

         int v3 = incr(v1);   // error: v1 is not an int

         v3 = incr(v2);       // error: v2 is const
         v3 = incr(0);        // error: literals are not lvalues
         v3 = incr(v1 + v2);  // error: addition doesn't yield an lvalue

         int v4 = incr(v3);   // ok: v3 is a non const object type int
     }

The problem is that a nonconst reference (Section 2.5 , p. 59 ) may be bound only to nonconst
object of exactly the same type.

Parameters that do not change the value of the corresponding argument should be const
references. Defining such parameters as nonconst references needlessly restricts the usefulness
of a function. As an example, we might write a program to find a given character in a string :

     // returns index of first occurrence of c in s or s.size() if c isn't in s

     // Note: s doesn't change, so it should be a reference to const
     string::size_type find_char(string &s, char c)
     {
         string::size_type i = 0;
         while (i != s.size() && s[i] != c)
             ++i;                   // not found, look at next character
         return i;
     }

This function takes its string argument as a plain (nonconst) reference, even though it doesn't
modify that parameter. One problem with this definition is that we cannot call it on a character
string literal:

     if (find_char("Hello World", 'o')) // ...



This call fails at compile time, even though we can convert the literal to a string .

Such problems can be surprisingly pervasive. Even if our program has no const objects and we
only call find_char on behalf of string objects (as opposed to on a string literal or an expression
that yields a string ), we can encounter compile-time problems. For example, we might have
another function is_sentence that wants to use find_char to determine whether a string
represents a sentence:

     bool is_sentence (const string &s)
     {

          // if there's a period and it's the last character in s

          // then s is a sentence
          return (find_char(s, '.') == s.size() - 1);
     }

As written, the call to find_char from inside is_sentence is a compile-time error. The parameter
to is_sentence is a reference to const string and cannot be passed to find_char , which
expects a reference to a nonconst string .

Reference parameters that are not changed should be
references to const . Plain, nonconst reference parameters
are less flexible. Such parameters may not be initialized by
const objects, or by arguments that are literals or
expressions that yield rvalues.

Passing a Reference to a Pointer

Suppose we want to write a function that swaps two pointers, similar to the program we wrote
earlier that swaps two integers. We know that we use * to define a pointer and & to define a
reference. The question here is how to combine these operators to obtain a reference to a
pointer. Here is an example:

     // swap values of two pointers to int
     void ptrswap(int *&v1, int *&v2)
     {
         int *tmp = v2;
         v2 = v1;
         v1 = tmp;
     }

The parameter



     int *&v1

should be read from right to left: v1 is a reference to a pointer to an object of type int . That is,
v1 is just another name for whatever pointer is passed to ptrswap .

We could rewrite the main function from page 233 to use ptrswap and swap pointers to the
values 10 and 20:

     int main()
     {
         int i = 10;
         int j = 20;

         int *pi = &i;  // pi points to i

         int *pj = &j; // pj points to j
         cout << "Before ptrswap():\t*pi: "
              << *pi << "\t*pj: " << *pj << endl;

         ptrswap(pi, pj); // now pi points to j; pj points to i
         cout << "After ptrswap():\t*pi: "
              << *pi << "\t*pj: " << *pj << endl;
         return 0;
     }

When compiled and executed, the program generates the following output:

     Before ptrswap(): *pi: 10 *pj: 20
     After ptrswap():  *pi: 20 *pj: 10

What happens is that the pointer values are swapped. When we call ptrswap, pi points to i and
pj points to j . Inside ptrswap the pointers are swapped so that after ptrswap, pi points to the
object pj had addressed. In other words, pi now points to j . Similarly, pj points to i .

7.2.3. vector and Other Container Parameters

Ordinarily, functions should not have vector or other
library container parameters. Calling a function that has a
plain, nonreference vector parameter will copy every
element of the vector .

In order to avoid copying the vector , we might think that we'd make the parameter a
reference. However, for reasons that will be clearer after reading Chapter 11 , in practice, C++
programmers tend to pass containers by passing iterators to the elements we want to process:



Exercises Section 7.2.2

Exercise
7.7:

Explain the difference in the following two parameter
declarations:

     void f(T);
     void f(T&);

Exercise
7.8:

Give an example of when a parameter should be a reference
type. Give an example of when a parameter should not be a
reference.

Exercise
7.9:

Change the declaration of occurs in the parameter list of
find_val (defined on page 234 ) to be a nonreference
argument type and rerun the program. How does the behavior
of the program change?

Exercise
7.10:

The following program, although legal, is less useful than it
might be. Identify and correct the limitation on this program:

     bool test(string& s) { return s.empty(); }

Exercise
7.11:

When should reference parameters be const ? What problems
might arise if we make a parameter a plain reference when it
could be a const reference?

     // pass iterators to the first and one past the last element to print
     void print(vector<int>::const_iterator beg,
                vector<int>::const_iterator end)
     {
         while (beg != end) {
             cout << *beg++;
             if (beg != end) cout << " "; // no space after last element
         }
         cout << endl;
     }

This function prints the elements starting with one referred to by beg up to but not including the
one referred to by end . We print a space after each element but the last.



7.2.4. Array Parameters

Arrays have two special properties that affect how we define and use functions that operate on
arrays: We cannot copy an array (Section 4.1.1 , p. 112 ) and when we use the name of an
array it is automatically converted to a pointer to the first element (Section 4.2.4 , p. 122 ).
Because we cannot copy an array, we cannot write a function that takes an array type
parameter. Because arrays are automatically converted to pointers, functions that deal with
arrays usually do so indirectly by manipulating pointers to elements in the array.

Defining an Array Parameter

Let's assume that we want to write a function that will print the contents of an array of int s.
We could specify the array parameter in one of three ways:

     // three equivalent definitions of printValues
     void printValues(int*) { /* ... */ }
     void printValues(int[]) { /* ... */ }
     void printValues(int[10]) { /* ... */ }

Even though we cannot pass an array directly, we can write a function parameter that looks like
an array. Despite appearances, a parameter that uses array syntax is treated as if we had
written a pointer to the array element type. These three definitions are equivalent; each is
interpreted as taking a parameter of type int* .

It is usually a good idea to define array parameters as
pointers, rather than using the array syntax. Doing so
makes it clear that what is being operated on is a pointer
to an array element, not the array itself. Because an array
dimension is ignored, including a dimension in a parameter
definition is particularly misleading.

Parameter Dimensions Can Be Misleading

The compiler ignores any dimension we might specify for an array parameter. Relying,
incorrectly, on the dimension, we might write printValues as

     // parameter treated as const int*, size of array is ignored
     void printValues(const int ia[10])
     {
          // this code assumes array has 10 elements;
          // disaster if argument has fewer than 10 elements!
          for (size_t i = 0; i != 10; ++i)
          {
              cout << ia[i] << endl;



          }
     }

Although this code assumes that the array it is passed has at least 10 elements, nothing in the
language enforces that assumption. The following calls are all legal:

     int main()
     {
         int i = 0, j[2] = {0, 1};

         printValues(&i);      // ok: &i is int*; probable run-time error

         printValues(j);      // ok: j is converted to pointer to 0th

                              // element; argument has type int*;
                              // probable run-time error
         return 0;
     }

Even though the compiler issues no complaints, both calls are in error, and probably will fail at
run time. In each case, memory beyond the array will be accessed because printValues
assumes that the array it is passed has at least 10 elements. Depending on the values that
happen to be in that memory, the program will either produce spurious output or crash.

When the compiler checks an argument to an array parameter, it
checks only that the argument is a pointer and that the types of the
pointer and the array elements match. The size of the array is not
checked.

Array Arguments

As with any other type, we can define an array parameter as a reference or nonreference type.
Most commonly, arrays are passed as plain, nonreference types, which are quietly converted to
pointers. As usual, a nonreference type parameter is initialized as a copy of its corresponding
argument. When we pass an array, the argument is a pointer to the first element in the array.
That pointer value is copied; the array elements themselves are not copied. The function
operates on a copy of the pointer, so it cannot change the value of the argument pointer. The
function can, however, use that pointer to change the element values to which the pointer
points. Any changes through the pointer parameter are made to the array elements themselves.

Functions that do not change the elements of their array
parameter should make the parameter a pointer to const :



     // f won't change the elements in the array
     void f(const int*) { /* ... */ }

Passing an Array by Reference

As with any type, we can define an array parameter as a reference to the array. If the
parameter is a reference to the array, then the compiler does not convert an array argument
into a pointer. Instead, a reference to the array itself is passed. In this case, the array size is
part of the parameter and argument types. The compiler will check that the size of the array
argument matches the size of the parameter:

     // ok: parameter is a reference to an array; size of array is fixed
     void printValues(int (&arr)[10]) { /* ... */ }
     int main()
     {
         int i = 0, j[2] = {0, 1};
         int k[10] = {0,1,2,3,4,5,6,7,8,9};

         printValues(&i); // error: argument is not an array of 10 ints

         printValues(j);  // error: argument is not an array of 10 ints

         printValues(k);  // ok: argument is an array of 10 ints
         return 0;
     }

This version of printValues may be called only for arrays of exactly 10 int s, limiting which
arrays can be passed. However, because the parameter is a reference, it is safe to rely on the
size in the body of the function:

     // ok: parameter is a reference to an array; size of array is fixed
     void printValues(int (&arr)[10])
     {
         for (size_t i = 0; i != 10; ++i) {
             cout << arr[i] << endl;
         }
     }

The parentheses around &arr are necessary because of the higher
precedence of the subscript operator:

     f(int &arr[10])     // error: arr is an array of references

     f(int (&arr)[10]) // ok: arr is a reference to an array of 10 ints



We'll see in Section 16.1.5 (p. 632 ) how we might write this function in a way that would allow
us to pass a reference parameter to an array of any size.

Passing a Multidimensioned Array

Recall that there are no multidimensioned arrays in C++ (Section 4.4 , p. 141 ). Instead, what
appears to be a multidimensioned array is an array of arrays.

As with any array, a multidimensioned array is passed as a pointer to its zeroth element. An
element in a multidimenioned array is an array. The size of the second (and any subsequent
dimensions) is part of the element type and must be specified:

     // first parameter is an array whose elements are arrays of 10 ints
     void printValues(int (matrix*)[10], int rowSize);

declares matrix as a pointer to an array of ten int s.

Again, the parentheses around *matrix are necessary:

     int *matrix[10];   // array of 10 pointers

     int (*matrix)[10]; // pointer to an array of 10 ints

We could also declare a multidimensioned array using array syntax. As with a single-
dimensioned array, the compiler ignores the first dimension and so it is best not to include it:

     // first parameter is an array whose elements are arrays of 10 ints
     void printValues(int matrix[][10], int rowSize);

declares matrix to be what looks like a two-dimensioned array. In fact, the parameter is a
pointer to an element in an array of arrays. Each element in the array is itself an array of ten
int s.



7.2.5. Managing Arrays Passed to Functions

As we've just seen, type checking for a nonreference array parameter confirms only that the
argument is a pointer of the same type as the elements in the array. Type checking does not
verify that the argument actually points to an array of a specified size.

It is up to any program dealing with an array to ensure that the
program stays within the bounds of the array.

There are three common programming techniques to ensure that a function stays within the
bounds of its array argument(s). The first places a marker in the array itself that can be used to
detect the end of the array. C-style character strings are an example of this approach. C-style
strings are arrays of characters that encode their termination point with a null character.
Programs that deal with C-style strings use this marker to stop processing elements in the
array.

Using the Standard Library Conventions

A second approach is to pass pointers to the first and one past the last element in the array.
This style of programming is inspired by techniques used in the standard library. We'll learn
more about this style of programming in Part II .

Using this approach, we could rewrite printValues and call the new version as follows:

     void printValues(const int *beg, const int *end)
     {
         while (beg != end) {
             cout << *beg++ << endl;
          }
     }
     int main()
     {
         int j[2] = {0, 1};

         // ok: j is converted to pointer to 0th element in j

         //     j + 2 refers one past the end of j
         printValues(j, j + 2);
         return 0;
     }

The loop inside printValues looks like other programs we've written that used vector iterators.
We march the beg pointer one element at a time through the array. We stop the loop when beg
is equal to the end marker, which was passed as the second parameter to the function.



When we call this version, we pass two pointers: one to the first element we want to print and
one just past the last element. The program is safe, as long as we correctly calculate the
pointers so that they denote a range of elements.

Explicitly Passing a Size Parameter

A third approach, which is common in C programs and pre-Standard C++ programs, is to define
a second parameter that indicates the size of the array.

Using this approach, we could rewrite printValues one more time. The new version and a call to
it looks like:

     // const int ia[] is equivalent to const int* ia

     // size is passed explicitly and used to control access to elements of ia
     void printValues(const int ia[], size_t size)
     {
          for (size_t i = 0; i != size; ++i) {
              cout << ia[i] << endl;
          }
     }
     int main()
     {

         int j[] = { 0, 1 }; // int array of size 2
         printValues(j, sizeof(j)/sizeof(*j));
         return 0;
     }

This version uses the size parameter to determine how many elements there are to print. When
we call printValues , we must pass an additional parameter. The program executes safely as
long as the size passed is no greater than the actual size of the array.

Exercises Section 7.2.5

Exercise
7.12:

When would you use a parameter that is a pointer? When
would you use a parameter that is a reference? Explain the
advantages and disadvantages of each.

Exercise
7.13:

Write a program to calculate the sum of the elements in an
array. Write the function three times, each one using a
different approach to managing the array bounds.

Exercise
7.14:

Write a program to sum the elements in a vector<double> .

7.2.6. main : Handling Command-Line Options



It turns out that main is a good example of how C programs pass arrays to functions. Up to now,
we have defined main with an empty parameter list:

     int main() { ... }

However, we often need to pass arguments to main . TRaditionally, such arguments are options
that determine the operation of the program. For example, assuming our main program was in
an executable file named prog , we might pass options to the program as follows:

     prog -d -o ofile data0

The way this usage is handled is that main actually defines two parameters:

     int main(int argc, char *argv[]) { ... }

The second parameter, argv , is an array of C-style character strings. The first parameter, argc ,
passes the number of strings in that array. Because the second parameter is an array, we might
alternatively define main as

     int main(int argc, char **argv) { ... }

indicating that argv points to a char* .

When arguments are passed to main , the first string in argv , if any, is always the name of the
program. Subsequent elements pass additional optional strings to main . Given the previous
command line, argc would be set to 5, and argv would hold the following C-style character
strings:

     argv[0] = "prog";
     argv[1] = "-d";
     argv[2] = "-o";
     argv[3] = "ofile";
     argv[4] = "data0";



Exercises Section 7.2.6

Exercise
7.15:

Write a main function that takes two values as arguments and
print their sum.

Exercise
7.16:

Write a program that could accept the options presented in
this section. Print the values of the arguments passed to main .

7.2.7. Functions with Varying Parameters

Ellipsis parameters are in C++ in order to compile C programs that
use varargs . See your C compiler documentation for how to use
varargs . Only simple data types from the C++ program should be
passed to functions with ellipses parameters. In particular, objects
of most class types are not copied properly when passed to ellipses
parameters.

Ellipses parameters are used when it is impossible to list the type and number of all the
arguments that might be passed to a function. Ellipses suspend type checking. Their presence
tells the compiler that when the function is called, zero or more arguments may follow and that
the types of the arguments are unknown. Ellipses may take either of two forms:

     void foo(parm_list, ...);
     void foo(...);

The first form provides declarations for a certain number of parameters. In this case, type
checking is performed when the function is called for the arguments that correspond to the
parameters that are explicitly declared, whereas type checking is suspended for the arguments
that correspond to the ellipsis. In this first form, the comma following the parameter
declarations is optional.

Most functions with an ellipsis use some information from a parameter that is explicitly declared
to obtain the type and number of optional arguments provided in a function call. The first form
of function declaration with ellipsis is therefore most commonly used.

 



 

7.3. The return Statement

A return statement terminates the function that is currently executing and returns control to the
function that called the now-terminated function. There are two forms of return statements:

     return;

     return expression;

7.3.1. Functions with No Return Value

A return with no value may be used only in a function that has a return type of void . Functions
that return void are not required to contain a return statement. In a void function, an implicit
return takes place after the function's final statement.

Typically, a void function uses a return to cause premature termination of the function. This use
of return parallels the use of the break (Section 6.10 , p. 212 ) statement inside a loop. For
example, we could rewrite our swap program to avoid doing any work if the values are identical:

     // ok: swap acts on references to its arguments
     void swap(int &v1, int &v2)
     {
          // if values already the same, no need to swap, just return
          if (v1 == v2)
              return;
          // ok, have work to do
          int tmp = v2;
          v2 = v1;
          v1 = tmp;
          // no explicit return necessary
     }

This function first checks if the values are equal and if so exits the function. If the values are
unequal, the function swaps them. An implicit return occurs after the last assignment
statement.

A function with a void return type ordinarily may not use the second form of the return
statement. However, a void function may return the result of calling another function that
returns void :

     void do_swap(int &v1, int &v2)
     {
         int tmp = v2;
         v2 = v1;
         v1 = tmp;

         // ok: void function doesn't need an explicit return



     }
     void swap(int &v1, int &v2)
     {
         if (v1 == v2)

             return false; // error: void function cannot return a value

         return do_swap(v1, v2); // ok: returns call to a void function

     }

Attempting to return any other expression is a compile-time error.

7.3.2. Functions that Return a Value

The second form of the return statement provides the function's result. Every return in a
function with a return type other than void must return a value. The value returned must have
the same type as the function return type, or must have a type that can be implicitly converted
to that type.

Although C++ cannot guarantee the correctness of a result, it can guarantee that every return
from a function returns a result of the appropriate type. The following program, for example,
won't compile:

     // Determine whether two strings are equal.
     // If they differ in size, determine whether the smaller
     // one holds the same characters as the larger one
     bool str_subrange(const string &str1, const string &str2)
     {
         // same sizes: return normal equality test
         if (str1.size() == str2.size())
             return str1 == str2;    // ok, == returns bool
         // find size of smaller string
         string::size_type size = (str1.size() < str2.size())
                                  ? str1.size() : str2.size();
         string::size_type i = 0;
         // look at each element up to size of smaller string
         while (i != size) {
             if (str1[i] != str2[i])
                 return;   // error: no return value
         }

         // error: control might flow off the end of the function without a return
         // the compiler is unlikely to detect this error
      }

The return from within the while loop is an error because it fails to return a value. The compiler
should detect this error.

The second error occurs because the function fails to provide a return after the while loop. If we
call this function with one string that is a subset of the other, execution would fall out of the
while . There should be are turn to handle this case. The compiler may or may not detect this
error. If a program is generated, what happens at run time is undefined.



Failing to provide a return after a loop that does contain a return is
particularly insidious because many compilers will not detect it. The
behavior at run time is undefined.

Return from main

There is one exception to the rule that a function with a return type other than void must return
a value: The main function is allowed to terminate without a return. If control reaches the end of
main and there is no return, then the compiler implicitly inserts a return of 0.

Another way in which the return from main is special is how its returned value is treated. As we
saw in Section 1.1 (p. 2 ), the value returned from main is treated as a status indicator. A zero
return indicates success; most other values indicate failure. A nonzero value has a machine-
dependent meaning. To make return values machine-independent, the cstdlib header defines
two preprocessor variables (Section 2.9.2 , p. 69 ) that we can use to indicate success or
failure:

     #include <cstdlib>
     int main()
     {
         if (some_failure)
             return EXIT_FAILURE;
         else
             return EXIT_SUCCESS;
     }

Our code no longer needs to use the precise machine-dependent values. Instead, those values
are defined in cstdlib , and our code need not change.

Returning a Nonreference Type

The value returned by a function is used to initialize a temporary object created at the point at
which the call was made. A temporary object is an unnamed object created by the compiler
when it needs a place to store a result from evaluating an expression. C++ programmers
usually use the term "temporary" as an abreviation of "temporary object."

The temporary is initialized by the value returned by a function in much the same way that
parameters are initialized by their arguments. If the return type is not a reference, then the
return value is copied into the temporary at the call site. The value returned when a function
returns a nonreference type can be a local object or the result of evaluating an expression.

As an example, we might want to write a function that, given a counter, a word, and an ending,
gives us back the plural version of the word if the counter is greater than one:



     // return plural version of word if ctr isn't 1
     string make_plural(size_t ctr, const string &word,
                                    const string &ending)
     {
         return (ctr == 1) ? word : word + ending;
     }

We might use such a function to print a message with either a plural or singular ending.

This function either returns a copy of its parameter named word or it returns an unnamed
temporary string that results from adding word and ending . In either case, the return copies
that string to the call site.

Returning a Reference

When a function returns a reference type, the return value is not copied. Instead, the object
itself is returned. As an example, consider a function that returns a reference to the shorter of
its two string parameters:

     // find longer of two strings
     const string &shorterString(const string &s1, const string &s2)
     {
         return s1.size() < s2.size() ? s1 : s2;
     }

The parameters and return type are references to const string . The strings are not copied
either when calling the function or when returning the result.

Never Return a Reference to a Local Object

There's one crucially important thing to understand about returning
a reference: Never return a reference to a local variable.

When a function completes, the storage in which the local objects were allocated is freed. A
reference to a local object refers to undefined memory after the function terminates. Consider
the following function:

     // Disaster: Function returns a reference to a local object



     const string &manip(const string& s)
     {
          string ret = s;
          // transform ret in some way
          return ret; // Wrong: Returning reference to a local object!
     }

This function will fail at run time because it returns a reference to a local object. When the
function ends, the storage in which ret resides is freed. The return value refers to memory that
is no longer available to the program.

One good way to ensure that the return is safe is to ask: To
what pre-existing object is the reference referring?

Reference Returns Are Lvalues

A function that returns a reference returns an lvalue. That function, therefore, can be used
wherever an lvalue is required:

     char &get_val(string &str, string::size_type ix)
     {
         return str[ix];
     }
     int main()
     {
         string s("a value");

         cout << s << endl;   // prints a value

         get_val(s, 0) = 'A'; // changes s[0] to A

         cout << s << endl;   // prints A value
         return 0;
     }

It may be surprising to assign to the return of a function, but the return is a reference. As such,
it is just a synonym for the element returned.

If we do not want the reference return to be modifiable, the return value should be declared as
const :

     const char &get_val(...



Never Return a Pointer to a Local Object

The return type for a function can be most any type. In particular, it is possible for a function to
return a pointer. For the same reasons that it is an error to return a reference to a local object,
it is also an error to return a pointer to a local object. Once the function completes, the local
objects are freed. The pointer would be a dangling pointer (Section 5.11 , p. 176 ) that refers to
a nonexistent object.

7.3.3. Recursion

A function that calls itself, either directly or indirectly, is a recursive function . An example of
a simple recursive function is one that computes the factorial of a number. The factorial of a
number n is the product of the numbers from 1 to n . The factorial of 5, for example, is 120.

     1 * 2 * 3 * 4 * 5 = 120

Exercises Section 7.3.2

Exercise
7.17:

When is it valid to return a reference? A const reference?

Exercise
7.18:

What potential run-time problem does the following function have?

     string &processText() {
         string text;
         while (cin >> text) { /* ... */ }
         // ....
         return text;
     }

Exercise
7.19:

Indicate whether the following program is legal. If so, explain what it
does; if not, make it legal and then explain it:

     int &get(int *arry, int index) { return arry[index]; }
     int main() {
         int ia[10];
         for (int i = 0; i != 10; ++i)
              get(ia, i) = 0;
     }

A natural way to solve this problem is recursively:

     // calculate val!, which is 1*2 *3 ... * val



     int factorial(int val)
     {
         if (val > 1)
             return factorial(val-1) * val;
          return 1;
     }

A recursive function must always define a stopping condition; otherwise, the function will
recurse "forever," meaning that the function will continue to call itself until the program stack is
exhausted. This is sometimes called an "infinite recursion error." In the case of factorial , the
stopping condition occurs when val is 1.

As another example, we can define a recursive function to find the greatest common divisor:

     // recursive version greatest common divisor program
     int rgcd(int v1, int v2)
     {

         if (v2 != 0)                // we're done once v2 gets to zero

             return rgcd(v2, v1%v2); // recurse, reducing v2 on each call
         return v1;
     }

In this case the stopping condition is a remainder of 0. If we call rgcd with the arguments (15,
123) , then the result is three. Table 7.1 on the next page traces the execution.

Table 7.1. Trace of rgcd(15,123)

v1 v2 Return

15 123 rgcd(123, 15)

123 15 rgcd(15, 3)

15 3 rgcd(3, 0)

3 0 3

The last call,

     rgcd(3,0)

satisfies the stopping condition. It returns the greatest common denominator, 3. This value
successively becomes the return value of each prior call. The value is said to percolate upward
until the execution returns to the function that called rgcd in the first place.



The main function may not call itself.

Exercises Section 7.3.3

Exercise
7.20:

Rewrite factorial as an iterative function.

Exercise
7.21:

What would happen if the stopping condition in factorial
were:

     if (val != 0)

 



 

7.4. Function Declarations

Just as variables must be declared before they are used, a function must be declared before it is
called. As with a variable definition (Section 2.3.5 , p. 52 ), we can declare a function separately
from its definition; a function may be defined only once but may be declared multiple times.

A function declaration consists of a return type, the function name, and parameter list. The
parameter list must contain the types of the parameters but need not name them. These three
elements are referred to as the function prototype . A function prototype describes the interface
of the function.

Function prototypes provide the interface between the programmer
who defines the function and programmers who use it. When we use a
function, we program to the function's prototype.

Parameter names in a function declaration are ignored. If a name is given in a declaration, it should
serve as a documentation aid:

     void print(int *array, int size);

Function Declarations Go in Header Files

Recall that variables are declared in header files (Section 2.9 , p. 67 ) and defined in source files.
For the same reasons, functions should be declared in header files and defined in source files.

It may be temptingand would be legalto put a function declaration directly in each source file that
uses the function. The problem with this approach is that it is tedious and error-prone. By putting
function declarations into header files, we can ensure that all the declarations for a given function
agree. If the interface to the function changes, only one declaration must be changed.

The source file that defines the function should include the
header that declares the function.

Including the header that contains a function's declaration in the same file that defines the function



lets the compiler check that the definition and declaration are the same. In particular, if the
definition and declaration agree as to parameter list but differ as to return type, the compiler will
issue a warning or error message indicating the discrepancy.

Exercises Section 7.4

Exercise
7.22:

Write the prototypes for each of the following functions:

A function named compare with two parameters that are references to
a class named matrix and with a return value of type bool .

a.

A function named change_val that returns a vector<int> iterator and
takes two parameters: one is an int and the other is an iterator for a
vector<int> .

b.

Hint: When you write these prototypes, use the name of the function as an
indicator as to what the function does. How does this hint affect the types
you use?

Exercise
7.23:

Given the following declarations, determine which calls are legal and which
are illegal. For those that are illegal, explain why.

     double calc(double);
     int count(const string &, char);
     int sum(vector<int>::iterator, vector<int>::iterator, int);
     vector<int> vec(10);

     (a) calc(23.4, 55.1);
     (b) count("abcda", 'a');
     (c) calc(66);
     (d) sum(vec.begin(), vec.end(), 3.8);

7.4.1. Default Arguments

A default argument is a value that, although not universally applicable, is the argument value that
is expected to be used most of the time. When we call the function, we may omit any argument
that has a default. The compiler will supply the default value for any argument we omit.

A default argument is specified by providing an explicit initializer for the parameter in the
parameter list. We may define defaults for one or more parameters. However, if a parameter has a
default argument, all the parameters that follow it must also have default arguments.

For example, a function to create and initialize a string intended to simulate a window can provide
default arguments for the height, width, and background character of the screen:



     string screenInit(string::size_type height = 24,
                       string::size_type width = 80,
                       char background = ' ' );

A function that provides a default argument for a parameter can be invoked with or without an
argument for this parameter. If an argument is provided, it overrides the default argument value;
otherwise, the default argument is used. Each of the following calls of screenInit is correct:

     string screen;

     screen = screenInit();       // equivalent to screenInit (24,80,' ')

     screen = screenInit(66);     // equivalent to screenInit (66,80,' ')

     screen = screenInit(66, 256);       // screenInit(66,256,' ')
     screen = screenInit(66, 256, '#');

Arguments to the call are resolved by position, and default arguments are used to substitute for the
trailing arguments of a call. If we want to specify an argument for background , we must also supply
arguments for height and width :

     screen = screenInit(, , '?'); // error, can omit only trailing arguments

     screen = screenInit( '?');    // calls screenInit('?',80,' ')

Note that the second call, which passes a single character value, is legal. Although legal, it is
unlikely to be what the programmer intended. The call is legal because '?' is a char , and a char
can be promoted to the type of the leftmost parameter. That parameter is string::size_type ,
which is an unsigned integral type. In this call, the char argument is implicitly promoted to
string::size_type , and passed as the argument to height .

Because char is an integral type (Section 2.1.1 , p. 34 ), it is legal to
pass a char to an int parameter and vice versa. This fact can lead to
various kinds of confusion, one of which arises in functions that take
both char and int parametersit can be easy for callers to pass the
arguments in the wrong order. Using default arguments can compound
this problem.

Part of the work of designing a function with default arguments is ordering the parameters so that
those least likely to use a default value appear first and those most likely to use a default appear
last.

Default Argument Initializers

A default argument can be any expression of an appropriate type:



     string::size_type screenHeight();
     string::size_type screenWidth(string::size_type);
     char screenDefault(char = ' ');
     string screenInit(
         string::size_type height = screenHeight(),
         string::size_type width = screenWidth(screenHeight()),
         char background = screenDefault());

When the default argument is an expression, and the default is used as the argument, then the
expression is evaluated at the time the function is called. For example, screenDefault is called to
obtain a value for background every time screenInit is called without a third argument.

Constraints on Specifying Default Arguments

We can specify default argument(s) in either the function definition or declaration. However, a
parameter can have its default argument specified only once in a file. The following is an error:

     // ff.h
     int ff(int = 0);

     // ff.cc
     #include "ff.h"
     int ff(int i = 0) { /* ... */ } // error

Default arguments ordinarily should be specified with the declaration
for the function and placed in an appropriate header.

If a default argument is provided in the parameter list of a function definition, the default argument
is available only for function calls in the source file that contains the function definition.

 



 

7.5. Local Objects

In C++, names have scope, and objects have lifetimes . To understand how functions operate,
it is important to understand both of these concepts. The scope of a name is the part of the
program's text in which that name is known. The lifetime of an object is the time during the
program's execution that the object exists.

The names of parameters and variables defined within a function are in the scope of the
function: The names are visible only within the function body. As usual, a variable's name can
be used from the point at which it is declared or defined until the end of the enclosing scope.

Exercises Section 7.4.1

Exercise
7.24:

Which, if any, of the following declarations are errors? Why?

     (a) int ff(int a, int b = 0, int c = 0);
     (b) char *init(int ht = 24, int wd, char bckgrnd);

Exercise
7.25:

Given the following function declarations and calls, which, if any, of
the calls are illegal? Why? Which, if any, are legal but unlikely to
match the programmer's intent? Why?

     // declarations
     char *init(int ht, int wd = 80, char bckgrnd = ' ');

     (a) init();
     (b) init(24,10);
     (c) init(14, '*');

Exercise
7.26:

Write a version of make_plural with a default argument of 's' . Use
that version to print singular and plural versions of the words
"success" and "failure".

7.5.1. Automatic Objects

By default, the lifetime of a local variable is limited to the duration of a single execution of the
function. Objects that exist only while a function is executing are known as automatic objects
. Automatic objects are created and destroyed on each call to a function.



The automatic object corresponding to a local variable is created when the function control path
passes through the variable's definition. If the definition contains an initializer, then the object is
given an initial value each time the object is created. Uninitialized local variables of built-in type
have undefined values. When the function terminates, the automatic objects are destroyed.

Parameters are automatic objects. The storage in which the parameters reside is created when
the function is called and is freed when the function terminates.

Automatic objects, including parameters, are destroyed at the end of the block in which they
were defined. Parameters are defined in the function's block and so are destroyed when the
function terminates. When a function exits, its local storage is deallocated. After the function
exits, the values of its automatic objects and parameters are no longer accessible.

7.5.2. Static Local Objects

It is can be useful to have a variable that is in the scope of a function but whose lifetime persists
across calls to the function. Such objects are defined as static .

A static local object is guaranteed to be initialized no later than the first time that program

execution passes through the object's definition. Once it is created, it is not destroyed until the
program terminates; local static s are not destroyed when the function ends. Local static s
continue to exist and hold their value across calls to the function. As a trivial example, consider
a function that counts how often it is called:

     size_t count_calls()
     {
          static size_t ctr = 0; // value will persist across calls
          return ++ctr;
     }
     int main()
     {
         for (size_t i = 0; i != 10; ++i)
             cout << count_calls() << endl;
         return 0;
     }

This program will print the numbers from 1 through 10 inclusive.

Before count_calls is called for the first time, ctr is created and given an initial value of 0 .
Each call increments ctr and returns its current value. Whenever count_calls is executed, the
variable ctr already exists and has whatever value was in the variable the last time the function
exited. Thus, on the second invocation, the value is 1 , on the third it is 2 , and soon.



Exercises Section 7.5.2

Exercise
7.27:

Explain the differences between a parameter, a local variable
and a static local variable. Give an example of a program in
which each might be useful.

Exercise
7.28:

Write a function that returns 0 when it is first called and then
generates numbers in sequence each time it is called again.

 



 

7.6. Inline Functions

Recall the function we wrote on page 248 that returned a reference to the shorter of its two
string parameters:

     // find longer of two strings
     const string &shorterString(const string &s1, const string &s2)
     {
         return s1.size() < s2.size() ? s1 : s2;
     }

The benefits of defining a function for such a small operation include:

It is easier to read and understand a call to shorterString than it would be to read and
interpret an expression that used the equivalent conditional expression in place of the
function call.

If a change needs to be made, it is easier to change the function than to find and change
every occurrence of the equivalent expression.

Using a function ensures uniform behavior. Each test is guaranteed to be implemented in
the same manner.

The function can be reused rather than rewritten for other applications.

There is, however, one potential drawback to making shorterString a function: Calling a
function is slower than evaluating the equivalent expression. On most machines, a function call
does a lot of work: registers are saved before the call and restored after the return; the
arguments are copied; and the program branches to a new location.

inline Functions Avoid Function Call Overhead

A function specified as inline (usually) is expanded "in line" at each point in the program in
which it is invoked. Assuming we made shorterString an inline function, then this call

         cout << shorterString(s1, s2) << endl;

would be expanded during compilation into something like

         cout << (s1.size() < s2.size() ? s1 : s2)
              << endl;



The run-time overhead of making shorterString a function is thus removed.

We can define shorterString as an inline function by specifying the keyword inline before the
function's return type:

     // inline version: find longer of two strings
     inline const string &
     shorterString(const string &s1, const string &s2)
     {
             return s1.size() < s2.size() ? s1 : s2;
     }

The inline specification is only a request to the compiler. The
compiler may choose to ignore this request.

In general, the inline mechanism is meant to optimize small, straight-line functions that are
called frequently. Many compilers will not inline a recursive function. A 1,200-line function is
also not likely to be explanded inline.

Put inline Functions in Header Files

Unlike other function definitions, inlines should be defined in header
files.

To expand the code of an inline function at the point of call, the compiler must have access to
the function definition. The function prototype is insufficient.

An inline function may be defined more than once in a program as long as the definition
appears only once in a given source file and the definition is exactly the same in each source
file. By putting inline functions in headers, we ensure that the same definition is used whenever
the function is called and that the compiler has the function definition available at the point of
call.



Whenever an inline function is added to or changed in a header
file, every source file that uses that header must be recompiled.

Exercises Section 7.6

Exercise
7.29:

Which one of the following declarations and definitions would you put
in a header? In a program text file? Explain why.

     (a) inline bool eq(const BigInt&, const BigInt&) {...}
     (b) void putValues(int *arr, int size);

Exercise
7.30:

Rewrite the is Shorter function from page 235 as an inline function.

 



 

7.7. Class Member Functions

In Section 2.8 (p. 63 ) we began the definition of the Sales_item class used in solving the
bookstore problem from Chapter 1 . Now that we know how to define ordinary functions, we can
continue to fill in our class by defining the member functions of this class.

We define member functions similarly to how we define ordinary functions. As with any function,
a member function consists of four parts:

A return type for the function

The function name

A (possibly empty) comma-separated list of parameters

The function body, which is contained between a pair of curly braces

As we know, the first three of these parts constitute the function prototype. The function
prototype defines all the type information related to the function: what its return type is, the
function name, and what types of arguments may be passed to it. The function prototype must
be defined within the class body. The body of the function, however, may be defined within the
class itself or outside the class body.

With this knowledge, let's look at our expanded class definition, to which we've added two new
members: the member functions avg_price and same_isbn . The avg_price function has an
empty parameter list and returns a value of type double . The same_isbn function returns a bool
and takes a single parameter of type reference to const Sales_item .

     class Sales_item {
     public:

         // operations on Sales_item objects
         double avg_price() const;
         bool same_isbn(const Sales_item &rhs) const
              { return isbn == rhs.isbn; }
     // private members as before
     private:
         std::string isbn;
         unsigned units_sold;
         double revenue;
     };

We'll explain the meaning of the const that follows the parameter lists shortly, but first we need
to explain how member functions are defined.

7.7.1. Defining the Body of a Member Function

We must declare all the members of a class within the curly braces that delimit the class
definition. There is no way to subsequently add any members to the class. Members that are



functions must be defined as well as declared. We can define a member function either inside or
outside of the class definition. In Sales_item , we have one example of each: same_isbn is
defined inside the Sales_item class, whereas avg_price is declared inside the class but defined
elsewhere.

A member function that is defined inside the class is implicitly treated as an inline function
(Section 7.6 , p. 256 ).

Let's look in more detail at the definition of same_isbn:

     bool same_isbn(const Sales_item &rhs) const
         { return isbn == rhs.isbn; }

As with any function, the body of this function is a block. In this case, the block contains a
single statement that returns the result of comparing the value of the isbn data members of two
Sales_item objects.

The first thing to note is that the isbn member is private . Even though these members are
private , there is no error.

A member function may access the private members of its class.

More interesting is understanding from which Sales_item objects does the function get the
values that it compares. The function refers both to isbn and rhs.isbn . Fairly clearly, rhs.isbn
uses the isbn member from the argument passed to the function. The unqualified use of isbn is
more interesting. As we shall see, the unqualified isbn refers to the isbn member of the object
on behalf of which the function is called.

Member Functions Have an Extra, Implicit Parameter

When we call a member function, we do so on behalf of an object. For example, when we called
same_isbn in the bookstore program on page 26 , we executed the same_isbn member on the
object named total :

     if (total.same_isbn(trans))

In this call, we pass the object trans . As part of executing the call, the object trans is used to
initialize the parameter rhs . Thus, in this call, rhs.isbn is a reference to trans.isbn .

The same argument-binding process is used to bind the unqualified use of isbn to the object
named total . Each member function has an extra, implicit parameter that binds the function to
the object on which the function was called. When we call same_isbn on the object named total



, that object is also passed to the function. When same_isbn refers to isbn , it is implicitly
referring to the isbn member of the object on which the function was called. The effect of this
call is to compare total.isbn with TRans.isbn .

Introducing this

Each member function (except for static member functions, which we cover in Section 12.6 (p.
467 )) has an extra, implicit parameter named this . When a member function is called, the

this parameter is initialized with the address of the object on which the function was invoked.
To understand a member function call, we might think that when we write

     total.same_isbn(trans);

it is as if the compiler rewrites the call as

     // pseudo-code illustration of how a call to a member function is translated
     Sales_item::same_isbn(&total, trans);

In this call, the data member isbn inside same_isbn is bound to the one belonging to total .

Introducing const Member Functions

We now can understand the role of the const that follows the parameter lists in the declarations
of the Sales_item member functions: That const modifies the type of the implicit this
parameter. When we call total.same_isbn(trans) , the implicit this parameter will be a const
Sales_Item* that points to total . It is as if the body of same_isbn were written as

     // pseudo-code illustration of how the implicit this pointer is used

     // This code is illegal: We may not explicitly define the this pointer ourselves

     // Note that this is a pointer to const because same_isbn is a const member
     bool Sales_item::same_isbn(const Sales_item *const this,
                               const Sales_item &rhs) const
     { return (this->isbn == rhs.isbn); }

A function that uses const in this way is called a const member function . Because this is a

pointer to const , a const member function cannot change the object on whose behalf the
function is called. Thus, avg_price and same_isbn may read but not write to the data members
of the objects on which they are called.

A const object or a pointer or reference to a const object may be
used to call only const member functions. It is an error to try to call
a nonconst member function on a const object or through a pointer
or reference to a const object.



Using the this Pointer

Inside a member function, we need not explicitly use the this pointer to access the members of
the object on which the function was called. Any unqualified reference to a member of our class
is assumed to be a reference through this :

     bool same_isbn(const Sales_item &rhs) const
         { return isbn == rhs.isbn; }

The uses of isbn in this function are as if we had written this->units_sold or this->revenue .

The this parameter is defined implicitly, so it is unnecessary and in fact illegal to include the
this pointer in the function's parameter list. However, in the body of the function we can refer
to the this pointer explicitly. It is legal, although unnecessary, to define same_isbn as follows:

     bool same_isbn(const Sales_item &rhs) const
         { return this->isbn == rhs.isbn; }

7.7.2. Defining a Member Function Outside the Class

Member functions defined outside the class definition must indicate that they are members of
the class:

     double Sales_item::avg_price() const
     {
         if (units_sold)
             return revenue/units_sold;
         else
             return 0;
     }

This definition is like the other functions we've seen: It has a return type of double and an
empty parameter list enclosed in parentheses after the function name. What is new is the const
following the parameter list and the form of the function name. The function name

     Sales_item::avg_price

uses the scope operator (Section 1.2.2 , p. 8 ) to say that we are defining the function named
avg_price that is defined in the scope of the Sales_item class.



The const that follows the parameter list reflects the way we declared the member funcion
inside the Sales_item header. In any definition, the return type and parameter list must match
the declaration, if any, of the function. In the case of a member function, the declaration is as it
appears in the class definition. If the function is declared to be a const member function, then
the const after the parameter list must be included in the definition as well.

We can now fully understand the first line of this code: It says we are defining the avg_price
function from the Sales_item class and that the function is a const member. The function takes
no (explicit) parameters and returns a double .

The body of the function is easier to understand: It tests whether units_sold is nonzero and, if
so, return s the result of dividing revenue by units_sold . If units_sold is zero, we can't safely
do the divisiondividing by zero has undefined behavior. In this program, we return 0, indicating
that if there were no sales the average price would be zero. Depending on the sophistication of
our error-handling strategy, we might instead throw an exception (Section 6.13 , p. 215 ).

7.7.3. Writing the Sales_item Constructor

There's one more member that we need to write: a constructor. As we learned in Section 2.8 (p.
65 ), class data members are not initialized when the class is defined. Instead, data members
are initialized through a constructor.

Constructors Are Special Member Functions

A constructor is a special member function that is distinguished from other member functions
by having the same name as its class. Unlike other member functions, constructors have no
return type. Like other member functions they take a (possibly empty) parameter list and have
a function body. A class can have multiple constructors. Each constructor must differ from the
others in the number or types of its parameters.

The constructor's parameters specify the initializers that may be used when creating objects of
the class type. Ordinarily these initializers are used to initialize the data members of the newly
created object. Constructors usually should ensure that every data member is initialized.

The Sales_item class needs to explicitly define only one constructor, the default constructor ,
which is the one that takes no arguments. The default constructor says what happens when we
define an object but do not supply an (explicit) initializer:

     vector<int> vi;       // default constructor: empty vector

     string s;             // default constructor: empty string
     Sales_item item;      // default constructor: ???

We know the behavior of the string and vector default constructors: Each of these constructors
initializes the object to a sensible default state. The default string constructor generates an
empty string, the one that is equal to "" . The default vector constructor generates a vector
with no elements.

Similarly, we'd like the default constructor for Sales_items to generate an empty Sales_item .
Here "empty" means an object in which the isbn is the empty string and the units_sold and
revenue members are initialized to zero.



Defining a Constructor

Like any other member function, a constructor is declared inside the class and may be defined
there or outside the class. Our constructor is simple, so we will define it inside the class body:

     class Sales_item {
     public:

         // operations on Sales_item objects
         double avg_price() const;
         bool same_isbn(const Sales_item &rhs) const
             { return isbn == rhs.isbn; }
         // default constructor needed to initialize members of built-in type
         Sales_item(): units_sold(0), revenue(0.0) { }
     // private members as before
     private:
         std::string isbn;
         unsigned units_sold;
         double revenue;
     };

Before we explain the constructor definition, note that we put the constructor in the public
section of the class. Ordinarily, and certainly in this case, we want the constructor(s) to be part
of the interface to the class. After all, we want code that uses the Sales_item type to be able to
define and initialize Sales_item objects. Had we made the constructor private , it would not be
possible to define Sales_item objects, which would make the class pretty useless.

As to the definition itself

     // default constructor needed to initialize members of built-in type
     Sales_item(): units_sold(0), revenue(0.0) { }

it says that we are defining a constructor for the Sales_item class that has an empty parameter
list and an empty function body. The interesting part is the colon and the code between it and
the curly braces that define the (empty) function body.

Constructor Initialization List

The colon and the following text up to the open curly is the constructor initializer list . A
constructor initializer list specifies initial values for one or more data members of the class. It
follows the constructor parameter list and begins with a colon. The constructor initializer is a list
of member names, each of which is followed by that member's initial value in parentheses.
Multiple member initializations are separated by commas.

This initializer list says that both the units_sold and revenue members should be initialized to 0.
Whenever a Sales_item object is created, these members will start out as 0. We need not
specify an initial value for the isbn member. Unless we say otherwise in the constructor
initializer list, members that are of class type are automatically initialized by that class' default
constructor. Hence, isbn is initialized by the string default constructor, meaning that isbn
initially is the empty string. Had we needed to, we could have specified a default value for isbn
in the initializer list as well.



Having explained the initializer list, we can now understand the constructor: Its parameter list
and the function body are both empty. The parameter list is empty because we are defining the
constructor that is run by default, when no initializer is present. The body is empty because
there is no work to do other than initializing units_sold and revenue . The initializer list explicitly
initializes units_sold and revenue to zero and implicitly initializes isbn to the empty string .
Whenever we create a Sales_item object, the data members will start out with these values.

Synthesized Default Constructor

If we do not explicitly define any constructors, then the compiler will
generate the default constructor for us.

The compiler-created default constructor is known as a synthesized default constructor . It
initializes each member using the same rules as are applied for variable initializations (Section
2.3.4 , p. 50 ). Members that are of class type, such as isbn , are initialized by using the default
constructor of the member's own class. The initial value of members of built-in type depend on
how the object is defined. If the object is defined at global scope (outside any function) or is a
local static object, then these members will be initialized to 0. If the object is defined at local
scope, these members are uninitialized. As usual, using an uninitialized member for any purpose
other than giving it a value is undefined.

The synthesized default constructor often suffices for classes that
contain only members of class type. Classes with members of built-
in or compound type should usually define their own default
constructors to initialize those members.

Because the synthesized constructor does not automatically initialize members of built-in type,
we had to define the Sales_item default constructor explicitly.

7.7.4. Organizing Class Code Files

As we saw in Section 2.9 (p. 67 ), class declarations ordinarily are placed in headers. Usually,
member functions defined outside the class are put in ordinary source files. C++ programmers
tend to use a simple naming convention for headers and the associated class definition code.
The class definition is put in a file named type .h or type .H , where type is the name of the
class defined in the file. Member function definitions usually are stored in a source file whose
name is the name of the class. Following this convention we put the Sales_item class definition



in a file named Sales_item.h . Any program that wants to use the class must include that
header. We should put the definition of our Sales_item functions in a file named Sales_item.cc .
That file, like any other file that uses the Sales_item type, would include the Sales_item.h
header.

Exercises Section 7.7.4

Exercise
7.31:

Write your own version of the Sales_item class, adding two
new public members to read and write Sales_item objects.
These functions should operate similarly to the input and
output operators used in Chapter 1 . Transactions should look
like the ones defined in that chapter as well. Use this class to
read and write a set of transactions.

Exercise
7.32:

Write a header file to contain your version of the Sales_item
class. Use ordinary C++ conventions to name the header and
any associated file needed to hold non-inline functions
defined outside the class.

Exercise
7.33:

Add a member that adds two Sales_items . Use the revised
class to reimplement your solution to the average price
problem presented in Chapter 1 .

 



 

7.8. Overloaded Functions

Two functions that appear in the same scope are overloaded if they have the same name but
have different parameter lists.

If you have written an arithmetic expression in a programming language, you have used an
overloaded function. The expression

     1 + 3

invokes the addition operation for integer operands, whereas the expression

     1.0 + 3.0

invokes a different operation that adds floating-point operands. It is the compiler's
responsibility, not the programmer's, to distinguish between the different operations and to
apply the appropriate operation depending on the operands' types.

Similarly, we may define a set of functions that perform the same general action but that apply
to different parameter types. These functions may be called without worrying about which
function is invoked, much as we can add int s or double s without worrying whether integer
arithmetic or floating-point arithmetic is performed.

Function overloading can make programs easier to write and to understand by eliminating the
need to inventand remembernames that exist only to help the compiler figure out which function
to call. For example, a database application might well have several lookup functions that could
do the lookup based on name, phone number, account number, and so on. Function overloading
allows us to define a collection of functions, each named lookup , that differ in terms of what
values they use to do the search. We can call lookup passing a value of any of several types:

     Record lookup(const Account&);  // find by Account

     Record lookup(const Phone&);    // find by Phone

     Record lookup(const Name&);     // find by Name
     Record r1, r2;

     r1 = lookup(acct);                  // call version that takes an Account

     r2 = lookup(phone);                 // call version that takes a Phone

Here, all three functions share the same name, yet they are three distinct functions. The
compiler uses the argument type(s) passed in the call to figure out which function to call.

To understand function overloading, we must understand how to define a set of overloaded
functions and how the compiler decides which function to use for a given call. We'll review these
topics in the remainder of this section.



There may be only one instance of main in any program. The main
function may not be overloaded.

Distinguishing Overloading from Redeclaring a Function

If the return type and parameter list of two functions declarations match exactly, then the
second declaration is treated as a redeclaration of the first. If the parameter lists of two
functions match exactly but the return types differ, then the second declaration is an error:

     Record lookup(const Account&);
     bool lookup(const Account&); // error: only return type is different

Functions cannot be overloaded based only on differences in the return type.

Two parameter lists can be identical, even if they don't look the same:

     // each pair declares the same function
     Record lookup(const Account &acct);
     Record lookup(const Account&); // parameter names are ignored
     typedef Phone Telno;
     Record lookup(const Phone&);

     Record lookup(const Telno&); // Telno and Phone are the same type
     Record lookup(const Phone&, const Name&);
     // default argument doesn't change the number of parameters
     Record lookup(const Phone&, const Name& = "");

     // const is irrelevent for nonreference parameters
     Record lookup(Phone);
     Record lookup(const Phone); // redeclaration

In the first pair, the first declaration names its parameter. Parameter names are only a
documentation aid. They do not change the parameter list.

In the second pair, it looks like the types are different, but Telno is not a new type; it is a
synonym for Phone . A typedef name provides an alternative name for an existing data type; it
does not create a new data type. Therefore, two parameters that differ only in that one uses a
typedef and the other uses the type to which the typedef corresponds are not different.

In the third pair, the parameter lists differ only in their default arguments. A default argument
doesn't change the number of parameters. The function takes two arguments, whether they are
supplied by the user or by the compiler.

The last pair differs only as to whether the parameter is const . This difference has no effect on
the objects that can be passed to the function; the second declaration is treated as a
redeclaration of the first. The reason follows from how arguments are passed. When the



parameter is copied, whether the parameter is const is irrelevantthe function executes on a
copy. Nothing the function does can change the argument. As a result, we can pass a const
object to either a const or nonconst parameter. The two parameters are indistinguishable.

It is worth noting that the equivalence between a parameter and a const parameter applies only
to nonreference parameters. A function that takes a const reference is different from on that
takes a nonconst reference. Similarly, a function that takes a pointer to a const type differs
from a function that takes a pointer to the nonconst object of the same type.

Advice: When Not to Overload a Function Name

Although overloading can be useful in avoiding the necessity to invent (and
remember) names for common operations, it is easy to take this advantage
too far. There are some cases where providing different function names
adds information that makes the program easier to understand. Consider a
set of member functions for a Screen class that move Screen 's cursor.

     Screen& moveHome();
     Screen& moveAbs(int, int);
     Screen& moveRel(int, int, char *direction);

It might at first seem better to overload this set of functions under the
name move :

     Screen& move();
     Screen& move(int, int);
     Screen& move(int, int, *direction);

However, by overloading these functions we've lost information that was
inherent in the function names and by doing so may have rendered the
program more obscure.

Although cursor movement is a general operation shared by all these
functions, the specific nature of that movement is unique to each of these
functions. moveHome , for example, represents a special instance of cursor

movement. Which of the two calls is easier to understand for a reader of
the program? Which of the two calls is easier to remember for a
programmer using the Screen class?

     // which is easier to understand?
     myScreen.home(); // we think this one!
     myScreen.move();

7.8.1. Overloading and Scope



We saw in the program on page 54 that scopes in C++ nest. A name declared local to a function
hides the same name declared in the global scope (Section 2.3.6 , p. 54 ). The same is true for
function names as for variable names:

     /* Program for illustration purposes only:
      * It is bad style for a function to define a local variable
      * with the same name as a global name it wants to use
      */

     string init(); // the name init has global scope
     void fcn()
     {

         int init = 0;        // init is local and hides global init

         string s = init();   // error: global init is hidden
     }

Normal scoping rules apply to names of overloaded functions. If we declare a function locally,
that function hides rather than overloads the same function declared in an outer scope. As a
consequence, declarations for every version of an overloaded function must appear in the same
scope.

In general, it is a bad idea to declare a function locally. Function
declarations should go in header files.

To explain how scope interacts with overloading we will violate this practice and use a
local function declaration.

As an example, consider the following program:

     void print(const string &);

     void print(double);   // overloads the print function
     void fooBar(int ival)
     {

         void print(int);   // new scope: hides previous instances of print

         print("Value: ");  // error: print(const string &) is hidden

         print(ival); // ok: print(int) is visible

         print(3.14); // ok: calls print(int); print(double) is hidden
     }

The declaration of print(int) in the function fooBar hides the other declarations of print . It is
as if there is only one print function available: the one that takes a single int parameter. Any
use of the name print at this scopeor a scope nested in this scopewill resolve to this instance.



When we call print , the compiler first looks for a declaration of that name. It finds the local
declaration for print that takes an int . Once the name is found, the compiler does no further
checks to see if the name exists in an outer scope. Instead, the compiler assumes that this
declaration is the one for the name we are using. What remains is to see if the use of the name
is valid

The first call passes a string literal but the function parameter is an int . A string literal cannot
be implicitly converted to an int , so the call is an error. The print(const string&) function,
which would have matched this call, is hidden and is not considered when resolving this call.

When we call print passing a double , the process is repeated. The compiler finds the local
definition of print(int) . The double argument can be converted to an int , so the call is legal.

In C++ name lookup happens before type checking.

Had we declared print(int) in the same scope as the other print functions, then it would be
another overloaded version of print . In that case, these calls would be resolved differently:

     void print(const string &);

     void print(double); // overloads print function
     void print(int);    // another overloaded instance
     void fooBar2(int ival)
     {

         print("Value: "); // ok: calls print(const string &)

         print(ival);      // ok: print(int)

         print(3.14);      // ok: calls print (double)
     }

Now when the compiler looks for the name print it finds three functions with that name. On
each call it selects the version of print that matches the argument that is passed.

7.8.2. Function Matching and Argument Conversions

Function overload resolution (also known as function matching ) is the process by which a
function call is associated with a specific function from a set of overloaded functions. The
compiler matches a call to a function automatically by comparing the actual arguments used in
the call with the parameters offered by each function in the overload set. There are three
possible outcomes:

The compiler finds one function that is a best match for the actual arguments and
generates code to call that function.

1.

There is no function with parameters that match the arguments in the call, in which case2.

3.



1.

the compiler indicates a compile-time error.
2.

There is more than one function that matches and none of the matches is clearly best. This
case is also an error; the call is ambiguous .

3.

Most of the time it is straghtforward to determine whether a particular call is legal and if so,
which function will be invoked by the compiler. Often the functions in the overload set differ in
terms of the number of arguments, or the types of the arguments are unrelated. Function
matching gets tricky when multiple functions have parameters that are related by conversions
(Section 5.12 , p. 178 ). In these cases, programmers need to have a good grasp of the process
of function matching.

Exercises Section 7.8.1

Exercise
7.34:

Define a set of overloaded functions named error that would match
the following calls:

     int index, upperBound;
     char selectVal;
     // ...
     error("Subscript out of bounds: ", index, upperBound);
     error("Division by zero");
     error("Invalid selection", selectVal);

Exercise
7.35:

Explain the effect of the second declaration in each one of the
following sets of declarations. Indicate which, if any, are illegal.

     (a) int calc(int, int);
         int calc(const int, const int);

     (b) int get();
         double get();

     (c) int *reset(int *);
         double *reset(double *);

7.8.3. The Three Steps in Overload Resolution

Consider the following set of functions and function call:

     void f();
     void f(int);
     void f(int, int);



     void f(double, double = 3.14);

     f(5.6);  // calls void f(double, double)

Candidate Functions

The first step of function overload resolution identifies the set of overloaded functions
considered for the call. The functions in this set are the candidate functions . A candidate
function is a function with the same name as the function that is called and for which a
declaration is visible at the point of the call. In this example, there are four candidate functions
named f .

Determining the Viable Functions

The second step selects the functions from the set of candidate functions that can be called with
the arguments specified in the call. The selected functions are the viable functions . To be
viable, a function must meet two tests. First, the function must have the same number of
parameters as there are arguments in the call. Second, the type of each argument must
matchor be convertible tothe type of its corresponding parameter.

When a function has default arguments (Section 7.4.1 , p. 253 ), a
call may appear to have fewer arguments than it actually does.
Default arguments are arguments and are treated the same way as
any other argument during function matching.

For the call f(5.6) , we can eliminate two of our candidate functions because of a mismatch on
number of arguments. The function that has no parameters and the one that has two int
parameters are not viable for this call. Our call has only one argument, and these functions have
zero and two parameters, respectively.

On the other hand, the function that takes two double s might be viable. A call to a function
declaration that has a default argument (Section 7.4.1 , p. 253 ) may omit that argument. The
compiler will automatically supply the default argument value for the omitted argument. Hence,
a given call might have more arguments than appear explicitly.

Having used the number of arguments to winnow the potentially viable functions, we must now
look at whether the argument types match those of the parameters. As with any call, an
argument might match its parameter either because the types match exactly or because there is
a conversion from the argument type to the type of the parameter. In the example, both of our
remaining functions are viable.

f(int) is a viable function because a conversion exists that can convert the argument of
type double to the parameter of type int .

f(double, double) is a viable function because a default argument is provided for the



function's second parameter and its first parameter is of type double , which exactly
matches the type of the parameter.

If there are no viable functions, then the call is in error.

Finding the Best Match, If Any

The third step of function overload resolution determines which viable function has the best
match for the actual arguments in the call. This process looks at each argument in the call and
selects the viable function (or functions) for which the corresponding parameter best matches
the argument. The details of "best" here will be explained in the next section, but the idea is
that the closer the types of the argument and parameter are to each other, the better the
match. So, for example, an exact type match is better than a match that requires a conversion
from the argument type to the parameter type.

In our case, we have only one explicit argument to consider. That argument has type double .
To call f(int) , the argument would have to be converted from double to int . The other viable
function, f(double, double) , is an exact match for this argument. Because an exact match is
better than a match that requires a conversion, the compiler will resolve the call f(5.6) as a call
to the function that has two double parameters.

Overload Resolution with Multiple Parameters

Function matching is more complicated if there are two or more explicit arguments. Given the
same functions named f , let's analyze the following call:

     f(42, 2.56);

The set of viable functions is selected in the same way. The compiler selects those functions that
have the required number of parameters and for which the argument types match the
parameter types. In this case, the set of viable functions are f(int, int) and f(double, double)
. The compiler then determines argument by argument which function is (or functions are) the
best match. There is a match if there is one and only one function for which

The match for each argument is no worse than the match required by any other viable
function.

1.

There is at least one argument for which the match is better than the match provided by
any other viable function.

2.

If after looking at each argument there is no single function that is preferable, then the call is in
error. The compiler will complain that the call is ambiguous.



In this call, when we look only at the first argument, we find that the function f(int, int) is an
exact match. To match the second function, the int argument 42 must be converted to a double
. A match through a built-in conversion is "less good" than one that is exact. So, considering
only this parameter, the function that takes two int s is a better match than the function that
takes two double s.

However, when we look at the second argument, then the function that takes two double s is an
exact match to the argument 2.56 . Calling the version of f that takes two int s would require
that 2.56 be converted from double to int . When we consider only the second parameter, then
the function f(double, double) is the better match.

This call is therefore ambiguous: Each viable function is a better match on one of the arguments
to the call. The compiler will generate an error. We could force a match by explicitly casting one
of our arguments:

     f(static_cast<double>(42), 2.56);  // calls f(double, double)

     f(42, static_cast<int>(2.56));     // calls f(int, int)

In practice, arguments should not need casts when calling
over-loaded functions: The need for a cast means that the
parameter sets are designed poorly.

7.8.4. Argument-Type Conversions

In order to determine the best match, the compiler ranks the conversions that could be used to
convert each argument to the type of its corresponding parameter. Conversions are ranked in
descending order as follows:



Exercises Section 7.8.3

Exercise
7.36:

What is a candidate function? What is a viable function?

Exercise
7.37:

Given the declarations for f , determine whether the following
calls are legal. For each call list the viable functions, if any. If
the call is illegal, indicate whether there is no match or why
the call is ambiguous. If the call is legal, indicate which
function is the best match.

     (a) f(2.56, 42);
     (b) f(42);
     (c) f(42, 0);
     (d) f(2.56, 3.14);

An exact match. The argument and parameter types are the same.1.

Match through a promotion (Section 5.12.2 , p. 180 ).2.

Match through a standard conversion (Section 5.12.3 , p. 181 ).3.

Match through a class-type conversion. (Section 14.9 (p. 535 ) covers these conversions.)4.

Promotions and conversions among the built-in types can yield
surprising results in the context of function matching. Fortunately,
well-designed systems rarely include functions with parameters as
closely related as those in the following examples.

These examples bear study to cement understanding both of function matching in particular and
of the relationships among the built-in types in general.

Matches Requiring Promotion or Conversion

Promotions or conversions are applied when the type of the argument can be promoted or
converted to the appropriate parameter type using one of the standard conversions.

One important point to realize is that the small integral types promote to int . Given two
functions, one of which takes an int and the other a short , the int version will be a better



match for a value of any integral type other than short , even though short might appear on the
surface to be a better match:

     void ff(int);
     void ff(short);

     ff('a');    // char promotes to int, so matches f(int)

A character literal is type char , and chars are promoted to int . That promoted type matches
the type of the parameter of function ff(int) . A char could also be converted to short , but a
conversion is a "less good" match than a promotion. And so this call will be resolved as a call to
ff (int) .

A conversion that is done through a promotion is preferred to another standard conversion. So,
for example, a char is a better match for a function taking an int than it is for a function taking
a double . All other standard conversions are treated as equivalent. The conversion from char to
unsigned char , for example, does not take precedence over the conversion from char to double
. As a concrete example, consider:

     extern void manip(long);
     extern void manip(float);
     manip(3.14);  // error: ambiguous call

The literal constant 3.14 is a double . That type could be converted to either long or float .
Because there are two possible standard conversions, the call is ambiguous. No one standard
conversion is given precedence over another.

Parameter Matching and Enumerations

Recall that an object of enum type may be initialized only by another object of that enum type or
one of its enumerators (Section 2.7 , p. 63 ). An integral object that happens to have the same
value as an enumerator cannot be used to call a function expecting an enum argument:

     enum Tokens {INLINE = 128, VIRTUAL = 129};
     void ff(Tokens);
     void ff(int);
     int main() {
         Tokens curTok = INLINE;

         ff(128);    // exactly matches ff(int)

         ff(INLINE); // exactly matches ff(Tokens)

         ff(curTok); // exactly matches ff(Tokens)
         return 0;
     }

The call that passes the literal 128 matches the version of ff that takes an int .

Although we cannot pass an integral value to a enum parameter, we can pass an enum to a
parameter of integral type. When we do so, the enum value promotes to int or to a larger
integral type. The actual promotion type depends on the values of the enumerators. If the



function is overloaded, the type to which the enum promotes determines which function is called:

     void newf(unsigned char);
     void newf(int);
     unsigned char uc = 129;

     newf(VIRTUAL); // calls newf(int)

     newf(uc);      // calls newf(unsigned char)

The enum Tokens has only two enumerators, the largest of which has a value of 129. That value
can be represented by the type unsigned char , and many compilers would store the enum as an
unsigned char . However, the type of VIRTUAL is not unsigned char . Enumerators and values of
an enum type, are not promoted to unsigned char , even if the values of the enumerators would
fit.

When using overloaded functions with enum parameters, remember:
Two enumeration types may behave quite differently during
function overload resolution, depending on the value of their
enumeration constants. The enumerators determine the type to
which they promote. And that type is machine-dependent.

Overloading and const Parameters

Whether a parameter is const only matters when the parameter is a
reference or pointer.

We can overload a function based on whether a reference parameter refers to a const or
nonconst type. Overloading on const for a reference parameter is valid because the compiler
can use whether the argument is const to determine which function to call:

     Record lookup(Account&);
     Record lookup(const Account&); // new function
     const Account a(0);
     Account b;

     lookup(a);   // calls lookup(const Account&)

     lookup(b);   // calls lookup(Account&)



If the parameter is a plain reference, then we may not pass a const object for that parameter. If
we pass a const object, then the only function that is viable is the version that takes a const
reference.

When we pass a nonconst object, either function is viable. We can use a nonconst object to
initializer either a const or nonconst reference. However, initializing a const reference to a
nonconst object requires a conversion, whereas initializing a nonconst parameter is an exact
match.

Pointer parameters work in a similar way. We may pass the address of a const object only to a
function that takes a pointer to const . We may pass a pointer to a nonconst object to a function
taking a pointer to a const or nonconst type. If two functions differ only as to whether a pointer
parameter points to const or nonconst , then the parameter that points to the nonconst type is
a better match for a pointer to a nonconst object. Again, the compiler can distinguish: If the
argument is const , it calls the function that takes a const* ; otherwise, if the argument is a
nonconst , the function taking a plain pointer is called.

It is worth noting that we cannot overload based on whether the pointer itself is const :

     f(int *);
     f(int *const); // redeclaration

Here the const applies to the pointer, not the type to which the pointer points. In both cases the
pointer is copied; it makes no difference whether the pointer itself is const . As we noted on
page 267 , when a parameter is passed as a copy, we cannot overload based on whether that
parameter is const .

Exercises Section 7.8.4

Exercise
7.38:

Given the following declarations,

     void manip(int, int);
     double dobj;

what is the rank (Section 7.8.4 , p. 272 ) of each conversion in
the following calls?

     (a) manip('a', 'z');    (b) manip(55.4, dobj);

Exercise
7.39:

Explain the effect of the second declaration in each one of the
following sets of declarations. Indicate which, if any, are
illegal.

     (a) int calc(int, int);



         int calc(const int&, const int&);

     (b) int calc(char*, char*);
         int calc(const char*, const char*);

     (c) int calc(char*, char*);
         int calc(char* const, char* const);

Exercise
7.40:

Is the following function call legal? If not, why is the call in
error?

     enum Stat { Fail, Pass };
     void test(Stat);
     test(0);

 



 

7.9. Pointers to Functions

A function pointer is just thata pointer that denotes a function rather than an object. Like any
other pointer, a function pointer points to a particular type. A function's type is determined by
its return type and its parameter list. A function's name is not part of its type:

     // pf points to function returning bool that takes two const string references
     bool (*pf)(const string &, const string &);

This statement declares pf to be a pointer to a function that takes two const string&
parameters and has a return type of bool .

The parentheses around *pf are necessary:

     // declares a function named pf that returns a bool*
     bool *pf(const string &, const string &);

Using Typedefs to Simplify Function Pointer Definitions

Function pointer types can quickly become unwieldy. We can make function pointers easier to
use by defining a synonym for the pointer type using a typedef (Section 2.6 , p. 61 ):

     typedef bool (*cmpFcn)(const string &, const string &);

This definition says that cmpFcn is the name of a type that is a pointer to function. That pointer
has the type "pointer to a function that returns a bool and takes two references to const string
." When we need to use this function pointer type, we can do so by using cmpFcn , rather than
having to write the full type definition each time.

Initializing and Assigning Pointers to Functions

When we use a function name without calling it, the name is automatically treated as a pointer
to a function. Given



     // compares lengths of two strings
     bool lengthCompare(const string &, const string &);

any use of lengthCompare , except as the left-hand operand of a function call, is treated as a
pointer whose type is

     bool (*)(const string &, const string &);

We can use a function name to initialize or assign to a function pointer:

     cmpFcn pf1 = 0;             // ok: unbound pointer to function
     cmpFcn pf2 = lengthCompare; // ok: pointer type matches function's type
     pf1 = lengthCompare;        // ok: pointer type matches function's type
     pf2 = pf1;                  // ok: pointer types match

Using the function name is equivalent to applying the address-of operator to the function name:

     cmpFcn pf1 = lengthCompare;
     cmpFcn pf2 = &lengthCompare;

A function pointer may be initialized or assigned only by a function
or function pointer that has the same type or by a zero-valued
constant expression.

Initializing a function pointer to zero indicates that the pointer does not point to any function.

There is no conversion between one pointer to function type and another:

     string::size_type sumLength(const string&, const string&);
     bool cstringCompare(char*, char*);

     // pointer to function returning bool taking two const string&
     cmpFcn pf;
     pf = sumLength;      // error: return type differs
     pf = cstringCompare; // error: parameter types differ
     pf = lengthCompare;  // ok: function and pointer types match exactly



Calling a Function through a Pointer

A pointer to a function can be used to call the function to which it refers. We can use the pointer
directlythere is no need to use the dereference operator to call the function

     cmpFcn pf = lengthCompare;
     lengthCompare("hi", "bye"); // direct call

     pf("hi", "bye");            // equivalent call: pf1 implicitly dereferenced

     (*pf)("hi", "bye");         // equivalent call: pf1 explicitly dereferenced

If the pointer to function is uninitialized or has a value of zero, it
may not be used in a call. Only pointers that have been initialized
or assigned to refer to a function can be safely used to call a
function.

Function Pointer Parameters

A function parameter can be a pointer to function. We can write such a parameter in one of two
ways:

[View full width]

     /* useBigger function's third parameter is a pointer to function

      * that function returns a bool and takes two const string references
      * two ways to specify that parameter:
      */
     // third parameter is a function type and is automatically treated as a pointer to

 function
     void useBigger(const string &, const string &,
                    bool(const string &, const string &));
     // equivalent declaration: explicitly define the parameter as a pointer to function
     void useBigger(const string &, const string &,
                    bool (*)(const string &, const string &));

Returning a Pointer to Function

A function can return a pointer to function, although correctly writing the return type can be a
challenge:

     // ff is a function taking an int and returning a function pointer

     // the function pointed to returns an int and takes an int* and an int
     int (*ff(int))(int*, int);



The best way to read function pointer declarations is from the
inside out, starting with the name being declared.

We can figure out what this declaration means by observing that

     ff(int)

says that ff is a function taking one parameter of type int . This function returns

     int (*)(int*, int);

a pointer to a function that returns an int and takes two parameters of type int* and an int .

Typedefs can make such declarations considerably easier to read:

     // PF is a pointer to a function returning an int, taking an int* and an int
     typedef int (*PF)(int*, int);

     PF ff(int);  // ff returns a pointer to function

We can define a parameter as a function type. A function return
type must be a pointer to function; it cannot be a function.

An argument to a parameter that has a function type is automatically converted to the
corresponding pointer to function type. The same conversion does not happen when returning a
function:

     // func is a function type, not a pointer to function!
     typedef int func(int*, int);

     void f1(func); // ok: f1 has a parameter of function type

     func f2(int);  // error: f2 has a return type of function type

     func *f3(int); // ok: f3 returns a pointer to function type



Pointers to Overloaded Functions

It is possible to use a function pointer to refer to an overloaded function:

     extern void ff(vector<double>);
     extern void ff(unsigned int);

     // which function does pf1 refer to?

     void (*pf1)(unsigned int) = &ff; // ff(unsigned)

The type of the pointer and one of the overloaded functions must match exactly. If no function
matches exactly, the initialization or assignment results in a compile-time error:

     // error: no match: invalid parameter list
     void (*pf2)(int) = &ff;

     // error: no match: invalid return type
     double (*pf3)(vector<double>);
     pf3 = &ff;

 



 

Chapter Summary

Functions are named units of computation and are essential to structuring even modest
programs. They are defined by specifying a return type, a name, a (possibly empty) list of
parameters, and a function body. The function body is a block that is executed when the
function is called. When a function is called, the arguments passed to the function must be
compatible with the types of the corresponding parameters.

Passing an argument to a function follows the same rules as initializing a variable. Each
parameter that has nonreference type is initialized as a copy of the corresponding argument.
Any changes made to a (nonreference) parameter are made to the local copy, not to the
argument itself.

Copying large, complex values can be expensive. To avoid the overhead of passing a copy,
parameters can be specified as references. Changes made to reference parameters are reflected
in the argument itself. A reference parameter that does not need to change its argument should
be const reference.

In C++, functions may be overloaded. The same name may be used to define different functions
as long as the number or types of the parameters in the functions differ. The compiler
automatically figures out which function to call based the arguments in a call. The process of
selecting the right function from a set of overloaded functions is referred to as function
matching.

C++ provides two special kinds of functions: inline and member functions. Specifying inline
on a function is a hint to the compiler to expand the function into code directly at the call point.
Inline functions avoid the overhead associated with calling a function. Member functions are just
that: class members that are functions. This chapter introduced simple member functions.
Chapter 12 will cover member functions in more detail.

 



 

Defined Terms

ambiguous call

Compile-time error that results when there is not a single best match for a call to an
overloaded function.

arguments

Values supplied when calling a function. These values are used to initialize the
corresponding parameters in the same way that variables of the same type are initialized.

automatic objects

Objects that are local to a function. Automatic objects are created and initialized anew on
each call and are destroyed at the end of the block in which they are defined. They no
longer exist once the function terminates.

best match

The single function from a set of overloaded functions that has the best match for the
arguments of a given call.

call operator

The operator that causes a function to be executed. The operator is a pair of parentheses
and takes two operands: The name of the function to call and a (possibly empty) comma-
separated list of arguments to pass to the function.

candidate functions

The set of functions that are considered when resolving a function call. The candidate
functions are all the functions with the name used in the call for which a declaration is in
scope at the time of the call.

const member function

Function that is member of a class and that may be called for const objects of that type.
const member functions may not change the data members of the object on which they
operate.



constructor

Member function that has the same name as its class. A constructor says how to initialize
objects of its class. Constructors have no return type. Constructors may be overloaded.

constructor initializer list

List used in a constructor to specify initial values for data members. The initializer list
appears in the definition of a constructor between the parameter list and the constructor
body. The list consists of a colon followed by a comma-separated list of member names,
each of which is followed by that member's initial value in parentheses.

default constructor

The constructor that is used when no explicit initializer is supplied. The compiler will
synthesize a default constructor if the class defines no other constructors.

function

A callable unit of computation.

function body

Block that defines the actions of a function.

function matching

Compiler process by which a call to an overloaded function is resolved. Arguments used in
the call are compared to the parameter list of each overloaded function.

function prototype

Synonym for function declaration. The name, return type, and parameter types of a
function. To call a function, its prototype must have been declared before the point of call.

inline function

Function that is expanded at the point of call, if possible. Inline functions avoid the normal
function-calling overhead by replacing the call by the function's code.

local static objects

Local object that is created and initialized once before the function is first called and
whose value persists across invocations of the function.



local variables

Variables defined inside a function. Local variables are accessible only within the function
body.

object lifetime

Every object has an associated lifetime. Objects that are defined inside a block exist from
when their definition is encountered until the end of the block in which they are defined.
Local static objects and global objects defined outside any function are created during
program startup and are destroyed when the main function ends. Dynamically created
objects that are created through a new expression exist until the memory in which they
were created is freed through a corresponding delete .

overload resolution

A synonym for function matching.

overloaded function

A function that has the same name as at least one other function. Overloaded functions
must differ in the number or type of their parameters.

parameters

Variables local to a function whose initial values are supplied when the function is called.

recursive function

Function that calls itself directly or indirectly.

return type

The type of the value returned from a function.

synthesized default constructor

If there are no constructors defined by a class, then the compiler will create (synthesize) a
default constructor. This constructor default initializes each data member of the class.

temporary object



Unnamed object automatically created by the compiler in the course of evaluating an
expression. The phrase temporary object is usually abreviated as temporary . A temporary
persists until the end of the largest expression that encloses the expression for which it
was created.

this pointer

Implicit parameter of a member function. this points to the object on which the function
is invoked. It is a pointer to the class type. In a const member function the pointer is a
pointer to const .

viable functions

The subset of overloaded functions that could match a given call. Viable functions have
the same number of parameters as arguments to the call and each argument type can
potentially be converted to the corresponding parameter type.
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In C++, input/output is provided through the library. The library defines a family of types that
support IO to and from devices such as files and console windows. Additional types allow string
s to act like files, which gives us a way to convert data to and from character forms without also
doing IO. Each of these IO types defines how to read and write values of the built-in data types.
In addition, class designers generally use the library IO facilities to read and write objects of the
classes that they define. Class types are usually read and written using the same operators and
conventions that the IO library defines for the built-in types.

This chapter introduces the fundamentals of the IO library. Later chapters will cover additional
capabilities: Chapter 14 will look at how we can write our own input and output operators;
Appendix A will cover ways to control formatting and random access to files.

Our programs have already used many IO library facilities:

istream (input stream) type, which supports input operations

ostream (output stream) type, which provides output operations

cin (pronounced see-in) an istream object that reads the standard input.

cout (pronounced see-out) an ostream object that writes to the standard output

cerr (pronounced see-err) an ostream object that writes to the standard error. cerr is
usually used for program error messages.

operator >> , which is used to read input from an istream object

operator << , which is used to write output to an ostream object

getline function, which takes a reference to an istream and a reference to a string and
reads a word from the istream into the string

This chapter looks briefly at some additional IO operations, and discusses support for reading
and writing files and string s. Appendix A covers how to control formatting of IO operations,
support for random access to files, and support for unformatted IO. This primer does not
describe the entire iostream libraryin particular, we do not cover the system-specific



implementation details, nor do we discuss the mechanisms by which the library manages input
and output buffers or how we might write our own buffer classes. These topics are beyond the
scope of this book. Instead, we'll focus on those portions of the IO library that are most useful
in ordinary programs.

 



 

8.1. An Object-Oriented Library

The IO types and objects we've used so far read and write streams of data and are used to
interact with a user's console window. Of course, real programs cannot be limited to doing IO
solely to or from a console window. Programs often need to read or write named files. Moreover,
it can be quite convenient to use the IO operations to format data in memory, thereby avoiding
the complexity and run-time expense of reading or writing to a disk or other device. Applications
also may have to read and write languages that require wide-character support.

Conceptually, neither the kind of device nor the character size affect the IO operations we want
to perform. For example, we'd like to use >> to read data regardless of whether we're reading a
console window, a disk file, or an in-memory string. Similarly, we'd like to use that operator
regardless of whether the characters we read fit in a char or require the wchar_t (Section 2.1.1 ,
p. 34 ) type.

At first glance, the complexities involved in supporting or using these different kinds of devices
and different sized character streams might seem a daunting problem. To manage the
complexity, the library uses inheritance to define a set of object-oriented classes. We'll have
more to say about inheritance and object-oriented programming in Part IV, but generally
speaking, types related by inheritance share a common interface. When one class inherits from
another, we (usually) can use the same operations on both classes. More specifically, when two
types are related by inheritance, we say that one class "inherits" the behaviorthe interfaceof its
parent. In C++ we speak of the parent as the base class and the inheriting class as a derived
class .

The IO types are defined in three separate headers: iostream defines the types used to read
and write to a console window, fstream defines the types used to read and write named files,
and sstream defines the types used to read and write in-memory string s. Each of the types in
fstream and sstream is derived from a corresponding type defined in the iostream header. Table
8.1 lists the IO classes and Figure 8.1 on the next page illustrates the inheritance relationships
among these types. Inheritance is usually illustrated similarly to how a family tree is displayed.
The topmost circle represents a base (or parent) class. Lines connect a base class to its derived
(or children) class(es). So, for example, this figure indicates that istream is the base class of
ifstream and istringstream . It is also the base class for iostream , which in turn is the base
class for sstream and fstream classes.

Table 8.1. IO Library Types and Headers

Header Type

iostream istream reads from a stream

ostream writes to a stream

iostream reads and writes a stream; derived from istream and ostream
,



Header Type

fstream ifstream , reads from a file; derived from istream

ofstream writes to a file; derived from ostream

fstream , reads and writes a file; derived from iostream

sstream istringstream reads from a string ; derived from istream

ostringstream writes to a string ; derived from ostream

stringstream reads and writes a string ; derived from iostream

Figure 8.1. Simplified iostream Inheritance Hierarchy

Because the types ifstream and istringstream inherit from istream , we already know a great
deal about how to use these types. Each program we've written that read an istream could be
used to read a file (using the ifstream type) or a string (using the istringstream type).
Similarly, programs that did output could use an ofstream or ostringstream instead of ostream .
In addition to the istream and ostream types, the iostream header also defines the iostream
type. Although our programs have not used this type, we actually know a good bit about how to
use an iostream . The iostream type is derived from both istream and ostream . Being derived
from both types means that an iostream object shares the interface of both its parent types.
That is, we can use an iostream type to do both input and output to the same stream. The
library also defines two types that inherit from iostream . These types can be used to read or
write to a file or a string .

Using inheritance for the IO types has another important implication: As we'll see in Chapter 15
, when we have a function that takes a reference to a base-class type, we can pass an object of
a derived type to that function. This fact means that a function written to operate on istream&
can be called with an ifstream or istringstream object. Similarly, a function that takes an
ostream& can be called with an ofstream or ostringstream object. Because the IO types are
related by inheritance, we can write one function and apply it to all three kinds of streams:

fstream ifstream , reads from a file; derived from istream

ofstream writes to a file; derived from ostream

fstream , reads and writes a file; derived from iostream

sstream istringstream reads from a string ; derived from istream

ostringstream writes to a string ; derived from ostream

stringstream reads and writes a string ; derived from iostream

Figure 8.1. Simplified iostream Inheritance Hierarchy

Because the types ifstream and istringstream inherit from istream , we already know a great
deal about how to use these types. Each program we've written that read an istream could be
used to read a file (using the ifstream type) or a string (using the istringstream type).
Similarly, programs that did output could use an ofstream or ostringstream instead of ostream .
In addition to the istream and ostream types, the iostream header also defines the iostream
type. Although our programs have not used this type, we actually know a good bit about how to
use an iostream . The iostream type is derived from both istream and ostream . Being derived
from both types means that an iostream object shares the interface of both its parent types.
That is, we can use an iostream type to do both input and output to the same stream. The
library also defines two types that inherit from iostream . These types can be used to read or
write to a file or a string .

Using inheritance for the IO types has another important implication: As we'll see in Chapter 15
, when we have a function that takes a reference to a base-class type, we can pass an object of
a derived type to that function. This fact means that a function written to operate on istream&
can be called with an ifstream or istringstream object. Similarly, a function that takes an
ostream& can be called with an ofstream or ostringstream object. Because the IO types are
related by inheritance, we can write one function and apply it to all three kinds of streams:



console, disk files, or string streams .

International Character Support

The stream classes described thus far read and write streams composed of type char . The
library defines a corresponding set of types supporting the wchar_t type. Each class is
distinguished from its char counterpart by a "w " prefix. Thus, the types wostream, wistream ,
and wiostream read and write wchar_t data to or from a console window. The file input and
output classes are wifstream, wofstream , and wfstream . The wchar_t versions of string stream
input and output are wistringstream, wostringstream , and wstringstream . The library also
defines objects to read and write wide characters from the standard input and standard output.
These objects are distinguished from the char counterparts by a "w " prefix: The wchar_t
standard input object is named wcin; standard output is wcout ; and standard error is wcerr .

Each of the IO headers defines both the char and wchar_t classes and standard input/output
objects. The stream-based wchar_t classes and objects are defined in iostream , the wide
character file stream types in fstream , and the wide character stringstream s in sstream .

No Copy or Assign for IO Objects

For reasons that will be more apparent when we study classes and inheritance in Parts III and
IV , the library types do not allow allow copy or assignment:

    ofstream out1, out2;
    out1 = out2;   // error: cannot assign stream objects

    // print function: parameter is copied
    ofstream print(ofstream);
    out2 = print(out2);  // error: cannot copy stream objects

This requirement has two particularly important implications. As we'll see in Chapter 9 , only
element types that support copy can be stored in vector s or other container types. Because we
cannot copy stream objects, we cannot have a vector (or other container) that holds stream
objects.

The second implication is that we cannot have a parameter or return type that is one of the
stream types. If we need to pass or return an IO object, it must be passed or returned as a
pointer or reference:

    ofstream &print(ofstream&);              // ok: takes a reference, no copy

    while (print(out2)) { /* ... */ } // ok: pass reference to out2

Typically, we pass a stream as a nonconst reference because we pass an IO object intending to
read from it or write to it. Reading or writing an IO object changes its state, so the reference
must be nonconst .



Exercises Section 8.1

Exercise
8.1:

Assuming os is an ofstream , what does the following program
do?

    os << "Goodbye!" << endl;

What if os is an ostringstream ? Whatif os is an ifstream ?

Exercise
8.2:

The following declaration is in error. Identify and correct the
problem(s):

    ostream print(ostream os);

 



 

8.2. Condition States

Before we explore the types defined in fstream and sstream , we need to understand a bit more
about how the IO library manages its buffers and the state of a stream. Keep in mind that the
material we cover in this section and the next applies equally to plain streams, file streams, or
string streams.

Inherent in doing IO is the fact that errors can occur. Some errors are recoverable; others occur
deep within the system and are beyond the scope of a program to correct. The IO library
manages a set of condition state members that indicate whether a given IO object is in a
usable state or has encountered a particular kind of error. The library also defines a set of
functions and flags, listed in Table 8.2 , that give us access to and let us manipulate the state of
each stream.

Table 8.2. IO Library Condition State

strm ::iostate Name of the machine-dependent integral type,
defined by each iostream class that is used to define
the condition states.

strm ::badbit strm ::iostate value used to indicate that a stream
is corrupted.

strm ::failbit strm ::iostate value used to indicate that an IO
operation failed.

strm ::eofbit strm ::iostate value used to indicate the a stream
hit end-of-file.

s.eof() true if eofbit in the stream s is set.

s.fail() true if failbit in the stream s is set.

s.bad() TRue if badbit in the stream s is set.

s.good() true if the stream s is in a valid state.

s.clear() Reset all condition values in the stream s to valid
state.

s.clear(flag) Set specified condition state(s) in s to valid. Type of
flag is strm ::iostate .

s.setstate(flag) Add specified condition to s . Type of flag is strm
::iostate .

s.rdstate() Returns current condition of s as an strm ::iostate
value.

As an example of an IO error, consider the following code:



     int ival;
     cin >> ival;

If we enter Borges on the standard input, then cin will be put in an error state following the
unsuccessful attempt to read a string of characters as an int . Similarly, cin will be in an error
state if we enter an end-of-file. Had we entered 1024, then the read would be successful and
cin would be in a good, non-error state.

To be used for input or output, a stream must be in a non-error state. The easiest way to test
whether a stream is okay is to test its truth value:

          if (cin)
               // ok to use cin, it is in a valid state

          while (cin >> word)
               // ok: read operation successful ...

The if directly tests the state of the stream. The while does so indirectly by testing the stream
returned from the expression in the condition. If that input operation succeeds, then the
condition tests true .

Condition States

Many programs need only know whether a stream is valid. Other programs need more fine-
grained access to and control of the state of the stream. Rather than knowing that the stream is
in an error state, we might want to know what kind of error was encountered. For example, we
might want to distinguish between reaching end-of-file and encountering an error on the IO
device.

Each stream object contains a condition state member that is managed through the setstate
and clear operations. This state member has type iostate , which is a machine-dependent
integral type defined by each iostream class. It is used as a collection of bits, much the way we
used the int_quiz1 variable to represent test scores in the example in Section 5.3.1 (p. 156 ).

Each IO class also defines three const values of type iostate that represent particular bit
patterns. These const values are used to indicate particular kinds of IO conditions. They can be
used with the bitwise operators (Section 5.3 , p. 154 ) to test or set multiple flags in one
operation.

The badbit indicates a system level failure, such as an unrecoverable read or write error. It is
usually not possible to continue using a stream after such an error. The failbit is set after a
recoverable error, such as reading a character when numeric data was expected. It is often
possible to correct the problem that caused the failbit to be set. The eofbit is set when an
end-of-file is encountered. Hitting end-of-file also sets the failbit .

The state of the stream is revealed by the bad, fail, eof , and good operations. If any of bad,
fail , or eof are true , then testing the stream itself will indicate that the stream is in an error
state. Similarly, the good operation returns TRue if none of the other conditions is true .

The clear and setstate operations change the state of the condition member. The clear
operations put the condition back in its valid state. They are called after we have remedied
whatever problem occurred and we want to reset the stream to its valid state. The setstate



operation turns on the specified condition to indicate that a problem occurred. setstate leaves
the existing state variables unchanged except that it adds the additional indicated state(s).

Interrogating and Controlling the State of a Stream

We might manage an input operation as follows:

    int ival;

    // read cin and test only for EOF; loop is executed even if there are other IO failures
    while (cin >> ival, !cin.eof()) {
        if (cin.bad())         // input stream is corrupted; bail out
            throw runtime_error("IO stream corrupted");
        if (cin.fail()) {                        // bad input
            cerr<< "bad data, try again";        // warn the user
            cin.clear(istream::failbit);         // reset the stream
            continue;                            // get next input
        }

        // ok to process ival
    }

This loop reads cin until end-of-file or an unrecoverable read error occurs. The condition uses a
comma operator (Section 5.9 , p. 168 ). Recall that the comma operator executes by evaluating
each operand and returns its rightmost operand as its result. The condition, therefore, reads cin
and ignores its result. The result of the condition is the result of !cin.eof() . If cin hit end-of-
file, the condition is false and we fall out of the loop. If cin did not hit end-of-file, we enter the
loop, regardless of any other error the read might have encountered.

Inside the loop, we first check whether the stream is corrupted. If so, we exit by throwing an
exception (Section 6.13 , p. 215 ). If the input was invalid, we print a warning, and clear the
failbit state. In this case, we execute a continue (Section 6.11 , p. 214 ) to return to the start
of the while to read another value into ival . If there were no errors, the rest of the loop can
safely use ival .

Accessing the Condition State

The rdstate member function returns an iostate value that corresponds to the entire current
condition state of the stream:

     // remember current state of cin
     istream::iostate old_state = cin.rdstate();
     cin.clear();

     process_input();  // use cin

     cin.clear(old_state); // now reset cin to old state

Dealing with Multiple States

Often we need to set or clear multiple state bits. We could do so by making multiple calls to the
setstate or clear functions. Alternatively, we could use the bitwise OR (Section 5.3 , p. 154 )



operator to generate a value to pass two or more state bits in a single call. The bitwise OR
generates an integral value using the bit patterns of its operands. For each bit in the result, the
bit is 1 if the corresponding bit is 1 in either of its operands. For example:

   // sets both the badbit and the failbit
   is.setstate(ifstream::badbit | ifstream::failbit);

tells the object is to turn on both the failbit and the badbit . The argument

     is.badbit | is.failbit

creates a value in which the bits corresponding to the badbit and to the failbit are both turned
onthat is they are both set to 1. All other bits in the value are zero. The call to setstate uses
this value to turn on the bits corresponding to badbit and failbit in the stream's condition state
member.

 



 

8.3. Managing the Output Buffer

Each IO object manages a buffer, which is used to hold the data that the program reads and
writes. When we write

    os << "please enter a value: ";

the literal string is stored in the buffer associated with the stream os . There are several
conditions that cause the buffer to be flushedthat is, writtento the actual output device or file:

The program completes normally. All output buffers are emptied as part of the return from
main .

1.

At some indeterminate time, the buffer can become full, in which case it will be flushed
before writing the next value.

2.

We can flush the buffer explicitly using a manipulator (Section 1.2.2 , p. 7 ) such as endl .3.

We can use the unitbuf manipulator to set the stream's internal state to empty the buffer
after each output operation.

4.

We can tie the output stream to an input stream, in which case the output buffer is
flushed whenever the associated input stream is read.

5.

Exercises Section 8.2

Exercise
8.3:

Write a function that takes and returns an istream& . The
function should read the stream until it hits end-of-file. The
function should print what it reads to the standard output.
Reset the stream so that it is valid and return the stream.

Exercise
8.4:

Test your function by calling it passing cin as an argument.

Exercise
8.5:

What causes the following while to terminate?

    while (cin >> i) /* . . . */



Flushing the Output Buffer

Our programs have already used the endl manipulator, which writes a newline and flushes the
buffer. There are two other similar manipulators. The first, flush , is used quite frequently. It
flushes the stream but adds no characters to the output. The second, ends , is used much less
often. It inserts a null character into the buffer and then flushes it:

    cout << "hi!" << flush;      // flushes the buffer; adds no data
    cout << "hi!" << ends;       // inserts a null, then flushes the buffer
    cout << "hi!" << endl;       // inserts a newline, then flushes the buffer

The unitbuf Manipulator

If we want to flush every output, it is better to use the unitbuf manipulator. This manipulator
flushes the stream after every write:

    cout << unitbuf << "first" << " second" << nounitbuf;

is equivalent to writing

    cout << "first" << flush << " second" << flush;

The nounitbuf manipulator restores the stream to use normal, system-managed buffer flushing.

Caution: Buffers Are Not Flushed if the Program Crashes

Output buffers are not flushed if the program terminates abnormally. When
attempting to debug a program that has crashed, we often use the last
output to help isolate the region of program in which the bug might occur.
If the crash is after a particular print statement, then we know that the
crash happened after that point in the program.

When debugging a program, it is essential to make sure that any output
you think should have been written was actually flushed. Because the
system does not automatically flush the buffers when the program crashes,
it is likely that there is output that the program wrote but that has not
shown up on the standard output. It is still sitting in an output buffer
waiting to be printed.

If you use the last output to help locate the bug, you need to be certain that
all the output really did get printed. Making sure that all output operations
include an explicit flush or call to endl is the best way to ensure that you

are seeing all the output that the program actually processed.

Countless hours of programmer time have been wasted tracking through



code that appeared not to have executed when in fact the buffer simply had
not been flushed. For this reason, we tend to use endl rather than \n when
writing output. Using endl means we do not have to wonder whether output

is pending when a program crashes.

Tying Input and Output Streams Together

When an input stream is tied to an output stream, any attempt to read the input stream will first
flush the buffer associated output stream. The library ties cout to cin , so the statement

         cin >> ival;

causes the buffer associated with cout to be flushed.

Interactive systems usually should be sure that their input and
output streams are tied. Doing so means that we are guaranteed
that any output, which might include prompts to the user, has been
written before attempting to read.

The tie function can be called on either istream or an ostream . It takes a pointer to an ostream
and ties the argument stream to the object on which tie was called. When a stream ties itself to
an ostream , then any IO operation on the stream that called tie flushes the buffer associated
with the argument it passed to tie .

    cin.tie(&cout);   // illustration only: the library ties cin and cout for us
    ostream *old_tie = cin.tie();

    cin.tie(0); // break tie to cout, cout no longer flushed when cin is read

    cin.tie(&cerr);   // ties cin and cerr, not necessarily a good idea!
    // ...

    cin.tie(0);       // break tie between cin and cerr

    cin.tie(old_tie); // restablish normal tie between cin and cout

An ostream object can be tied to only one istream object at a time. To break an existing tie, we
pass in an argument of 0.

 



 

8.4. File Input and Output

The fstream header defines three types to support file IO:

ifstream , derived from istream , reads from a file.1.

ofstream , derived from ostream , writes to a file.2.

fstream , derived from iostream , reads and writes the same file.3.

The fact that these types are derived from the corresponding iostream types means that we
already know most of what we need to know about how to use the fstream types. In particular,
we can use the IO operators (<< and >> ) to do formatted IO on a file, and the material covered
in the previous sections on condition states apply identically to fstream objects.

In addition to the behavior that fstream types inherit, they also define two new operations of
their ownopen and close along with a constructor that takes the name of a file to open. These
operations can be called on objects of fstream, ifstream , or ofstream but not on the other IO
types.

8.4.1. Using File Stream Objects

So far our programs have used the library-defined objects, cin, cout , and cerr . When we
want to read or write a file, we must define our own objects, and bind them to the desired files.
Assuming that ifile and ofile are strings with the names of the files we want to read and
write, we might write code such as

    // construct an ifstream and bind it to the file named ifile
    ifstream infile(ifile.c_str());

    // ofstream output file object to write file named ofile
    ofstream outfile(ofile.c_str());

to define and open a pair of fstream objects. infile is a stream that we can read and outfile is
a stream that we can write. Supplying a file name as an initializer to an ifstream or ofstream
object has the effect of opening the specified file.

    ifstream infile;    // unbound input file stream
    ofstream outfile;   // unbound output file stream

These definitions define infile as a stream object that will read from a file and outfile as an
object that we can use to write to a file. Neither object is as yet bound to a file. Before we use
an fstream object, we must also bind it to a file to read or write:



    infile.open("in");   // open file named "in" in the current directory
    outfile.open("out"); // open file named "out" in the current directory

We bind an existing fstream object to the specified file by calling the open member. The open
function does whatever system-specific operations are required to locate the given file and open
it for reading or writing as appropriate.

Caution: File Names in C++

For historical reasons, the IO library uses C-style character strings (Section
4.3 , p. 130 ) rather than C++ strings to refer to file names. When we call
open or use a file name as the initializer when creating an fstream object, the
argument we pass is a C-style string, not a library string . Often our

programs obtain file names by reading the standard input. As usual, it is a
good idea to read into a string , not a C-style character array. Assuming
that the name of the file we wish to use is in a string , we can use the c_str

member (Section 4.3.2 , p. 139 ) to obtain a C-style string.

Checking Whether an Open Succeeded

After opening a file, it is usually a good idea to verify that the open succeeded:

    // check that the open succeeded
    if (!infile) {
        cerr << "error: unable to open input file: "
             << ifile << endl;
        return -1;
    }

This condition is similar to those we've used to test whether cin had hit end-of-file or
encountered some other error. When we test a stream, the effect is to test whether the object is
"okay" for input or output. If the open fails, then the state of the fstream object is that it is not
ready for doing IO. When we test the object

    if (outfile) // ok to use outfile?

a true return means that it is okay to use the file. Because we want to know if the file is not
okay, we invert the return from checking the stream:

    if (!outfile) // not ok to use outfile?



Rebinding a File Stream to a New File

Once an fstream has been opened, it remains associated with the specified file. To associate the
fstream with a different file, we must first close the existing file and then open a different file:

     ifstream infile("in");      // opens file named "in" for reading
     infile.close();             // closes "in"
     infile.open("next");        // opens file named "next" for reading

It is essential that we close a file stream before attempting to open a new file. The open function
checks whether the stream is already open. If it is open, then it sets its internal state to indicate
that a failure has happened. Subsequent attempts to use the file stream will fail.

Clearing the State of a File Stream

Consider a program that has a vector containing names of files it should open and read, doing
some processing on the words stored in each file. Assuming the vector is named files , such a
progam might have a loop like the following:

    // for each file in the vector
    while (it != files.end()) {
        ifstream input(it->c_str());   // open the file;
        // if the file is ok, read and "process" the input
        if (!input)
            break;                  // error: bail out!
        while(input >> s)               // do the work on this file
            process(s);
        ++it;                           // increment iterator to get next file
    }

Each trip through the loop constructs the ifstream named input open to read the indicated file.
The initializer in the constructor uses the arrow operator (Section 5.6 , p. 164 ) which
dereferences it and fetches the c_str member from the underlying string that it currently
denotes. The file is opened by the constructor, and assuming the open succeeded, we read that
file until we hit end-of-file or some other error condition. At that point, input is in an error state.
Any further attempt to read from input will fail. Because input is local to the while loop, it is
created on each iteration. That means that it starts out each iteration in a clean
stateinput.good() is TRue .

If we wanted to avoid creating a new stream object on each trip through the while , we might
move the definition of input out of the while . This simple change means that we must manage
the stream state more carefully. When we encounter end-of-file, or any other error, the internal
state of the stream is set so that further reads or writes are not allowed. Closing a stream does
not change the internal state of the stream object. If the last read or write operation failed, the
state of the object remains in a failure mode until we execute clear to reset the condition of the
stream. After the clear , it is as if we had created the object afresh.

If we wish to reuse an existing stream object, our while loop must remember to close and clear
the stream on each trip through the loop:



    ifstream input;
    vector<string>::const_iterator it = files.begin();

    //   for each file in the vector
    while (it != files.end()) {
        input.open(it->c_str());  // open the file
        // if the file is ok, read and "process" the input
        if (!input)
            break;                    // error: bail out!
        while(input >> s) // do the work on this file
            process(s);
        input.close();        // close file when we're done with it
        input.clear();        // reset state to ok
        ++it;                 // increment iterator to get next file
    }

Had we neglected the call to clear , this loop would read only the first file. To see why, consider
what happens in this loop: First we open the indicated file. Assuming open succeeded, we read
the file until we hit end-of-file or some other error condition. At that point, input is in an error
state. If we close but do not clear the stream, then any subsequent input operation on input
will fail. Once we have close d the file, we can open the next one. However, the read of input in
the inner while will failafter all, the last read from this stream hit end-of-file. The fact that the
end-of-file was on a different file is irrelevant!

If we reuse a file stream to read or write more than one file, we
must clear the stream before using it to read from another file.



Exercises Section 8.4.1

Exercise
8.6:

Because ifstream inherits from istream , we can pass an
ifstream object to a function that takes a reference to an
istream . Use the function you wrote for the first exercise in
Section 8.2 (p. 291 ) to read a named file.

Exercise
8.7:

The two programs we wrote in this section used a break to exit
the while loop if the open failed for any file in the vector .
Rewrite these two loops to print a warning message if a file
can't be opened and continue processing by getting the next
file name from the vector .

Exercise
8.8:

The programs in the previous exercise can be written without
using a continue statement. Write the program with and
without using a continue .

Exercise
8.9:

Write a function to open a file for input and read its contents
into a vector of string s, storing each line as a separate
element in the vector .

Exercise
8.10:

Rewrite the previous program to store each word in a separate
element.

8.4.2. File Modes

Whenever we open a fileeither through a call to open or as part of initializing a stream from a file
namea file mode is specified. Each fstream class defines a set of values that represent different
modes in which the stream could be opened. Like the condition state flags, the file modes are
integral constants that we use with the bitwise operators (Section 5.3 , p. 154 ) to set one or
more modes when we open a given file. The file stream constructors and open have a default
argument (Section 7.4.1 , p. 253 ) to set the file mode. The value of the default varies based on
the type of the stream. Alternatively, we can supply the mode in which to open the file. Table
8.3 on the next page lists the file modes and their meanings.

Table 8.3. File Modes

in open for input

out open output

app seek to the end before every write

ate seek to the end immediately after the open

trunc truncate an existing stream when opening it

binary do IO operations in binary mode



The modes out, trunc , and app may be specifed only for files associated with an ofstream or
an fstream ; in may be specified only for files associated with either ifstream or fstream . Any
file may be opened in ate or binary mode. The ate mode has an effect only at the open:
Opening a file in ate mode puts the file at the end-of-file immediately after the open. A stream
opened in binary mode processes the file as a sequence of bytes; it does no interpretation of
the characters in the stream.

By default, files associated with an ifstream are opened in in mode, which is the mode that
permits the file to be read. Files opened by an ofstream are opened in out mode, which permits
the file to be written. A file opened in out mode is truncated: All data stored in the file is
discarded.

In effect, specifying out mode for an ofstream is equivalent to
specifying both out and trunc .

The only way to preserve the existing data in a file opened by an ofstream is to specify app
mode explicitly:

    //  output mode by default; truncates file named "file1"
    ofstream outfile("file1");
    // equivalent effect: "file1" is explicitly truncated
    ofstream outfile2("file1", ofstream::out | ofstream::trunc);

    //  append mode; adds new data at end of existing file named "file2"
    ofstream appfile("file2", ofstream::app);

The definition of outfile2 uses the bitwise OR operator (Section 5.3 , p. 154 ) to open inOut in
both out and trunc mode.

Using the Same File for Input and Output

An fstream object can both read and write its associated file. How an fstream uses its file
depends on the mode specified when we open the file.

By default, an fstream is opened with both in and out set. A file opened with both in and out
mode set is not truncated. If we open the file associated with an fstream with out mode, but not
in mode specified, then the file is truncated. The file is also truncated if trunc is specified,
regardless of whether in is specified. The following definition opens the file copyOut in both input
and output mode:

    // open for input and output



    fstream inOut("copyOut", fstream::in | fstream::out);

Appendix A.3.8 (p. 837 ) discusses how to use a file that is opened for both input and output.

Mode Is an Attribute of a File, Not a Stream

The mode is set each time a file is opened:

    ofstream outfile;
    // output mode set to out, "scratchpad" truncated
    outfile.open("scratchpad", ofstream::out);

    outfile.close();    // close outfile so we can rebind it
    // appends to file named "precious"
    outfile.open("precious", ofstream::app);
    outfile.close();

    // output mode set by default, "out" truncated
    outfile.open("out");

The first call to open specifies ofstream::out . The file named "scratchpad" in the current
directory is opened in output mode; the file will be truncated. When we open the file named
"precious," we ask for append mode. Any data in the file remains, and all writes are done at the
end of the file. When we opened "out," we did not specify an output mode explicitly. It is opened
in out mode, meaning that any data currently in "out" is discarded.

Any time open is called, the file mode is set, either explicitly or
implicitly. If a mode is not specified, the default value is used.

Valid Combinations for Open Mode

Not all open modes can be specified at once. Some are nonsensical, such as opening a file
setting both in and TRunc . That would yield a stream we intend to read but that we have
truncated so that there is no data to read. Table 8.4 lists the valid mode combinations and their
meanings.

Table 8.4. File Mode Combinations



out open for output; deletes existing data in the
file

out | app open for output; all writes at end of file

out | trunc same as out

in open for input

in | out open for both input and output;
positioned to read the beginning of the file

in | out | trunc open for both input and output,
deletes existing data in the file

Any open mode combination may also include ate . The effect of adding ate to any of these
modes changes only the initial position of the file. Adding ate to any of these mode
combinations positions the file to the end before the first input or output operation is performed.

8.4.3. A Program to Open and Check Input Files

Several programs in this book open a given file for input. Because we need to do this work in
several programs, we'll write a function, named open_file , to perform it. Our function takes
references to an ifstream and a string . The string holds the name of a file to associate with
the given ifstream :

    // opens in binding it to the given file
    ifstream& open_file(ifstream &in, const string &file)
    {

        in.close();     // close in case it was already open

        in.clear();     // clear any existing errors
        // if the open fails, the stream will be in an invalid state
        in.open(file.c_str()); // open the file we were given

        return in; // condition state is good if open succeeded
    }

Because we do not know what state the stream is in, we start by calling close and clear to put
the stream into a valid state. We next attempt to open the given file. If the open fails, the
stream's condition state will indicate that the stream is unusable. We finish by returning the
stream, which is either bound to the given file and ready to use or is in an error condition.



Exercises Section 8.4.3

Exercise
8.11:

In the open_file function, explain why we call clear before the
call to open . What would happen if we neglected to make this
call? What would happen if we called clear after the open ?

Exercise
8.12:

In the open_file function, explain what the effect would be if
the program failed to execute the close .

Exercise
8.13:

Write a program similar to open_file that opens a file for
output.

Exercise
8.14:

Use open_file and the program you wrote for the first
exercise in Section 8.2 (p. 291 ) to open a given file and read
its contents.

 



 

8.5. String Streams

The iostream library supports in-memory input/output, in which a stream is attached to a
string within the program's memory. That string can be written to and read from using the
iostream input and output operators. The library defines three kinds of string streams:

istringstream , derived from istream , reads from a string .

ostringstream , derived from ostream , writes to a string .

stringstream , derived from iostream , reads and writes a string .

To use any of these classes, we must include the sstream header.

Like the fstream types, these types are derived from the iostream types, meaning that all the
operations on iostream s also apply to the types in sstream . In addition to the operations that
the sstream types inherit, these types have a constructor that takes a string . The constructor
copies the string argument into the stringstream object. The operations that read and write the
stringstream read or write the string in the object. These classes also define a member named
str to fetch or set the string value that the stringstream manipulates.

Note that although fstream and sstream share a common base class, they have no other
interrelationship. In particular, we cannot use open and close on a stringstream , nor can we
use str on an fstream .

Table 8.5. stringstream -Specific Operations

stringstream strm; Creates an unbound stringstream .

stringstream strm(s); Creates a stringstream that holds a copy of the
string s .

strm.str() Returns a copy of the string that strm holds.

strm.str(s) Copies the string s into strm . Returns void .

Using a stringstream

We've seen programs that need to deal with their input a word at a time or a line at a time. The
first sort of programs use the string input operator and the second use the getline function.
However, some programs need to do both: They have some processing to do on a per-line basis
and other work that needs to be done on each word within each line. Using stringstreams lets
us do so:

    string line, word;      // will hold a line and word from input, respectively

    while (getline(cin, line))   {            // read a line from the input into line
       // do per-line processing

       istringstream stream(line);            // bind to stream to the line we read



       while (stream >> word){          // read a word from line
           // do per-word processing
       }
    }

Here we use getline to get an entire line from the input. To get the words in each line, we bind
an istringstream to the line that we read. We can then use the normal string input operator to
read the words from each line.

stringstream s Provide Conversions and/or Formatting

One common use of stringstream s is when we want to obtain automatic formatting across
multiple data types. For example, we might have a collection of numeric values but want their
string representation or vice versa. The sstream input and output operations automatically
convert an arithmetic type into its corresponding string representation or back again:

    int val1 = 512, val2 = 1024;
    ostringstream format_message;

    // ok: converts values to a string representation
    format_message << "val1: " << val1 << "\n"
                   << "val2: " << val2 << "\n";

Here we create an empty ostringstream object named format_message and insert the indicated
text into that object. What's important is that the int values are automatically converted to
their printable string equivalents. The contents of format_message are the characters

val1: 512\nval2: 1024

We could retrieve the numeric value by using an istringstream to read from the string .
Reading an istringstream automatically converts from the character representation of a
numeric value to its corresponding arithmetic value:

   // str member obtains the string associated with a stringstream
   istringstream input_istring(format_message.str());
   string dump; // place to dump the labels from the formatted message
   // extracts the stored ascii values, converting back to arithmetic types
   input_istring >> dump >> val1 >> dump >> val2;
   cout << val1 << " " << val2 << endl;  // prints 512 1024

Here we use the str member to obtain a copy of the string associated with the ostringstream
we previously created. We bind input_istring to that string . When we read input_istring ,
the values are converted back to their original numeric representations.



To read input_string , we must parse the string into its component
parts. We want the numeric values; to get them we must read (and
ignore) the labels that are interspersed with the data we want.

Because the input operator reads typed values, it is essential that the types of the objects into
which we read be compatible with the types of the values read from the stringstream . In this
case, input_istring had four components: The string value val1: followed by 512 followed by
the string val2: followed by 1024 . As usual, whenweread strings using the input operator,
whitespace is ignored. Thus, when we read the string associated with format_message , we can
ignore the newlines that are part of that value.

Exercises Section 8.5

Exercise
8.15:

Use the function you wrote for the first exercise in Section 8.2
(p. 291 ) to print the contents of an istringstream object.

Exercise
8.16:

Write a program to store each line from a file in a
vector<string> . Now use an istringstream to read each line
from the vector a word at a time.

 



 

Chapter Summary

C++ uses library classes to handle input and output:

The iostream classes handle stream-oriented input and output

The fstream classes handle IO to named files

The stringstream classes do IO to in-memory string s

All of these classes are related by inheritance. The input classes inherit from istream and the
output classes from ostream . Thus, operations that can be performed on an istream object can
also be performed on either an ifstream or an istringstream . Similarly for the output classes,
which inherit from ostream .

Each IO object maintains a set of condition states that indicate whether IO can be done through
this object. If an error is encounteredsuch as hitting end-of-file on an input streamthen the
object's state will be such that no further input can be done until the error is rectified. The
library provides a set of functions to set and test these states.

 



 

Defined Terms

base class

A class that is the parent of another class. The base class defines the interface that a
derived class inherits.

condition state

Flags and associated functions usable by any of the stream classes that indicate whether a
given stream is usable. States and functions to get and set these states are listed in Table
8.2 (p. 288 ).

derived class

A derived class is one that shares an interface with its parent class.

file mode

Flags defined by the fstream classes that are specified when opening a file and control
how a file can be used. Listed in Table 8.3 (p. 297 ).

fstream

Stream object that reads or writes a named file. In addition to the normal iostream
operations, the fstream class also defines open and close members. The open member
function takes a C-style character string that names the file to open and an optional open
mode argument. By default ifstream s are opened with in mode, ofstream s with out
mode, and fstream s with in and out mode set. The close member closes the file to which
the stream is attached. It must be called before another file can be open ed.

inheritance

Types that are related by inheritance share a common interface. A derived class inherits
properties from its base class. Chapter 15 covers inheritance.

object-oriented library

A set of classes related by inheritance. Generally speaking, the base class of an object-
oriented library defines an interface that is shared by the classes derived from that base
class. In the IO library, the istream and ostream classes serve as base classes for the
types defined in the fstream and sstream headers. We can use an object of a derived class



as if it were an object of the base class. For example, we can use the operations defined
for istream on an ifstream object.

stringstream

Stream object that reads or writes a string . In addition to the normal iostream
operations, it also defines an overloaded member named str . Calling str with no
arguments returns the string to which the stringstream is attached. Calling it with a
string attaches the stringstream to a copy of that string .

 



 

Part II: Containers and Algorithms
We've said that C++ is about efficient programming with abstractions. The Standard
Library is a good example: The library defines a number of container classes and a family
of generic algorithms that let us write programs that are succinct, abstract, and efficient.
The library worries about bookkeeping detailsin particular, taking care of memory
managementso that our programs can worry about the actual problems we need to solve.

In Chapter 3 we introduced the vector container type. We'll learn more in Chapter 9 about
vector and the other sequential container types provided by the library. We'll also cover
more operations provided by the string type. We can think of a string as a special kind of
container that contains only characters. The string type supports many, but not all, of the
container operations.

The library also defines several associative containers. Elements in an associative container
are ordered by key rather than sequentially. The associative containers share many
operations with the sequential containers and also define operations that are specific to the
associative containers. The associative containers are covered in Chapter 10 .

Chapter 11 introduces the generic algorithms. The algorithms typically operate on a range
of elements from a container or other sequence. The algorithms library offers efficient
implementations of various classical algorithms, such as searching, sorting, and other
common tasks. For example, there is a copy algorithm, which copies elements from one
sequence to another; find , which looks for a given element; and so on. The algorithms
are generic in two ways: They they can be applied to different kinds of containers, and
those containers may contain elements of most types.

The library is designed so that the container types provide a common interface: If two
containers offer a similar operation, then that operation will be defined identically for both
containers. For example, all the containers have an operation to return the number of
elements in the container. All the containers name that operation size , and they all define
a type named size_type that is the type of the value returned by size . Similarly, the
algorithms have a consistent interface. For example, most algorithms operate on a range
of elements specified by a pair of iterators.

Because the container operations and algorithms are defined consistently, learning the
library becomes easier: Once you understand how an operation works, you can apply that
same operation to other containers. More importantly, this commonality of interface leads
to more flexible programs. It is often possible to take a program written to use one
container type and change it to use a different container without having to rewrite code. As
we'll see, the containers offer different performance tradeoffs, and the ability to change
container types can be valuable when fine-tuning the performance of a system.

CONTENTS

  Chapter 9 Sequential Containers

  Chapter 10 Associative Containers

  Chapter 11 Generic Algorithms
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This chapter completes our discussion of the standard-library sequential container types. It
expands on the material from Chapter 3 , which introduced the most commonly used sequential
container, the vector type. Elements in a sequential container are stored and accessed by
position. The library also defines several associative containers, which hold elements whose
order depends on a key. Associative containers are covered in the next chapter.

The container classes share a common interface. This fact makes the library easier to learn;
what we learn about one type applies to another. Each container type offers a different set of
time and functionality tradeoffs. Often a program using one type can be fine-tuned by
substituting another container without changing our code beyond the need to change type
declarations.

A container holds a collection of objects of a specified type. We've used one kind of container
already: the library vector type. It is a sequential container . It holds a collection of elements
of a single type, making it a container. Those elements are stored and accessed by position,
making it a sequential container. The order of elements in a sequential container is independent
of the value of the elements. Instead, the order is determined by the order in which elements
are added to the container.

The library defines three kinds of sequential containers: vector, list , and deque (short for
"double-ended queue" and pronounced "deck"). These types differ in how elements are
accessed and the relative run-time cost of adding or removing elements. The library also
provides three container adaptors . Effectively, an adaptor adapts an underlying container type
by defining a new interface in terms of the operations provided by the original type. The
sequential container adaptors are stack , queue , and priority_queue .

Containers define only a small number of operations. Many additional operations are provided
by the algorithms library, which we'll cover in Chapter 11 . For those operations that are defined
by the containers, the library imposes a common interface. The containers vary as to which
operations they provide, but if two containers provide the same operation, then the interface
(name and number of arguments) will be the same for both container types. The set of
operations on the container types form a kind of hierarchy:



Some operations are supported by all container types.

Other operations are common to only the sequential or only the associative containers.

Still others are common to only a subset of either the sequential or associative containers.

In the remainder of this chapter, we look at the sequential container types and their operations
in detail.

Table 9.1. Sequential Container Types

Sequential Containers  

vector Supports fast random access

list Supports fast insertion/deletion

deque Double-ended queue

Sequential Container Adaptors

stack Last in/First out stack

queue First in/First out queue

priority_queue Priority-managed queue

 



 

9.1. Defining a Sequential Container

We already know a fair bit about how to use the sequential containers based on what we
covered in Section 3.3 (p. 90 ). To define a container object, we must include its associated
header file, which is one of

     #include <vector>
     #include <list>
     #include <deque>

Each of the containers is a class template (Section 3.3 , p. 90 ). To define a particular kind of
container, we name the container followed by angle brackets that enclose the type of the
elements the container will hold:

     vector<string>    svec;       // empty vector that can hold strings

     list<int>         ilist;      // empty list that can hold ints

     deque<Sales_item> items;      // empty deque that holds Sales_items

Each container defines a default constructor that creates an empty container of the speicfied
type. Recall that a default constructor takes no arguments.

For reasons that shall become clear shortly, the most commonly
used container constructor is the default constructor. In most
programs, using the default constructor gives the best run-time
performance and makes using the container easier.

9.1.1. Initializing Container Elements

In addition to defining a default constructor, each container type also supports constructors that
allow us to specify initial element values.

Table 9.2. Container Constructors



C<T> c; Create an empty container named c . C is a container name,
such as vector , and T is the element type, such as int or
string . Valid for all containers.

C c(c2); Create c as a copy of container c2 ; c and c2 must be the
same container type and hold values of the same type. Valid
for all containers.

C c(b, e); Create c with a copy of the elements from the range
denoted by iterators b and e . Valid for all containers.

C c(n, t); Create c with n elements, each with value t , which must be
a value of the element type of C or a type convertible to that
type.

Sequential containers only.

C c(n); Create c with n value-initialized (Section 3.3.1 , p. 92 )
elements.

Sequential containers only.

Intializing a Container as a Copy of Another Container

When we initialize a sequential container using any constructor other than the default
constructor, we must indicate how many elements the container will have. We must also supply
initial values for those elements. One way to specify both the size and element values is to
initialize a new container as a copy of an existing container of the same type:

     vector<int> ivec;

     vector<int> ivec2(ivec);   // ok: ivec is vector<int>

     list<int>   ilist(ivec);   // error: ivec is not list<int>

     vector<double> dvec(ivec); // error: ivec holds int not double

When we copy one container into another, the types must match
exactly: The container type and element type must be the same.

Initializing as a Copy of a Range of Elements

Although we cannot copy the elements from one kind of container to another directly, we can do
so indirectly by passing a pair of iterators (Section 3.4 , p. 95 ). When we use iterators, there is
no requirement that the container types be identical. The element types in the containers can
differ as long as they are compatible. It must be possible to convert the element we copy into
the type held by the container we are constructing.



The iterators denote a range of elements that we want to copy. These elements are used to
initialize the elements of the new container. The iterators mark the first and one past the last
element to be copied. We can use this form of initialization to copy a container that we could not
copy directly. More importantly, we can use it to copy only a subsequence of the other
container:

     // initialize slist with copy of each element of svec
     list<string> slist(svec.begin(), svec.end());

     // find midpoint in the vector
     vector<string>::iterator mid = svec.begin() + svec.size()/2;

     // initialize front with first half of svec: The elements up to but not including *mid
     deque<string> front(svec.begin(), mid);

     // initialize back with second half of svec: The elements *mid through end of svec
     deque<string> back(mid, svec.end());

Recall that pointers are iterators, so it should not be surprising that we can initialize a container
from a pair of pointers into a built-in array:

     char *words[] = {"stately", "plump", "buck", "mulligan"};

     // calculate how many elements in words
     size_t words_size = sizeof(words)/sizeof(char *);

     // use entire array to initialize words2
     list<string> words2(words, words + words_size);

Here we use sizeof (Section 5.8 , p. 167 ) to calculate the size of the array. We add that size to
a pointer to the first element to get a pointer to a location one past the end of the array. The
initializers for words2 are a pointer to the first element in words and a second pointer one past
the last element in that array. The second pointer serves as a stopping condition; the location it
addresses is not included in the elements to be copied.

Allocating and Initializing a Specified Number of Elements

When creating a sequential container, we may specify an explicit size and an (optional)
initializer to use for the elements. The size can be either a constant or non-constant expression.
The element initializer must be a valid value that can be used to initialize an object of the
element type:

     const list<int>::size_type list_size = 64;

     list<string> slist(list_size, "eh?"); // 64 strings, each is eh?

This code initializes slist to have 64 elements, each with the value eh? .

As an alternative to specifying the number of elements and an element initializer, we can also
specify only the size:



list<int> ilist(list_size); // 64 elements, each initialized to 0
// svec has as many elements as the return value from get_word_count
extern unsigned get_word_count(const string &file_name);
vector<string> svec(get_word_count("Chimera"));

When we do not supply an element initializer, the library generates a value-initialized (Section
3.3.1 , p. 92 ) one for us. To use this form of initialization, the element type must either be a
built-in or compound type or be a class type that has a default constructor. If the element type
does not have a default constructor, then an explicit element initializer must be specified.

The constructors that take a size are valid only for sequential
containers; they are not supported for the associative containers,

9.1.2. Constraints on Types that a Container Can Hold

While most types can be used as the element type of a container, there are two constraints that
element types must meet:

The element type must support assignment.

We must be able to copy objects of the element type.

There are additional constraints on the types used as the key in an associative container, which
we'll cover in Chapter 10 .

Most types meet these minimal element type requirements. All of the built-in or compound
types, with the exception of references, can be used as the element type. References do not
support assignment in its ordinary meaning, so we cannot have containers of references.



Exercises Section 9.1.1

Exercise
9.1:

Explain the following initializations. Indicate if any are in error,
and if so, why.

     int ia[7] = { 0, 1, 1, 2, 3, 5, 8 };
     string sa[6] = {
         "Fort Sumter", "Manassas", "Perryville",
         "Vicksburg", "Meridian", "Chancellorsville" };
     (a) vector<string> svec(sa, sa+6);
     (b) list<int> ilist( ia+4, ia+6);
     (c) vector<int> ivec(ia, ia+8);
     (d) list<string> slist(sa+6, sa);

Exercise
9.2:

Show an example of each of the four ways to create and initialize
a vector . Explain what values each vector contains.

Exercise
9.3:

Explain the differences between the constructor that takes a
container to copy and the constructor that takes two iterators.

With the exception of the IO library types (and the auto_ptr type, which we cover in Section
17.1.9 (p. 702 )), all the library types are valid container element types. In particular,
containers themselves satisfy these requirements. We can define containers with elements that
are themselves containers. Our Sales_item type also satisifes these requirements.

The IO library types do not support copy or assignment. Therefore, we cannot have a container
that holds objects of the IO types.

Container Operations May Impose Additional Requirements

The requirement to support copy and assignment is the minimal requirement on element types.
In addition, some container operations impose additional requirements on the element type. If
the element type doesn't support the additional requirement, then we cannot perform that
operation: We can define a container of that type but may not use that particular operation.

One example of an operation that imposes a type constraint is the constructors that take a
single initializer that specifies the size of the container. If our container holds objects of a class
type, then we can use this constructor only if the element type has a default constructor. Most
types do have a default constructor, although there are some classes that do not. As an
example, assume that Foo is a class that does not define a default constructor but that does
have a constructor that takes an int argument. Now, consider the following declarations:

     vector<Foo> empty;     // ok: no need for element default constructor
     vector<Foo> bad(10);   // error: no default constructor for Foo
     vector<Foo> ok(10, 1); // ok: each element initialized to 1



We can define an empty container to hold Foo objects, but we can define one of a given size
only if we also specify an initializer for each element.

As we describe the container operations, we'll note the constraints, if any, that each container
operation places on the element type.

Containers of Containers

Because the containers meet the constraints on element types, we can define a container whose
element type is itself a container type. For example, we might define lines as a vector whose
elements are a vector of string s:

     // note spacing: use ">>" not ">>" when specifying a container element type

     vector< vector<string> > lines; // vector of vectors

Note the spacing used when specifying a container element type as a container:

     vector< vector<string> > lines; // ok: space required between close >
     vector< vector<string>> lines; // error: >> treated as shift operator

We must separate the two closing > symbols with a space to
indicate that these two characters represent two symbols. Without
the space, >> is treated as a single symbol, the right shift operator,
and results in a compile-time error.

Exercises Section 9.1.2

Exercise
9.4:

Define a list that holds elements that are deque s that hold
ints .

Exercise
9.5:

Why can we not have containers that hold iostream objects?

Exercise
9.6:

Given a class type named Foo that does not define a default
constructor but does define a constructor that takes int
values, define a list of Foo that holds 10 elements.



 



 

9.2. Iterators and Iterator Ranges

The constructors that take a pair of iterators are an example of a common form used
extensively throughout the library. Before we look further at the container operations, we should
understand a bit more about iterators and iterator ranges.

In Section 3.4 (p. 95 ), we first encountered vector iterators. Each of the container types has
several companion iterator types. Like the containers, the iterators have a common interface: If
an iterator provides an operation, then the operation is supported in the same way for each
iterator that supplies that operation. For example, all the container iterators let us read an
element from a container, and they all do so by providing the dereference operator. Similarly,
they all provide increment and decrement operators to allow us to go from one element to the
next. Table 9.3 lists the iterator operations supported by the iterators for all of the library
containers.

Table 9.3. Common Iterator Operations

*iter Return a reference to the element referred to by the
iterator iter .

iter->mem Dereference iter and fetch the member named mem from
the underlying element. Equivalent to (*iter).mem .

++iter iter++ Increment iter to refer to the next element in the
container.

--iter iter-- Decrement iter to refer to the previous element in the
container.

iter1 == iter2

iter1 != iter2
Compare two iterators for equality (inequality). Two
iterators are equal if they refer to the same element of
the same container or if they are the off-the-end iterator
(Section 3.4 , p. 97 ) for the same container.

Iterators on vector and deque Support Additional Operations

There are two important sets of operations that only vector and deque support: iterator
arithmetic (Section 3.4.1 , p. 100 ) and the use of the relational operators (in addition to == and
!= ) to compare two iterators. These operations are summarized in Table 9.4 on the facing page.

Table 9.4. Operations Supported by vector and deque
Iterators



iter + n
iter - n

Adding (subtracting) an integral value n to (from) an
iterator yields an iterator that many elements
forward (backward) within the container. The
resulting iterator must refer to an element in the
container or one past the end of the container.

iter1 += iter2
iter1 -= iter2

Compound-assignment versions of iterator addition
and subtraction. Assigns the value of adding or
subtracting iter1 and iter2 into iter1 .

iter1 - iter2 Subtracting two iterators yields the number that
when added to the right-hand iterator yields the left-
hand iterator. The iterators must refer to elements in
the same container or one past the end of the
container.

Supported only for vector and deque .

>, >=, <, <= Relational operators on iterators. One iterator is less
than another if it refers to an element whose
position in the container is ahead of the one referred
to by the other iterator. The iterators must refer to
elements in the same container or one past the end
of the container.

Supported only for vector and deque .

The reason that only vector and deque support the relational operators is that only vector and
deque offer fast, random access to their elements. These containers are guaranteed to let us
efficiently jump directly to an element given its position in the container. Because these
containers support random access by position, it is possible for their iterators to efficiently
implement the arithmetic and relational operations.

For example, we could calculate the midpoint of a vector as follows:

     vector<int>::iterator iter = vec.begin() + vec.size()/2;

On the other hand, this code

     // copy elements from vec into ilist
     list<int> ilist(vec.begin(), vec.end());

     ilist.begin() + ilist.size()/2; // error: no addition on list iterators

is an error. The list iterator does not support the arithmetic operationsaddition or
subtractionnor does it support the relational (<=, <, >=, > ) operators. It does support pre- and
postfix increment and decrement and the equality (inequality) operators.

In Chapter 11 we'll see that the operations an iterator supports are fundamental to using the
library algorithms.



Exercises Section 9.2

Exercise
9.7:

What is wrong with the following program? How might you
correct it?

     list<int> lst1;
     list<int>::iterator iter1 = lst1.begin(),
                         iter2 = lst1.end();
     while (iter1 < iter2) /* . . . */

Exercise
9.8:

Assuming vec_iter is bound to an element in a vector that holds
string s, what does this statement do?

     if (vec_iter->empty()) /* . . . */

Exercise
9.9:

Write a loop to write the elements of a list in reverse order.

Exercise
9.10:

Which, if any, of the following iterator uses are in error?

     const vector< int > ivec(10);
     vector< string >    svec(10);
     list< int >         ilist(10);

     (a) vector<int>::iterator    it = ivec.begin();
     (b) list<int>::iterator      it = ilist.begin()+2;
     (c) vector<string>::iterator it = &svec[0];
     (d) for (vector<string>::iterator
                  it = svec.begin(); it != 0; ++it)
                     // ...

9.2.1. Iterator Ranges

The concept of an iterator range is fundamental to the standard
library.



An iterator range is denoted by a pair of iterators that refer to two elements, or to one past
the last element , in the same container. These two iterators, often referred to as first and
last , or beg and end , mark a range of elements from the container.

Although the names last and end are common, they are a bit misleading. The second iterator
never refers to the last element of the range. Instead, it refers to a point one past the last
element. The elements in the range include the element referred to by first and every element
from first tHRough the element just before last . If the iterators are equal, then the range is
empty.

This element range is called a left-inclusive interval . The standard notation for such a range
is

     // to be read as: includes first and each element up to but not including last
     [ first, last )

indicating that the range begins with first and ends with, but does not include, last . The
iterator in last may be equal to the first or may refer to an element that appears after the one
referred to by first . The last iterator must not refer to an element ahead of the one referred
to by first .

Requirements on Iterators Forming an Iterator Range

Two iterators, first and last , form an iterator range, if

They refer to elements of, or one-past-the-end of, the same container.

If the iterators are not equal, then it must be possible to reach last by
repeatedly incrementing first . In other words, last must not precede
first in the container.

The compiler cannot itself enforce these
requirements. It does not know to which container
an iterator is bound, nor does it know how many
elements are in a container. Failing to meet these
requirements results in undefined run-time
behavior.

Programming Implications of Using Left-Inclusive Ranges



The library uses left-inclusive ranges because such ranges have two convenient properties.
Assuming first and last denote a valid iterator range, then

When first equals last , the range is empty.1.

When first is not equal to last , there is at least one element in the range, and first
refers to the first element in that range. Moreover, we can advance first by incrementing
it some number of times until first == last .

2.

These properties mean that we can safely write loops such as the following to process a range of
elements by testing the iterators:

     while (first != last) {

         // safe to use *first because we know there is at least one element
         ++first;
     }

Assuming first and last form a valid iterator range, then we know that either first == last ,
in which case the loop is exited, or the range is non-empty and first refers to an element.
Because the condition in the while handles the case where the range is empty, there is no need
for a special case to handle an empty range. When the range is non-empty, the loop will
execute at least once. Because the loop body increments first , we know the loop will
eventually terminate. Moreover, if we are in the loop, then we know that *first is safe: It must
refer to an element in the non-empty range between first and last .

Exercises Section 9.2.1

Exercise
9.11:

What are the constraints on the iterators that form iterator
ranges?

Exercise
9.12:

Write a function that takes a pair of iterators and an int value.
Look for that value in the range and return a bool indicating
whether it was found.

Exercise
9.13:

Rewrite the program that finds a value to return an iterator
that refers to the element. Be sure your function works
correctly if the element does not exist.

Exercise
9.14:

Using iterators, write a program to read a sequence of string
s from the standard input into a vector . Print the elements in
the vector .

Exercise
9.15:

Rewrite the program from the previous exercise to use a list .
List the changes you needed to change the container type.



9.2.2. Some Container Operations Invalidate Iterators

In the sections that follow, we'll see that some container operations change the internal state of
a container or cause the elements in the container to be moved. Such operations invalidate all
iterators that refer to the elements that are moved and may invalidate other iterators as well.
Using an invalidated iterator is undefined, and likely to lead to the same kinds of problems as
using a dangling pointer.

For example, each container defines one or more erase functions. These functions remove
elements from the container. Any iterator that refers to an element that is removed has an
invalid value. After all, the iterator was positioned on an element that no longer exists within the
container.

When writing programs that use iterators, we must be aware of
which operations can invalidate the iterators. It is a serious run-
time error to use an iterator that has been invalidated.

There is no way to examine an iterator to determine whether it has been invalidated. There is
no test we can perform to detect that it has gone bad. Any use of an invalidated iterator is likely
to yield a run-time error, but there is no guarantee that the program will crash or otherwise
make it easy to detect the problem.

When using iterators, it is usually possible to write the program
so that the range of code over which an iterator must stay valid
is relatively short. It is important to examine each statement in
this range to determine whether elements are added or
removed and adjust iterator values accordingly.

 



 

9.3. Sequence Container Operations

Each sequential container defines a set of useful typedefs and supports operations that let us

Add elements to the container

Delete elements from the container

Determine the size of the container

Fetch the first and last elements from the container, if any

9.3.1. Container Typedefs

We've used three of the container-defined types: size_type, iterator , and const_iterator .
Each container defines these types, along with several others shown in Table 9.5 .

Table 9.5. Container-Defined Typedefs

size_type Unsigned integral type large enough to hold
size of largest possible container of this
container type

iterator Type of the iterator for this container type

const_iterator Type of the iterator that can read but not
write the elements

reverse_iterator Iterator that addresses elements in reverse
order

const_reverse_iterator Reverse iterator that can read but not write
the elements

difference_type Signed integral type large enough to hold the
difference, which might be negative, between
two iterators

value_type Element type

reference Element's lvalue type; synonym for
value_type&

const_reference Element's const lvalue type; same as const
value_type&

We'll have more to say about reverse iterators in Section 11.3.3 (p. 412 ), but briefly, a reverse
iterator is an iterator that goes backward through a container and inverts the iterator
operations: For example, saying ++ on a reverse iterator yields the previous element in the



container.

The last three types in Table 9.5 on the facing page let us use the type of the elements stored in
a container without directly knowing what that type is. If we need the element type, we refer to
the container's value_type . If we need a reference to that type, we use reference or
const_reference . The utility of these element-related typedefs will be more apparent when we
define our own generic programs in Chapter 16 .

Expressions that use a container-defined type can look intimidating:

     // iter is the iterator type defined by list<string>
     list<string>::iterator iter;

     // cnt is the difference_type type defined by vector<int>
     vector<int>::difference_type cnt;

The declaration of iter uses the scope operator to say that we want the name on the right-hand
side of the :: from the scope of the left-hand side. The effect is to declare that iter has
whatever type is defined for the iterator member from the list class that holds elements of
type string .

Exercises Section 9.3.1

Exercise
9.16:

What type should be used as the index into a vector of int s?

Exercise
9.17:

What type should be used to read the elments in a list of
string s?

9.3.2. begin and end Members

The begin and end operations yield iterators that refer to the first and one past the last element
in the container. These iterators are most often used to form an iterator range that
encompasses all the elements in the container.

Table 9.6. Container begin and end Operations



c.begin() Yields an iterator referring to the first
element in c

c.end() Yields an iterator referring to the one past
the last element in c

c.rbegin() Yields a reverse iterator referring to the last
element in c

c.rend() Yields a reverse iterator referring one past
(i.e., before) the first element in c

There are two different versions of each of these operations: One is a const member (Section
7.7.1 , p. 260 ) and the other is nonconst . The return type of these operations varies on
whether the container is const . In each case, if the container is nonconst , then the result's
type is iterator or reverse_iterator . If the object is const , then the type is prefixed by const_
, that is, const_iterator or const_reverse_iterator . We cover reverse iterators in Section
11.3.3 (p. 412 ).

9.3.3. Adding Elements to a Sequential Container

In Section 3.3.2 (p. 94 ) we saw one way to add elements: push_back . Every sequential
container supports push_back , which appends an element to the back of the container. The
following loop reads one string at a time into text_word:

     // read from standard input putting each word onto the end of container
     string text_word;
     while (cin >> text_word)
         container.push_back(text_word);

The call to push_back creates a new element at the end of container , increasing the size of
container by one. The value of that element is a copy of text_word . The type of container can
be any of list, vector , or deque .

In addition to push_back , the list and deque containers support an analogous operation named
push_front . This operation inserts a new element at the front of the container. For example,

     list<int> ilist;

     // add elements at the end of ilist
     for (size_t ix = 0; ix != 4; ++ix)
         ilist.push_back(ix);

uses push_back to add the sequence 0, 1, 2, 3 to the end of ilist .

Alternatively, we could use push_front

     // add elements to the start of ilist
     for (size_t ix = 0; ix != 4; ++ix)
         ilist.push_front(ix);



to add the elements 0, 1, 2, 3 to the beginning of ilist . Because each element is inserted at
the new beginning of the list , they wind up in reverse order. After executing both loops, ilist
holds the sequence 3,2,1,0,0,1,2,3 .

Key Concept: Container Elements Are Copies

When we add an element to a container, we do so by copying the element
value into the container. Similarly, when we initialize a container by
providing a range of elements, the new container contains copies of the
original range of elements. There is no relationship between the element in
the container and the value from which it was copied. Subsequent changes
to the element in the container have no effect on the value that was copied,
and vice versa.

Table 9.7. Operations that Add Elements to a Sequential
Container

c.push_back(t) Adds element with value t to the end of c . Returns
void .

c.push_front(t) Adds element with value t to front of c . Returns
void .

Valid only for list or deque .

c.insert(p,t) Inserts element with value t before the element
referred to by iterator p . Returns an iterator
referring to the element that was added.

c.insert(p,n,t) Inserts n elements with value t before the element
referred to by iterator p . Returns void .

c.insert(p,b,e) Inserts elements in the range denoted by iterators b
and e before the element referred to by iterator p .
Returns void .

Adding Elements at a Specified Point in the Container

The push_back and push_front operations provide convenient ways to insert a single element at
the end or beginning of a sequential container. More generally, insert allows us to insert
elements at any particular point in the container. There are three versions of insert . The first
takes an iterator and an element value. The iterator refers to the position at which to insert the
value. We could use this version of insert to insert an element at the beginning of a container:

     vector<string> svec;
     list<string> slist;



     string spouse("Beth");

     // equivalent to calling slist.push_front (spouse);
     slist.insert(slist.begin(), spouse);

     // no push_front on vector but we can insert before begin()

     // warning: inserting anywhere but at the end of a vector is an expensive operation
     svec.insert(svec.begin(), spouse);

The value is inserted before the position referred to by the iterator. The iterator can refer to any
position in the container, including one past the end of the container. Because the iterator might
refer to a nonexistent element off the end of the container, insert inserts before the position
rather than after it. This code

     slist.insert(iter, spouse); // insert spouse just before iter

inserts a copy of spouse just before the element referred to by iter .

This version of insert returns an iterator referring to the newly inserted element. We could use
the return value to repeatedly insert elements at a specified position in the container:

     list<string> lst;
     list<string>::iterator iter = lst.begin();
     while (cin >> word)

        iter = lst.insert(iter, word); // same as calling push_front

It is important to understand thoroughly how this loop operatesin
particular to understand why we say that the loop is equivalent to
calling push_front .

Before the loop, we initialize iter to lst.begin() . Because the list is empty, lst.begin() and
lst.end() are equal, so iter refers one past the end of the (empty) list . The first call to
insert puts the element we just read in front of the element referred to by iter . The value
returned by insert is an iterator referring to this new element, which is now the first, and only,
element in lst . We assign that iterator to iter and repeat the while , reading another word. As
long as there are words to insert, each trip through the while inserts a new element ahead of
iter and reassigns to iter the value of the newly inserted element. That element is always the
first element, so each iteration inserts an element ahead of the first element in the list .

Inserting a Range of Elements

A second form of insert adds a specified number of identical elements at an indicated position:



     svec.insert(svec.end(), 10, "Anna");

This code inserts ten elements at the end of svec and initializes each of those elements to the
string "Anna" .

The final form of insert adds a range of elements denoted by an iterator pair into the container.
For example, given the following array of string s

     string sarray[4] = {"quasi", "simba", "frollo", "scar"};

we can insert all or a subset of the array elements into our list of string s:

     // insert all the elements in sarray at end of slist
     slist.insert(slist.end(), sarray, sarray+4);
     list<string>::iterator slist_iter = slist.begin();

     // insert last two elements of sarray before slist_iter
     slist.insert(slist_iter, sarray+2, sarray+4);

Inserting Elements Can Invalidate Iterators

As we'll see in Section 9.4 (p. 330 ), adding elements to a vector can cause the entire container
to be relocated. If the container is relocated, then all iterators into the container are invalidated.
Even if the vector does not have to be relocated, any iterator to an element after the one
inserted is invalidated.

Iterators may be invalidated after doing any insert or push
operation on a vector or deque . When writing loops that insert
elements into a vector or a deque , the program must ensure that
the iterator is refreshed on each trip through the loop.

Avoid Storing the Iterator Returned from end

When we add elements to a vector or deque , some or all of the iterators may be invalidated. It
is safest to assume that all iterators are invalid. This advice is particularly true for the iterator
returned by end . That iterator is always invalidated by any insertion anywhere in the container.

As an example, consider a loop that reads each element, processes it and adds a new element
following the original. We want the loop to process each original element. We'll use the form of



insert that takes a single value and returns an iterator to the element that was just inserted.
After each insertion, we'll increment the iterator that is returned so that the loop is positioned to
operate on the next original element. If we attempt to "optimize" the loop, by storing an iterator
to the end() , we'll have a disaster:

     vector<int>::iterator first = v.begin(),
                           last = v.end(); // cache end iterator
     // diaster: behavior of this loop is undefined
     while (first != last) {
         // do some processing

         // insert new value and reassign first, which otherwise would be invalid
         first = v.insert(first, 42);

         ++first;  // advance first just past the element we added
      }

The behavior of this code is undefined. On many implementations, we'll get an infinite loop. The
problem is that we stored the value returned by the end operation in a local variable named last
. In the body of the loop, we add an element. Adding an element invalidates the iterator stored
in last . That iterator neither refers to an element in v nor any longer refers to one past the last
element in v .

Don't cache the iterator returned from end . Inserting or
deleting elements in a deque or vector will invalidate the cached
iterator.

Rather than storing the end iterator, we must recompute it after each insertion:

     // safer: recalculate end on each trip whenever the loop adds/erases elements
     while (first != v.end()) {
         // do some processing
         first = v.insert(first, 42); // insert new value

         ++first; // advance first just past the element we added
     }

9.3.4. Relational Operators

Each container supports the relational operators (Section 5.2 , p. 152 ) that can be used to
compare two containers. The containers must be the same kind of container and must hold
elements of the same type. We can compare a vector<int> only with another vector<int> . We
cannot compare a vector<int> with a list<int> or a vector<double> .



Exercises Section 9.3.3

Exercise
9.18:

Write a program to copy elements from a list of int s into two
deque s. The list elements that are even should go into one deque
and those that are odd into the second.

Exercise
9.19:

Assuming iv is a vector of int s, what is wrong with the following
program? How might you correct the problem(s)?

     vector<int>::iterator mid = iv.begin() + iv.size()/2;
     while (vector<int>::iterator iter != mid)
         if (iter == some_val)
             iv.insert(iter, 2 * some_val);

Comparing two containers is based on a pairwise comparison of the elements of the containers.
The comparison uses the same relational operator as defined by the element type: Comparing
two containers using != uses the != operator for the element type. If the element type doesn't
support the operator, then the containers cannot be compared using that operator.

These operators work similarly to the string relationals (Section 3.2.3 , p. 85 ):

If both containers are the same size and all the elements are equal, then the two
containers are equal; otherwise, they are unequal.

If the containers have different sizes but every element of the shorter one is equal to the
corresponding element of the longer one, then the shorter one is considered to be less
than the other.

If neither container is an initial subsequence of the other, then the comparison depends on
comparing the first unequal elements.

The easiest way to understand these operators is by studying examples:

     /*
                  ivec1: 1 3 5 7 9 12
                  ivec2: 0 2 4 6 8 10 12
                  ivec3: 1 3 9
                  ivec4: 1 3 5 7
                  ivec5: 1 3 5 7 9 12
     */

     // ivec1 and ivec2 differ at element[0]: ivec1 greater than ivec2

     ivec1 < ivec2 // false

     ivec2 < ivec1 // true

     // ivec1 and ivec3 differ at element[2]: ivec1 less than ivec3

     ivec1 < ivec3 // true



     // all elements equal, but ivec4 has fewer elements, so ivec1 is greater than ivec4

     ivec1 < ivec4 // false

     ivec1 == ivec5 // true; each element equal and same number of elements

     ivec1 == ivec4 // false; ivec4 has fewer elements than ivec1

     ivec1 != ivec4 // true; ivec4 has fewer elements than ivec1

Relational Operators Use Their Element's Relational Operator

We can compare two containers only if the same relational operator
defined for the element types.

Each container relational operator executes by comparing pairs of elements from the two
containers:

     ivec1 < ivec2

Assuming ivec1 and ivec2 are vector<int> , then this comparison uses the built-in int less-than
operator. If the vector s held strings , then the string less-than operator would be used.

If the vector s held objects of the Sales_item type that we used in Section 1.5 (p. 20 ), then the
comparison would be illegal. We did not define the relational operators for Sales_item . If we
have two containers of Sales_items , we could not compare them:

     vector<Sales_item> storeA;
     vector<Sales_item> storeB;

     if (storeA < storeB) // error: Sales_item has no less-than operator



Exercises Section 9.3.4

Exercise
9.20:

Write a program to compare whether a vector<int> contains
the same elements as a list<int> .

Exercise
9.21:

Assuming c1 and c2 are containers, what constraints does the
following usage place on the element types in c1 and c2 ?

     if (c1 < c2)

What, if any, constraints are there on c1 and c2 ?

9.3.5. Container Size Operations

Each container type supports four size-related operations. We used size and empty in Section
3.2.3 (p. 83 ): size returns the number of elements in the container; empty returns a bool that
is true if size is zero and false otherwise.

The resize operation changes the number of elements in the container. If the current size is
greater than the new size, then elements are deleted from the back of the container. If the
current size is less than the new size, then elements are added to the back of the container:

     list<int> ilist(10, 42);   // 10 ints: each has value 42

     ilist.resize(15);          // adds 5 elements of value 0 to back of ilist

     ilist.resize(25, -1);      // adds 10 elements of value -1 to back of ilist

     ilist.resize(5);           // erases 20 elements from the back of ilist

The resize operation takes an optional element-value argument. If this argument is present,
then any newly added elements receive this value. If this argument is absent, then any new
elements are value initialized (Section 3.3.1 , p. 92 ).

resize can invalidate iterators. A resize operation on a vector or
deque potentially invalidates all iterators.



For any container type, if resize shrinks the container, then any iterator to an element
that is deleted is invalidated.

Table 9.8. Sequential Container Size Operations

c.size() Returns the number of elements in c . Return type is
c::size_type .

c.max_size() Returns maximum number of elements c can
contain. Return type is c::size_type .

c.empty() Returns a bool that indicates whether size is 0 or
not.

c.resize(n) Resize c so that it has n elements. If N < c.size() ,
the excess elements are discarded. If new elements
must be added, they are value initialized.

c.resize(n,t) Resize c to have n elements. Any elements added
have value t .

Exercises Section 9.3.5

Exercise
9.22:

Given that vec holds 25 elements, what does vec.resize(100)
do? What if we next wrote vec.resize(10)?

Exercise
9.23:

What, if any, restrictions does using resize with a single size
argument place on the element types?

9.3.6. Accessing Elements

If a container is not empty, then the front and back members return references bound to the
first or last elements in the container:

     // check that there are elements before dereferencing an iterator

     // or calling front or back
     if (!ilist.empty()) {

         // val and val2 refer to the same element
         list<int>::reference val = *ilist.begin();
         list<int>::reference val2 = ilist.front();

         // last and last2 refer to the same element
         list<int>::reference last = *--ilist.end();
         list<int>::reference last2 = ilist.back(); }



This program uses two different approaches to fetch a reference to the first and last elements in
ilist . The direct approach is to call front or back . Indirectly, we can obtain a reference to the
same element by dereferencing the iterator returned by begin or the element one before the
iterator returned by end . Two things are noteworthy in this program: The end iterator refers
"one past the end" of the container so to fetch the last element we must first decrement that
iterator. The other important point is that before calling front or back or dereferencing the
iterators from begin or end we check that ilist isn't empty. If the list were empty all of the
operations in the if would be undefined.

When we introduced subscripting in Section 3.3.2 (p. 94 ), we noted that the programmer must
ensure that an element exists at the indicated subscript location. The subscript operator itself
does not check. The same caution applies to using the front or back operations. If the container
is empty, these operations yield an undefined result. If the container has only one element, then
front and back each return a reference to that element.

Using a subscript that is out-of-range or calling front or back on an
empty container are serious programming errors.

Table 9.9. Operations to Access Elements in a Sequential
Container

c.back() Returns a reference to the last element in c .
Undefined if c is empty.

c.front() Returns a reference to the first element in c .
Undefined if c is empty.

c[n] Returns a reference to the element indexed by n .

Undefined if n <0 or n >= c.size() .

Valid only for vector and deque .

c.at(n) Returns a reference to the element indexed by n . If
index is out of range, throws out_of_range
exception.

Valid only for vector and deque .

An alternative to subscripting is to use the at member. This function acts like the subscript
operation but if the index is invalid, at throws an out_of_range exception (Section 6.13 , p. 215
):



     vector<string> svec;     // empty vector

     cout << svec[0];         // run-time error: There are no elements in svec!

     cout << svec.at(0);      // throws out_of_range exception

Exercises Section 9.3.6

Exercise
9.24:

Write a program that fetches the first element in a vector . Do
so using at , the subscript operator, front , and begin . Test
the program on an empty vector .

9.3.7. Erasing Elements

Recall that there is both a general insert operation that inserts anywhere in the container and
specific push_front and push_back operations to add elements only at the front or back.
Similarly, there is a general erase and specific pop_front and pop_back operations to remove
elements.

Removing the First or Last Element

The pop_front and pop_back functions remove the first and last elements in the container. There
is no pop_front operation for vector s. These operations remove the indicated element and
return void .

One common use of pop_front is to use it together with front to process a container as a stack:

     while (!ilist.empty()) {

         process(ilist.front()); // do something with the current top of ilist
         ilist.pop_front();      // done; remove first element
     }

This loop is pretty simple: We use front to get a value to operate on and then call pop_front to
remove that element from the list .

The pop_front and pop_back return void ; they do not return the
value of the element popped. To examine that value, it is necessary
to call front or back prior to popping the element.



Table 9.10. Operations to Remove Elements from a
Sequential Container

c.erase(p) Removes element referred to by the iterator p .

Returns an iterator referring to the element after the
one deleted, or an off-the-end iterator if p referred
to the last element. Undefined if p is an off-the-end
iterator.

c.erase(b,e) Removes the range of elements denoted by the
iterators b and e .

Returns an iterator referring after the last one in the
range that was deleted, or an off-the-end iterator if
e is itself an off-the-end iterator.

c.clear() Removes all the elements in c . Returns void .

c.pop_back() Removes the last element in c . Returns void .
Undefined if c is empty.

c.pop_front() Removes the first element in c . Returns void .
Undefined if c is empty.

Valid only for list or deque .

Removing an Element From within the Container

The more general way to remove an element, or range of elements, is through erase . There are
two versions of erase : We can delete a single element referred to by an iterator or a range of
elements marked by a pair of iterators. Both forms of erase return an iterator referring to the
location after the element or range that was removed. That is, if element j is the element
immediately after i and we erase element i from the container, then the iterator returned will
refer to j .

As usual, the erase operations don't check their argument(s). It is
up to the programmer to ensure that the iterator or iterator range is
valid.

The erase operation is often used after finding an element that should be removed from the
container. The easiest way to find a given element is to use the library find algorithm. We'll see
more about find in Section 11.1 (p. 392 ). To use find or any other generic algorithm, we must
include the algorithm header. The find function takes a pair of iterators that denote a range in
which to look, and a value to look for within that range. find returns an iterator referring to the
first element with that value or the off-the-end iterator:



     string searchValue("Quasimodo");
     list<string>::iterator iter =
            find(slist.begin(), slist.end(), searchValue);

     if (iter != slist.end())
          slist.erase(iter);

Note that we check that the iterator is not the end iterator before erasing the element. When we
ask erase to erase a single element, the element must existthe behavior of erase is undefined if
we ask it to erase an off-the-end iterator.

Removing All the Elements in a Container

To delete all the elements in a container, we could either call clear or pass the iterators from
begin and end to erase :

     slist.clear(); // delete all the elements within the container
     slist.erase(slist.begin(), slist.end()); // equivalent

The iterator-pair version of erase lets us delete a subrange of elements:

     // delete range of elements between two values
     list<string>::iterator elem1, elem2;

     // elem1 refers to val1
     elem1 = find(slist.begin(), slist.end(), val1);

     // elem2 refers to the first occurrence of val2 after val1
     elem2 = find(elem1, slist.end(), val2);

     // erase range from val1 up to but not including val2
     slist.erase(elem1, elem2);

This code starts by calling find twice to obtain iterators to two elements. The iterator elem1
refers to the first occurrence of val1 or to the off-the-end iterator if val1 is not present in the
list . The iterator elem2 refers to the first occurrence of val2 that appears after val1 if that
element exists, otherwise, elem2 is an off the-end iterator. The call to erase removes the
elements starting from the referred to by elem1 up to but not including elem2 .



The erase, pop_front , and pop_back functions invalidate any
iterators that refer to the removed elements. For vector s, iterators
to elements after the erasure point are also invalidated. For deque ,
if the erase does not include either the first or last element, all
iterators into the deque are invalidated.

Exercises Section 9.3.7

Exercise
9.25:

What happens in the program that erased a range of elements if
val1 is equal to val2 . What happens if either val1 or val2 or both
are not present.

Exercise
9.26:

Using the following definition of ia , copy ia into a vector and into
a list . Use the single iterator form of erase to remove the
elements with odd values from your list and the even values
from your vector .

     int ia[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 55, 89 };

Exercise
9.27:

Write a program to process a list of string s. Look for a
particular value and, if found, remove it. Repeat the program
using a deque .

9.3.8. Assignment and swap

The assignment-related operators act on the entire container. Except for swap , they can be
expressed in terms of erase and insert operations. The assignment operator erases the entire
range of elements in the left-hand container and then inserts the elements of the right-hand
container object into the left-hand container:

     c1 = c2; // replace contents of c1 with a copy of elements in c2
     // equivalent operation using erase and insert
     c1.erase(c1.begin(), c1.end()); // delete all elements in c1
     c1.insert(c1.begin(), c2.begin(), c2.end()); // insert c2

After the assignment, the left- and right-hand containers are equal: Even if the containers had
been of unequal size, after the assignment both containers have the size of the right-hand
operand.



Assignment and the assign operations invalidate all iterators into
the left-hand container. swap does not invalidate iterators. After
swap , iterators continue to refer to the same elements, although
those elements are now in a different container.

Using assign

The assign operation deletes all the elements in the container and then inserts new elements as
specified by the arguments. Like the constructor that copies elements from a container, the
assignment operator (= ) can be used to assign one container to another only if the container
and element type are the same. If we want to assign elements of a different but compatible
element type and/or from a different container type, then we must use the assign operation.
For example, we could use assign to assign a range of char* values from a vector into a list of
string .

Table 9.11. Sequential Container Assignment Operations

c1 = c2 Deletes elements in c1 and copies elements from c2
into c1 . c1 and c2 must be the same type.

c1.swap(c2) Swaps contents: After the call c1 has elements that
were in c2 , and c2 has elements that were in c1 . c1
and c2 must be the same type. Execution time
usually much faster than copying elements from c2
to c1 .

c.assign(b,e) Replaces the elements in c by those in the range
denoted by iterators b and e . The iterators b and e
must not refer to elements in c .

c.assign(n,t) Replaces the elements in c by n elements with value
t .

Because the original elements are deleted, the iterators passed to
assign must not refer to elements in the container on which assign
is called.



The arguments to assign determine how many elements are inserted and what values the new
elements will have. This statement:

     // equivalent to slist1 = slist2
     slist1.assign(slist2.begin(), slist2.end());

uses the version of assign that takes a pair of iterators. After deleting the elements in slist1 ,
the function copies the elements in the range denoted by the iterators into slist2 . Thus, this
code is equivalent to assigning slist2 to slist1 .

The assign operator that takes an iterator pair lets us assign
elements of one container type to another.

A second version of assign takes an integral value and an element value. It replaces the
elements in the container by the specified number of elements, each of which has the specified
element value

     // equivalent to: slist1.clear();

     // followed by slist1.insert(slist1.begin(), 10, "Hiya!");

     slist1.assign(10, "Hiya!"); // 10 elements; each one is Hiya!

After executing this statement, slist1 has 10 elements, each of which has the value Hiya! .

Using swap to Avoid the Cost of Deleting Elements

The swap operation swaps the values of its two operands. The types of the containers must
match: The operands must be the same kind of container, and they must hold values of the
same type. After the call to swap , the elements that had been in the right-hand operand are in
the left, and vice versa:

     vector<string> svec1(10); // vector with 10 elements

     vector<string> svec2(24); // vector with 24 elements
     svec1.swap(svec2);

After the swap, svec1 contains 24 string elements and svec2 contains 10.



The important thing about swap is that it does not delete or insert
any elements and is guaranteed to run in constant time. No
elements are moved, and so iterators are not invalidated.

The fact that elements are not moved means that iterators are not invalidated. They refer to the
same elements as they did before the swap. However, after the swap , those elements are in a
different container. For example, had iter referred to the string at position svec1[3] before the
swap it will refer to the element at position svec2[3] after the swap .

Exercises Section 9.3.8

Exercise
9.28:

Write a program to assign the elements from a list of char*
pointers to C-style character strings to a vector of string s.

 



 

9.4. How a vector Grows

When we insert or push an element onto a container object, the size of that object increases by
one. Similarly, if we resize a container to be larger than its current size , then additional
elements must be added to the container. The library takes care of allocating the memory to
hold these new elements.

Ordinarily, we should not care about how a library type works: All we should care about is how
to use it. However, in the case of vector s, a bit of the implementation leaks into its interface.
To support fast random access, vector elements are stored contiguouslyeach element is
adjacent to the previous element.

Given that elements are contiguous, let's think about what happens when we add an element to
a vector : If there is no room in the vector for the new element, it cannot just add an element
somewhere else in memory because the elements must be contiguous for indexing to work.
Instead, the vector must allocate new memory to hold the existing elements plus the new one,
copy the elements from the old location into the new space, add the new element, and
deallocate the old memory. If vector did this memory allocation and deallocation each time we
added an element, then performance would be unacceptably slow.

There is no comparable allocation issue for containers that do not hold their elements
contiguously. For example, to add an element to a list , the library only needs to create the
new element and chain it into the existing list. There is no need to reallocate or copy any of the
existing elements.

One might conclude, therefore, that in general it is a good idea to use a list rather than a
vector . However, the contrary is usually the case: For most applications the best container to
use is a vector . The reason is that library implementors use allocation strategies that minimize
the costs of storing elements contiguously. That cost is usually offset by the advantages in
accessing elements that contiguous storage allows.

The way vector s achieve fast allocation is by allocating capacity beyond what is immediately
needed. The vector holds this storage in reserve and uses it to allocate new elements as they
are added. Thus, there is no need to reallocate the container for each new element. The exact
amount of additional capacity allocated varies across different implementations of the library.
This allocation strategy is dramatically more efficient than reallocating the container each time
an element is added. In fact, its performance is good enough that in practice a vector usually
grows more efficiently than a list or a deque .

9.4.1. capacity and reserve Members

The details of how vector handles its memory allocation are part of its implementation.
However, a portion of this implementation is supported by the interface to vector . The vector
class includes two members, capacity and reserve , that let us interact with the memory-
allocation part of vector 's implementation. The capacity operation tells us how many elements
the container could hold before it must allocate more space. The reserve operation lets us tell
the vector how many elements it should be prepared to hold.



It is important to understand the difference between capacity and
size . The size is the number of elements in the vector ; capacity
is how many it could hold before new space must be allocated.

To illustrate the interaction between size and capacity , consider the following program:

     vector<int> ivec;

     // size should be zero; capacity is implementation defined
     cout << "ivec: size: " << ivec.size()
          << " capacity: "  << ivec.capacity() << endl;

     // give ivec 24 elements
     for (vector<int>::size_type ix = 0; ix != 24; ++ix)
          ivec.push_back(ix);

     // size should be 24; capacity will be >= 24 and is implementation defined
     cout << "ivec: size: " << ivec.size()
          << " capacity: "  << ivec.capacity() << endl;

When run on our system, this program produces the following output:

     ivec: size: 0 capacity: 0
     ivec: size: 24 capacity: 32

We know that the size of an empty vector is zero, and evidently our library also sets capacity
of an empty vector to zero. When we add elements to the vector , we know that the size is the
same as the number of elements we've added. The capacity must be at least as large as size
but can be larger. Under this implementation, adding 24 elements one at a time results in a
capacity of 32. Visually we can think of the current state of ivec as

We could now reserve some additional space:

     ivec.reserve(50);  // sets capacity to at least 50; might be more
     // size should be 24; capacity will be >= 50 and is implementation defined
     cout << "ivec: size: " << ivec.size()
          << " capacity: "  << ivec.capacity() << endl;



As the output indicates, doing so changes the capacity but not the size :

     ivec: size: 24 capacity: 50

We might next use up that reserved capacity as follows:

     // add elements to use up the excess capacity
     while (ivec.size() != ivec.capacity())
          ivec.push_back(0);
     // size should be 50; capacity should be unchanged
     cout << "ivec: size: " << ivec.size()
          << " capacity: "  << ivec.capacity() << endl;

Because we used only reserved capacity, there is no need for the vector to do any allocation. In
fact, as long as there is excess capacity, the vector must not reallocate its elements.

The output indicates that at this point we've used up the reserved capacity, and size and
capacity are equal:

     ivec: size: 50 capacity: 50

If we now add another element, the vector will have to reallocate itself:

     ivec.push_back(42); // add one more element
     // size should be 51; capacity will be >= 51 and is implementation defined
     cout << "ivec: size: " << ivec.size()
          << " capacity: "  << ivec.capacity() << endl;

The output from this portion of the program

     ivec: size: 51 capacity: 100

indicates that this vector implementation appears to follow a strategy of doubling the current
capacity each time it has to allocate new storage.

Each implementation of vector is free to choose its own allocation
strategy. However, it must provide the reserve and capacity
functions, and it must not allocate new memory until it is forced to
do so. How much memory it allocates is up to the implementation.
Different libraries will implement different strategies.



Moreover, every implementation is required to follow a strategy that ensures that it is efficient
to use push_back to populate a vector . Technically speaking, the execution time of creating an
n-element vector by calling push_back n times on an initially empty vector is never more than a
constant multiple of n.

Exercises Section 9.4.1

Exercise
9.29:

Explain the difference between a vector 's capacity and its
size. Why is it necessary to support the notion of capacity in a
container that stores elements contiguously but not, for
example, in a list ?

Exercise
9.30:

Write a program to explore the allocation stragegy followed by
the library you use for vector objects.

Exercise
9.31:

Can a container have a capacity less than its size? Is a
capacity equal to its size desirable? Initially? After an element
is inserted? Why or why not?

Exercise
9.32:

Explain what the following program does:

     vector<string> svec;
     svec.reserve(1024);
     string text_word;
     while (cin >> text_word)
             svec.push_back(text_word);
     svec.resize(svec.size()+svec.size()/2);

If the program reads 256 words, what is its likely capacity
after it is resized? What if it reads 512? 1,000? 1,048?

 



 

9.5. Deciding Which Container to Use

As we saw in the previous section, allocating memory to hold elements in contiguous storage
has impacts on the memory allocation strategies and overhead of a container. By using clever
implementation techniques, library authors minimize this allocation overhead. Whether elements
are stored contiguously has other significant impacts on:

The costs to add or delete elements from the middle of the container

The costs to perform nonsequential access to elements of the container

The degree to which a program does these operations should be used to determine which type
of container to use. The vector and deque types provide fast non-sequential access to elements
at the cost of making it expensive to add or remove elements anywhere other than the ends of
the container. The list type supports fast insertion and deletion anywhere but at the cost of
making nonsequential access to elements expensive.

How Insertion Affects Choice of Container

A list represents noncontiguous memory and allows for both forward and backward traversal
one element at a time. It is efficient to insert or erase an element at any point. Inserting or
removing an element in a list does not move any other elements. Random access, on the other
hand, is not supported. Accessing an element requires traversing the intervening elements.

Inserting (or removing) anywhere except at the back of a vector requires that each element to
the right of the inserted (or deleted) element be moved. For example, if we have a vector with
50 elements and we wish to erase element number 23, then each of the elements after 23 have
to be moved forward by one position. Otherwise, there'd be a hole in the vector , and the
vector elements would no longer be contiguous.

A deque is a more complicated data structure. We are guaranteed that adding or removing
elements from either end of the deque is a fast operation. Adding or removing from the middle
will be more expensive. A deque offers some properties of both list and vector :

Like vector , it is inefficient to insert or erase elements in the middle of the deque .

Unlike vector , a deque offers efficient insert and erase at the front as well as at the back.

Unlike list and like vector , a deque supports fast random access to any element.

Inserting elements at the front or back of a deque does not invalidate any iterators. Erasing
the front or back element invalidates only iterators referring to the element(s) erased.
Inserting or erasing anywhere else in the deque invalidates all iterators referring to
elements of the deque .

How Access to the Elements Affects Choice of Container

Both vector and deque support efficient random access to their elements. That is, we can
efficiently access element 5, then 15, then 7, and so on. Random access in a vector can be



efficient because each access is to a fixed offset from the beginning of the vector . It is much
slower to jump around in a list . the only way to move between the elements of a list is to
sequentially follow the pointers. Moving from the 5th to the 15th element requires visiting every
element between them.

In general, unless there is a good reason to prefer another
container, vector is usually the right one to use.

Hints on Selecting Which Container to Use

There are a few rules of thumb that apply to selecting which container to use:

If the program requires random access to elements, use a vector or a deque .1.

If the program needs to insert or delete elements in the middle of the container, use a
list .

2.

If the program needs to insert or delete elements at the front and the back, but not in the
middle, of the container, use a deque .

3.

If we need to insert elements in the middle of the container only while reading input and
then need random access to the elements, consider reading them into a list and then
reordering the list as appropriate for subsequent access and copying the reordered list
into a vector .

4.

What if the program needs to randomly access and insert and delete elements in the middle of
the container?

This decision will depend on the relative cost of doing random access to list elements versus
the cost of copying elements when inserting or deleting elements in a vector or deque . In
general, the predominant operation of the application (whether it does more access or more
insertion or deletion) should determine the choice of container type.

Deciding which container to use may require profiling the performance of each container type
doing the kinds of operations the application requires.

When you are not certain which container the application
should use, try to write your code so that it uses only
operations common to both vector s and lists: Use
iterators, not subscripts, and avoid random access to
elements. By writing your programs this way, it will be
easier to change the container from a vector to a list if
necessary.



 



 

9.6. string s Revisited

We introduced the string type in Section 3.2 (p. 80 ). Table 9.12 (p. 337 ) recaps the string
operations covered in that section.

Table 9.12. string Operations Introduced in Section 3.2

string s; Defines a new, empty string named s .

string s(cp); Defines a new string initialized from the null-
terminated C-style string pointed to by cp .

string s(s2); Defines a new string initialized as a copy of s2 .

is >> s; Reads a whitespace-separated string from the input
stream is into s .

os << s; Writes s to the output stream os .

getline(is, s) Reads characters up to the first newline from input
stream is into s .

s1 + s2 Concatenates s1 and s2 , yielding a new string .

s1 += s2 Appends s2 to s1 .

Relational Operators The equality (== and != ) and relational (<, <=, > ,
and >=) can be used to compare string s. string
comparison is equivalent to (case-sensitive)
dictionary ordering.

In addition to the operations we've already used, string s also supports most of the sequential
container operations. In some ways, we can think of a string as a container of characters. With
some exceptions, string s support the same operations that vector s support: The exceptions
are that string does not support the operations to use the container like a stack: We cannot use
the front, back , and pop_back operations on string s.



Exercises Section 9.5

Exercise
9.33:

Which is the most appropriatea vector , a deque , or a list for
the following program tasks? Explain the rationale for your
choice. If there is no reason to prefer one or another container
explain why not?

Read an unknown number of words from a file for the
purpose of generating English language sentences.

a.

Read a fixed number of words, inserting them in the
container alphabetically as they are entered. We'll see in
the next chapter that associative containers are better
suited to this problem.

b.

Read an unknown number of words. Always insert new
words at the back. Remove the next value from the front.

c.

Read an unknown number of integers from a file. Sort
the numbers and then print them to standard output.

d.

The container operations that string supports are:

The typedefs, including the iterator types, listed in Table 9.5 (p. 316 ).

The constructors listed in Table 9.2 (p. 307 ) except for the constructor that takes a single
size parameter.

The operations to add elements listed in Table 9.7 (p. 319 ) that vector supports. Note:
Neither vector nor string supports push_front .

The size operations in Table 9.8 (p. 324 ).

The subscript and at operations listed in Table 9.9 (p. 325 ); string does not provide back
or front operations listed in that table.

The begin and end operations of Table 9.6 (p. 317 ).

The erase and clear operations of Table 9.10 (p. 326 ); string does not support either
pop_back or pop_front .

The assignment operations in Table 9.11 (p. 329 ).

Like the elements in a vector , the characters of a string are stored contiguously.
Therefore, string supports the capacity and reserve operations described in Section 9.4
(p. 330 ).

When we say that string supports the container operations, we mean that we could take a
program that manipulates a vector and rewrite that same program to operate on string s. For
example, we could use iterators to print the characters of a string a line at a time to the



standard output:

     string s("Hiya!");
     string::iterator iter = s.begin();
     while (iter != s.end())
         cout << *iter++ << endl; // postfix increment: print old value

Not surprisingly, this code looks almost identical to the code from page 163 that printed the
elements of a vector<int> .

In addition to the operations that string shares with the containers, string supports other
operations that are specific to string s. We will review these string -specific operations in the
remainder of this section. These operations include additional versions of container-related
operations as well as other, completely new functions. The additional functions that string
provides are covered starting on page 341 .

The additional versions of the container operations that string provides are defined to support
attributes that are unique to string s and not shared by the containers. For example, several
operations permit us to specify arguments that are pointers to character arrays. These
operations support the close interaction between library string s and character arrays, whether
null-terminated or not. Other versions let us use indices rather than iterators. These versions
operate positionally: We specify a starting position, and in some cases a count, to specify the
element or range of elements which we want to manipulate.

Exercises Section 9.6

Exercise
9.34:

Use iterators to change the characters in a string to
uppercase.

Exercise
9.35:

Use iterators to find and to erase each capital letter from a
string .

Exercise
9.36:

Write a program that initializes a string from a vector<char> .

Exercise
9.37:

Given that you want to read a character at a time into a
string , and you know that the data you need to read is at
least 100 characters long, how might you improve the
performance of your program?

The string library defines a great number of functions, which
use repeated patterns. Given the number of functions
supported, this section can be mind-numbing on first reading.



Readers might want to skim the remainder of Section 9.6 . Once you know what kinds
of operations are available, you can return for the details when writing programs that
need to use a given operation.

9.6.1. Other Ways to Construct string s

The string class supports all but one of the constructors in Table 9.2 (p. 307 ). The constructor
that takes a single size parameter is not supported for string . We can create a string : as the
empty string , by providing no argument; as a copy of another string ; from a pair of iterators;
or from a count and a character:

     string s1;           // s1 is the empty string

     string s2(5, 'a');   // s2 == "aaaaa"

     string s3(s2);       // s3 is a copy of s2
     string s4(s3.begin(),

               s3.begin() + s3.size() / 2); // s4 == "aa"

In addition to these constructors, the string type supports three other ways to create a string .
We have already used the constructor that takes a pointer to the first character in a null-
terminated, character array. There is another constructor that takes a pointer to an element in a
character array and a count of how many characters to copy. Because the constructor takes a
count, the array does not have to be null-terminated:

     char *cp = "Hiya";            // null-terminated array
     char c_array[] = "World!!!!"; // null-terminated
     char no_null[] = {'H', 'i'};  // not null-terminated

     string s1(cp);             // s1 == "Hiya"

     string s2(c_array, 5);     // s2 == "World"

     string s3(c_array + 5, 4); // s3 == "!!!!"

     string s4(no_null);        // runtime error: no_null not null-terminated

     string s5(no_null, 2);     // ok: s5 == "Hi"

We define s1 using the constructor that takes a pointer to the first character of a null-terminated
array. All the characters in that array, up to but not including the terminating null, are copied
into the newly created string .

The initializer for s2 uses the second constructor, taking a pointer and a count. In this case, we
start at the character denoted by the pointer and copy as many characters as indicated in the
second argument. s2 , therefore, is a copy of the first five characters from the array c_array .
Remember that when we pass an array as an argument, it is automatically converted to a
pointer to its first element. Of course, we are not restricted to passing a pointer to the beginning
of the array. We initialize s3 to hold four exclamation points by passing a pointer to the first
exclamation point in c_array .

The initializers for s4 and s5 are not C-style strings. The definition of s4 is an error. This form of
initialization may be called only with a null-terminated array. Passing an array that does not
contain a null is a serious error (Section 4.3 , p. 130 ), although it is an error that the compiler
cannot detect. What happens at run time is undefined.



The initialization of s5 is fine: That initializer includes a count that says how many characters to
copy. As long as the count is within the size of the array, it doesn't matter whether the array is
null-terminated.

Table 9.13. Additional Ways to Construct string s

string s(cp, n) Create s as a copy of n characters from array
pointed to by cp .

string s(s2, pos2) Create s as a copy of characters in the string s2
starting at index pos2 . Undefined if pos2 >
s2.size() .

string s(s2, pos2, len2)

  Create s as a copy of len2 characters from s2
starting at index pos2 . Undefined if pos2 >
s2.size() . Regardless of the value of len2 , copies
at most s2.size() - pos2 characters.

Note: n, len2 and pos2 are all unsigned values.

Using a Substring as the Initializer

The other pair of constructors allow us to create a string as a copy of a substring of the
characters in another string :

     string s6(s1, 2);    // s6 == "ya"

     string s7(s1, 0, 2); // s7 == "Hi"

     string s8(s1, 0, 8); // s8 == "Hiya"

The first two arguments are the string from which we want to copy and a starting position. In
the two-argument version, the newly created string is initialized with the characters from that
position to the end of the string argument. We can also provide a third argument that specifies
how many characters to copy. In this case, we copy as many characters as indicated (up to the
size of the string ), starting at the specified position. For example, when we create s7 , we copy
two characters from s1 , starting at position zero. When we create s8 , we copy only four
characters, not the requested nine. Regardless of how many characters we ask to copy, the
library copies up to the size of the string , but not more.

9.6.2. Other Ways to Change a string

Many of the container operations that string supports operate in terms of iterators. For
example, erase takes an iterator or iterator range to specify which element(s) to remove from
the container. Similarly, the first argument to each version of insert takes an iterator to
indicate the position before which to insert the values represented by the other arguments.
Although string supports these iterator-based operations, it also supplies operations that work
in terms of an index. The index is used to indicate the starting element to erase or the position
before which to insert the appropriate values. Table 9.14 lists the operations that are common
to both string and the containers; Table 9.15 on the facing page lists the string -only



operations.

Table 9.14. string Operations in Common with the Containers

s.insert(p, t) Insert copy of value t before element referred to by
iterator p .

Returns an iterator referring to the inserted element.

s.insert(p, n, t) Insert n copies of t before p . Returns void .

s.insert(p, b, e) Insert elements in range denoted by iterators b and e
before p .

Returns void .

s.assign(b, e) Replace s by elements in range denoted by b and e . For
string , returns s , for the containers, returns void .

s.assign(n, t) Replace s by n copies of value t . For string , returns s ,
for the containers, returns void .

s.erase(p) Erase element referred to by iteartor p .

Returns an iterator to the element after the one deleted.

s.erase(b, e) Remove elements in range denoted by b and e .

Returns an iterator to the first element after the range
deleted.

Table 9.15. string -Specific Versions

s.insert(pos, n, c) Insert n copies of character c before element
at index pos .

s.insert(pos, s2) Insert copy of string s2 before pos .

s.insert(pos, s2, pos2, len)

  Insert len characters from s2 starting at pos2
before pos .

s.insert(pos, cp, len) Insert len characters from array pointed to
by cp before pos .

s.insert(pos, cp) Insert copy of null-terminated string pointed
to by cp before pos .

s.assign(s2) Replace s by a copy of s2 .

s.assign(s2, pos2, len) Replace s by a copy of len characters from
s2 starting at index pos2 in s2 .

s.assign(cp, len) Replace s by len characters from array
pointed to by cp .



s.assign(cp) Replace s by null-terminated array pointed to
by cp .

s.erase(pos, len) Erase len characters starting at pos .

Unless noted otherwise, all operations return a reference to s .

Position-Based Arguments

The string -specific versions of these operations take arguments similar to those of the
additional constructors covered in the previous section. These operations let us deal with string
s positionally and/or let us use arguments that are pointers to character arrays rather than
string s.

For example, all containers let us specify a pair of iterators that denote a range of elements to
erase . For strings , we can also specify the range by passing a starting position and count of
the number of elements to erase . Assuming s is at least five characters long, we could erase
the last five characters as follows:

     s.erase(s.size() - 5, 5); // erase last five characters from s

Similarly, we can insert a given number of values in a container before the element referred to
by an iterator. In the case of string s, we can specify the insertion point as an index rather than
using an iterator:

     s.insert(s.size(), 5, '!'); // insert five exclamation points at end of s

Specifying the New Contents

The characters to insert or assign into the string can be taken from a character array or
another string . For example, we can use a null-terminated character array as the value to
insert or assign into a string :

     char *cp = "Stately plump Buck";
     string s;

     s.assign(cp, 7);            // s == "Stately"

     s.insert(s.size(), cp + 7); // s == "Stately plump Buck"

Similarly, we can insert a copy of one string into another as follows:

     s = "some string";
     s2 = "some other string";

     // 3 equivalent ways to insert all the characters from s2 at beginning of s

     // insert iterator range before s.begin()
     s.insert(s.begin(), s2.begin(), s2.end());



     // insert copy of s2 before position 0 in s
     s.insert(0, s2);

     // insert s2.size() characters from s2 starting at s2[0] before s[0]
     s.insert(0, s2, 0, s2.size());

9.6.3. string -Only Operations

The string type provides several other operations that the containers do not:

The substr function that returns a substring of the current string

The append and replace functions that modify the string

A family of find functions that search the string

The substr Operation

The substr operation lets us retrieve a substring from a given string . We can pass substr a
starting position and a count. It creates a new string that has that many characters, (up to the
end of the string ) from the target string , starting at the given position:

     string s("hello world");
     // return substring of 5 characters starting at position 6
     string s2 = s.substr(6, 5);   // s2 = world

Alternatively, we could obtain the same result by writing:

     // return substring from position 6 to the end of s
     string s3 = s.substr(6);      // s3 = world

Table 9.16. Substring Operation

s.substr(pos, n) Return a string containing n characters from s
starting at pos .

s.substr(pos) Return a string containing characters from pos to
the end of s .

s.substr() Return a copy of s .

The append and replace Functions

There are six overloaded versions of append and ten versions of replace . The append and
replace functions are overloaded using the same set of arguments, which are listed in Table



9.18 on the next page. These arguments specify the characters to add to the string . In the
case of append , the characters are added at the end of the string . In the replace function,
these characters are inserted in place a specified range of existing characters in the string .

The append operation is a shorthand way of inserting at the end:

     string s("C++ Primer");        // initialize s to "C++ Primer"

     s.append(" 3rd Ed.");          // s == "C++ Primer 3rd Ed."

     // equivalent to s.append(" 3rd Ed.")
     s.insert(s.size(), " 3rd Ed.");

The replace operations remove an indicated range of characters and insert a new set of
characters in their place. The replace operations have the same effect as calling erase and
insert .

The ten different versions of replace differ from each other in how we specify the characters to
remove and in how we specify the characters to insert in their place. The first two arguments
specify the range of elements to remove. We can specify the range either with an iterator pair
or an index and a count. The remaining arguments specify what new characters to insert.

We can think of replace as a shorthand way of erasing some characters and inserting others in
their place:

Table 9.17. Operations to Modify string s (args defined in
Table 9.18 )

s.append( args ) Append args to s . Returns reference to s .

s.replace(pos, len , args ) Remove len characters from s starting at pos
and replace them by characters formed by args .
Returns reference to s .

This version does not take args equal to b2 ,
e2 .

s.replace(b, e , args ) Remove characters in the range denoted by
iterators b and e and replace them by args .
Returns reference to s .

This version does not take args equal to s2,
pos2, len2 .

     // starting at position 11, erase 3 characters and then insert "4th"

     s.replace(11, 3, "4th");          // s == "C++ Primer 4th Ed."

     // equivalent way to replace "3rd" by "4th"

     s.erase(11, 3);                   // s == "C++ Primer Ed."

     s.insert(11, "4th");              // s == "C++ Primer 4th Ed."



There is no requirement that the size of the text removed and
inserted be the same.

In the previous call to replace , the text we inserted happens to be the same size as the text we
removed. We could insert a larger or smaller string :

     s.replace(11, 3, "Fourth"); // s == "C++ Primer Fourth Ed."

In this call we remove three characters but insert six in their place.

Table 9.18. Arguments to append and replace

s2 The string s2 .

s2, pos2, len2 up to len2 characters from s2 starting at pos2 .

cp Null-terminated array pointed to by pointer cp .

cp, len2 up to len2 characters from character array pointed to
by cp .

n, c n copies of character c .

b2, e2 Characters in the range formed by iterators b2 and e2 .

9.6.4. string Search Operations

The string class provides six search functions, each named as a variant of find . The operations
all return a string::size_type value that is the index of where the match occurred, or a special
value named string::npos if there is no match. The string class defines npos as a value that is
guaranteed to be greater than any valid index.

There are four versions of each of the search operations, each of which takes a different set of
arguments. The arguments to the search operations are listed in Table 9.20 . Basically, these
operations differ as to whether they are looking for a single character, another string , a C-
style, null-terminated string, or a given number of characters from a character array.

Table 9.19. string Search Operations (Arguments in Table
9.20 )



s.find( args ) Find first occurrence of args in s .

s.rfind( args ) Find last occurrence of args in s .

s.find_first_of( args ) Find first occurrence of any character from args
in s .

s.find_last_of( args ) Find last occurrence of any character from args
in s .

s.find_first_not_of( args ) Find first character in s that is not in args .

s.find_last_not_of( args ) Find last character in s that is not in args .

Table 9.20. Arguments to string find Operations

c, pos Look for the character c starting at position pos in s . pos
defaults to 0.

s2, pos Look for the string s2 starting at position pos in s . pos
defaults to 0.

cp, pos Look for the C-style null-terminated string pointed to by the
pointer cp .

Start looking starting at position pos in s . pos defaults to 0.

cp, pos, n Look for the first n characters in the array pointed to by the
pointer cp .

Start looking starting at position pos in s . No default for pos
or n .

Finding an Exact Match

The simplest of the search operations is the find function. It looks for its argument and returns
the index of the first match that is found, or npos if there is no match:

     string name("AnnaBelle");

     string::size_type pos1 = name.find("Anna"); // pos1 == 0

Returns 0, the index at which the substring "Anna" is found in "AnnaBelle" .

By default, the find operations (and other string operations that
deal with characters) use the built-in operators to compare
characters in the string . As a result, these operations (and other
string operations) are case sensitive.



When we look for a value in the string , case matters:

     string lowercase("annabelle");

     pos1 = lowercase.find("Anna"); // pos1 == npos

This code will set pos2 to npos the string Anna does not match anna .

The find operations return a string::size_type . Use an
object of that type to hold the return from find .

Find Any Character

A slightly more complicated problem would be if we wanted to match any character in our
search string. For example, the following locates the first digit within name :

     string numerics("0123456789");
     string name("r2d2");
     string::size_type pos = name.find_first_of(numerics);
     cout << "found number at index: " << pos
          << " element is "  << name[pos] << endl;

In this example, pos is set to a value of 1 (the elements of a string , remember, are indexed
beginning at 0).

Specifying Where to Start the Search

We can pass an optional starting position to the find operations. This optional argument
indicates the index position from which to start the search. By default, that position is set to
zero. One common programming pattern uses this optional argument to loop through a string
finding all occurrences. We could rewrite our search of "r2d2" to find all the numbers in name :

     string::size_type pos = 0;
     // each trip reset pos to the next instance in name
     while ((pos = name.find_first_of(numerics, pos))
                   != string::npos) {
         cout << "found number at index: " << pos



              << " element is " << name[pos] << endl;
         ++pos; // move to the next character
     }

In this case, we initialize pos to zero so that on the first trip through the while name is searched,
beginning at position 0. The condition in the while resets pos to the index of the first number
encountered, starting from the current value of pos . As long as the return from find_first_of
is a valid index, we print our result and increment pos .

Had we neglected to increment pos at the end of this loop, then it would never terminate. To see
why, consider what would happen if we didn't. On the second trip through the loop. we start
looking at the character indexed by pos . That character would be a number, so find_first_of
would (repeatedly) returns pos !

It is essential that we increment pos . Doing so ensures that we
start looking for the next number at a point after the number we
just found.

Looking for a Nonmatch

Instead of looking for a match, we might call find_first_not_of to find the first position that is
not in the search argument. For example, to find the first non-numeric character of a string ,
we can write

     string numbers("0123456789");
     string dept("03714p3");

     // returns 5, which is the index to the character 'p'
     string::size_type pos = dept.find_first_not_of(numbers);

Searching Backward

Each of the find operations that we've seen so far executes left to right. The library provides an
analogous set of operations that look through the string from right to left. The rfind member
searches for the lastthat is, rightmostoccurrence of the indicated substring:

     string river("Mississippi");
     string::size_type first_pos = river.find("is"); // returns 1
     string::size_type last_pos = river.rfind("is"); // returns 4

find returns an index of 1, indicating the start of the first "is" , while rfind returns an index of



4, indicating the start of the last occurrence of "is" .

The find_last Functions

The find_last functions operate like the corresponding find_first functions, except that they
return the last match rather than the first:

find_last_of searches for the last character that matches any element of the search
string .

find_last_not_of searches for the last character that does not match any element of the
search string .

Each of these operations takes an optional second argument indicating the position within the
string to begin searching.

9.6.5. Comparing string s

As we saw in Section 3.2.3 (p. 85 ), the string type defines all the relational operators so that
we can compare two string s for equality (== ), inequality (!= ), and the less- or greater-than
operations (<, <=, >, >= ). Comparison between string s is lexicographicalthat is, string
comparison is the same as a case-sensitive, dictionary ordering:

     string cobol_program_crash("abend");
     string cplus_program_crash("abort");

Exercises Section 9.6.4

Exercise
9.38:

Write a program that, given the string

     "ab2c3d7R4E6"

finds each numeric character and then each alphabetic character. Write
two versions of the program. The first should use find_first_of , and
the second find_first_not_of .

Exercise
9.39:

Write a program that, given the string s

     string line1 = "We were her pride of 10 she named us:";
     string line2 = "Benjamin, Phoenix, the Prodigal"
     string line3 = "and perspicacious pacific Suzanne";

     string sentence = line1 + ' ' + line2 + ' ' + line3;



counts the number of words in sentence and identifies the largest and
smallest words. If several words have the largest or smallest length,
report all of them.

Here cobol_program_crash is less than the cplus_program_crash . The relational operators
compare two string s character by character until reaching a position where the two string s
differ. The overall comparison of the string s depends on the comparison between these
unequal characters. In this case, the first unequal characters are 'e' and 'o' . The letter 'e'
occurs before (is less than) 'o' in the English alphabet and so "abend" is less than "abort" . If
the string s are of different length, and one string is a substring of the other, then the shorter
string is less than the longer.

The compare Functions

In addition to the relational operators, string provides a set of compare operations that perform
lexicographical comparions. The results of these operations are similar to the C library strcmp
function (Section 4.3 , p. 132 ). Given

     s1.compare (args);

compare returns one of three possible values:

A positive value if s1 is greater than the string represented by args1.

A negative value if s1 is less than the string represented by args2.

0 if s1 is equal to the string represented by args3.

For example

     // returns a negative value
     cobol_program_crash.compare(cplus_program_crash);
     // returns a positive value
     cplus_program_crash.compare(cobol_program_crash);

Table 9.21. string compare Operations



s.compare(s2) Compare s to s2 .

s.compare(pos1, n1, s2)

  Compares n1 characters starting at pos1 from s to s2
.

s.compare(pos1, n1, s2, pos2, n2)

  Compares n1 characters starting at pos1 from s to
the n2 characters starting at pos2 in s2 .

s.compare(cp) Compares s to the null-terminated string pointed to
by cp .

s.compare(pos1, n1, cp)

  Compares n1 characters starting at pos1 from s to cp
.

s.compare(pos1, n1, cp, n2)

  Compares n1 characters starting at pos1 from s to n2
characters starting from the pointer cp .

The overloaded set of six compare operations allows us to compare a substring of either one or
both string s for comparison. They also let us compare a string to a character array or portion
thereof:

     char second_ed[] = "C++ Primer, 2nd Edition";
     string third_ed("C++ Primer, 3rd Edition");
     string fourth_ed("C++ Primer, 4th Edition");

     // compares C++ library string to C-style string

     fourth_ed.compare(second_ed); // ok, second_ed is null-terminated

     // compare substrings of fourth_ed and third_ed
     fourth_ed.compare(fourth_ed.find("4th"), 3,
                       third_ed, third_ed.find("3rd"), 3);

The second call to compare is the most interesting. This call uses the version of compare that
takes five arguments. We use find to locate the position of the beginning of the substring "4th"
. We compare three characters starting at that position to a substring from third_ed . That
substring begins at the position returned from find when looking for "3rd" and again we
compare three characters. Essentially, this call compares "4th" to "3rd" .

 



 

9.7. Container Adaptors

In addition to the sequential containers, the library provides three sequential container adaptors:
queue , priority_queue , and stack . An adaptor is a general concept in the library. There are
container, iterator, and function adaptors. Essentially, an adaptor is a mechanism for making one
thing act like another. A container adaptor takes an existing container type and makes it act like a
different abstract type. For example, the stack adaptor takes any of the sequential containers and
makes it operate as if it were a stack . Table 9.22 (p. 350 ) lists the operations and types that are
common to all the container adaptors.

Table 9.22. Common Adaptor Operations and Types

size_type Type large enough to hold size of largest object of
this type.

value_type Element type.

container_type Type of the underlying container on which the
adaptor is implemented.

A a; Create a new empty adaptor named a .

A a(c); Create a new adaptor named a with a copy of the
container c .

Relational Operators Each adaptor supports all the relational operators:
==, !=, <, <=, >, >= .

Exercises Section 9.6.5



Exercise
9.40:

Write a program that accepts the following two string s:

     string q1("When lilacs last in the dooryard bloom'd");
     string q2("The child is father of the man");

Using the assign and append operations, create the string

     string sentence("The child is in the dooryard");

Exercise
9.41:

Write a program that, given the string s

     string generic1("Dear Ms Daisy:");
     string generic2("MrsMsMissPeople");

implements the function

     string greet(string form, string lastname, string title,
                  string::size_type pos, int length);

using the replace operations, where lastname replaces Daisy and pos
indexes into generic2 of length characters replacing Ms . For example, the
following

     string lastName("AnnaP");
     string salute = greet(generic1, lastName, generic2, 5, 4);

returns the string

     Dear Miss AnnaP:

To use an adaptor, we must include its associated header:

     #include <stack>    // stack adaptor
     #include <queue>    // both queue and priority_queue adaptors



Initializing an Adapator

Each adaptor defines two constructors: the default constructor that creates an empty object and a
constructor that takes a container and makes a copy of that container as its underlying value. For
example, assuming that deq is a deque<int> , we could use deq to initialize a new stack as follows:

     stack<int> stk(deq);      // copies elements from deq into stk

Overriding the Underlying Container Type

By default both stack and queue are implemented in terms of deque , and a priority_queue is
implemented on a vector . We can override the default container type by naming a sequential
container as a second type argument when creating the adaptor:

     // empty stack implemented on top of vector
     stack< string, vector<string> > str_stk;

     // str_stk2 is implemented on top of vector and holds a copy of svec
     stack<string, vector<string> > str_stk2(svec);

There are constraints on which containers can be used for a given adapator. We can use any of the
sequential containers as the underlying container for a stack . Thus, a stack can be built on a
vector, list , or deque . The queue adapator requires push_front in its underlying container, and
so could be built on a list but not on a vector . A priority_queue requires random access and so
can be built on a vector or a deque but not on a list .

Relational Operations on Adaptors

Two adaptors of the same type can be compared for equality, inequality, less-than, greater-than,
less-than-equal, and greater-than-equal relationships, provided that the underlying element type
supports the equality and less-than operators. For these operations, the elements are compared in
turn. The first pair of unequal elements determines the less-than or greater-than relationship.

9.7.1. Stack Adaptor

The operations provided by a stack are listed in Table 9.23 on the facing page. The following
program exercises this set of five stack operations:

Table 9.23. Operations Supported by the Stack Container
Adaptor



s.empty() Returns TRue if the stack is empty; false otherwise.

s.size() Returns a count of the number of elements on the stack .

s.pop() Removes, but does not return, the top element from the
stack .

s.top() Returns, but does not remove, the top element on the stack
.

s.push(item) Places a new top element on the stack .

     // number of elements we'll put in our stack
     const stack<int>::size_type stk_size = 10;
     stack<int> intStack; // empty stack
     // fill up the stack
     int ix = 0;
     while (intStack.size() != stk_size)

         // use postfix increment; want to push old value onto intStack

         intStack.push(ix++); // intStack holds 0...9 inclusive

     int error_cnt = 0;
     // look at each value and pop it off the stack
     while (intStack.empty() == false) {
         int value = intStack.top();
         // read the top element of the stack
         if (value != --ix) {
             cerr << "oops! expected " << ix
                  << " received " << value << endl;
             ++error_cnt; }
         intStack.pop(); // pop the top element, and repeat
     }
     cout << "Our program ran with "
          << error_cnt << " errors!" << endl;

The declaration

     stack<int> intStack;   // empty stack

defines intStack to be an empty stack that holds integer elements. The for loop adds stk_size
elements initializing each to the next integer in sequence starting from zero. The while loop
iterates through the entire stack , examining the top value and pop ping it from the stack until the
stack is empty.

Each container adaptor defines its own operations in terms of operations provided by the
underlying container type. By default, this stack is implemented using a deque and uses deque
operations to implement the operations of a stack . For example, when we execute

     // use postfix increment; want to push old value onto intStack

     intStack.push(ix++);    // intStack holds 0...9 inclusive



this operation executes by calling the push_back operation of the deque object on which intStack is
based. Although stack is implemented by using a deque , we have no direct access to the deque
operations. We cannot call push_back on a stack ; instead, we must use the stack operation
named push .

9.7.2. Queue and Priority Queue

The library queue uses a first-in, first-out (FIFO) storage and retrieval policy. Objects entering the
queue are placed in the back. The next object retrieved is taken from the front of the queue. There
are two kinds of queues: the FIFO queue, which we will speak of simply as a queue , and a priority
queue.

A priority_queue lets us establish a priority among the elements held in the queue. Rather than
place a newly entered item at the back of the queue, the item is placed ahead of all those items
with a lower priority. By default, the library uses the < operator on the element type to determine
relative priorities.

A real-world example of a priority queue is the line to check luggage at an airport. Those whose
flight is going to leave within the next 30 minutes are generally moved to the front of the line so
that they can finish the check-in process before their plane takes off. A programming example of a
priority queue is the scheduler of an operating system determining which, of a number of waiting
processes, should execute next.

To use either queue or priority_queue , we must include the queue header. Table 9.24 lists the
operations supported by queue and priority_queue .

Table 9.24. Operations Supported by Queues and Priority
Queues

q.empty() Returns TRue if the queue is empty; false otherwise.

q.size() Returns a count of the number of elements on the queue .

q.pop() Removes, but does not return, the front element from the
queue .

q.front() Returns, but does not remove, the front element on the
queue .

This operation can be applied only to a queue .

q.back() Returns, but does not remove, the back element on the
queue .

This operation can be applied only to a queue .

q.top() Returns, but does not remove, the highest-priority element.

This operation can be applied only to a priority_queue .

q.push(item) Places a new element at the end of the queue or at its
appropriate position based on priority in a priority_queue .



Exercises Section 9.7.2

Exercise
9.42:

Write a program to read a series of words into a stack .

Exercise
9.43:

Use a stack to process parenthesized expressions. When you see
an open parenthesis, note that it was seen. When you see a
close parenthesis after an open parenthesis, pop elements down
to and including the open parenthesis off the stack . push a
value onto the stack to indicate that a parenthesized expression
was replaced.

 



 

Chapter Summary

The C++ library defines a number of sequential container types. A container is a template type
that holds objects of a given type. In a sequential container, elements are ordered and accessed
by position. The sequential containers share a common, standardized interface: If two
sequential containers offer a particular operation, then the operation has the same interface and
meaning for both containers. All the containers provide (efficient) dynamic memory
management. We may add elements to the container without worrying about where to store the
elements. The container itself manages its storage.

The most commonly used container, vector , supports fast, random access to elements.
Elements can be added and removed efficiently from the end of a vector . Inserting or deleting
elements elsewhere can be expensive. The deque class is like a vector , but also supports fast
insertion and deletion at the front of the deque . The list class supports only sequential access
to elements, but it can be quite fast to insert or remove elements anywhere within the list.

The containers define surprisingly few operations. Containers define constructors, operations to
add or remove elements, operations to determine the size of the container, and operations to
return iterators to particular elements. Other useful operations, such as sorting or searching,
are defined not by the container types but by the standard algorithms, which we shall cover in
Chapter 11 .

Container operations that add or remove elements can invalidate existing iterators. When
mixing actions on iterators and container operations, it is essential to keep in mind whether a
given container operation could invalidate the iterators. Many operations that invalidate an
iterator, such as insert or erase , return a new iterator that allows the programmer to maintain
a position within the container. Loops that use container operations that change the size of a
container should be particularly careful in their use of iterators.

 



 

Defined Terms

adaptor

A library type, function, or iterator that given a type, function, or iterator, makes it act
like another. There are three sequential container adaptors: stack, queue , and
priority_queue . Each of these adaptors defines a new interface on top of an underlying
sequential container.

begin

Container operation that returns an iterator referring to the first element in the container,
if there is one, or the off-the-end iterator ff the container is empty.

container

A type that holds a collection of objects of a given type. Each library container type is a
template type. To define a container, we must specify the type of the elements stored in
the container. The library containers are variable-sized.

deque

Sequential container. Elements in a deque are accessed by their positional index. Like a
vector in all respects except that it supports fast insertion at the front of the container as
well as at the end and does not relocate elements as a result of insertions or deletions at
either end.

end

Container operation that returns an iterator referring to the element one past the end of
the container.

invalidated iterator

An iterator that refers to an element that no longer exists. Using an invalidated iterator is
undefined and can cause serious run-time problems.

iterator

A type whose operations support navigating among the elements of a container and
examining values in the container. Each of the library containers has four companion
iterator types listed in Table 9.5 (p. 316 ). The library iterators all support the dereference



(* ) and arrow (-> ) operators to examine the value to which the iterator refers. They also
support prefix and postfix increment (++ ) and decrement (-- ) and the equality (== ) and
inequality (!= ) operators.

iterator range

A range of elements denoted by a pair of iterators. The first iterator refers to the first
element in the sequence, and the second iterator refers one past the last element. If the
range is empty, then the iterators are equal (and vice versaif the iterators are equal, they
denote an empty range). If the range is non-empty, then it must be possible to reach the
second iterator by repeatedly incrementing the first iterator. By incrementing the iterator,
each element in the sequence can be processed.

left-inclusive interval

A range of values that includes its first element but not its last. Typically denoted as [i,
j) meaning the sequence starting at and including i up to but excluding j .

list

Sequential container. Elements in a list may be accessed only sequentiallystarting from a
given element, we can get to another element by incrementing or decrementing across
each element between them. Supports fast insertion (or deletion) anywhere in the list .
Adding elements does not affect other elements in the list ; iterators remain valid when
new elements are added. When an element is removed, only the iterators to that element
are invalidated.

priority_queue

Adaptor for the sequential containers that yields a queue in which elements are inserted,
not at the end but according to a specified priority level. By default, priority is determined
by using the less-than operator for the element type.

queue

Adaptor for the sequential containers that yields a type that lets us add elements to the
back and remove elements from the front.

sequential container

A type that holds an ordered collection of objects of a single type. Elements in a
sequential container are accessed by position.

stack

Adaptor for the sequential containers that yields a type that lets us add and remove



elements from one end only.

vector

Sequential container. Elements in a vector are accessed by their positional index. We add
elements to a vector by calling push_back or insert . Adding elements to a vector might
cause it be reallocated, invalidating all iterators into the vector . Adding (or removing) an
element in the middle of a vector invalidates all iterators to elements after the insertion
(or deletion) point.
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This chapter completes our review of the standard library container types by looking at the
associative containers. Associative containers differ in a fundamental respect from the
sequential containers: Elements in an associative container are stored and retrieved by a key, in
contrast to elements in a sequential container, which are stored and accessed sequentially by
their position within the container.

Although the associative containers share much of the behavior of the sequential containers,
they differ from the sequential containers in ways that support the use of keys. This chapter
covers the associative containers and closes with an extended example that uses both
associative and sequential containers.

Associative containers support efficient lookup and retrieval by a key. The two primary
associative-container types are map and set . The elements in a map are keyvalue pairs: The key
serves as an index into the map , and the value represents the data that are stored and
retrieved. A set contains only a key and supports efficient queries to whether a given key is
present.

In general, a set is most useful when we want to store a collection of distinct values efficiently,
and a map is most useful when we wish to store (and possibly modify) a value associated with
each key. We might use a set to hold words that we want to ignore when doing some kind of
text processing. A dictionary would be a good use for a map : The word would be the key, and its
definition would be the value.

An object of the map or set type may contain only a single element with a given key. There is no
way to add a second element with the same key. If we need to have multiple instances with a
single key, then we can use multimap or multi set , which do allow multiple elements with a
given key.

The associative containers support many of the same operations as do the sequential
containers. They also provide specialized operations that manage or use the key. In the sections
that follow, we look at the associative container types and their operations in detail. We'll
conclude the chapter by using the containers to implement a small text-query program.



Table 10.1. Associative Container Types

map Associative array; elements stored and retrieved by
key

set Variable-sized collection with fast retrieval by key

multimap map in which a key can appear multiple times

multiset set in which a key can appear multiple times

 



 

10.1. Preliminaries: the pair Type

Before we look at the associative containers, we need to know about a simple companion library
type named pair , which is defined in the utility header.

Creating and Initializing pairs

A pair holds two data values. Like the containers, pair is a template type. Unlike the containers
we've seen so far, we must supply two type names when we create a pair : A pair holds two
data members, each of which has the corresponding named type. There is no requirement that
the two types be the same.

     pair<string, string> anon;       // holds two strings

     pair<string, int> word_count;    // holds a string and an int

     pair<string, vector<int> > line; // holds string and vector<int>

When we create pair objects with no initializer, the default constructor value-initializes the
members. Thus, anon is a pair of two empty string s, and line holds an empty string and an
empty vector . The int value in word_count gets the value 0 and the string member is
initialized to the empty string .

We can also provide initializers for each member:

     pair<string, string> author("James", "Joyce");

creates a pair named author , in which each member has type string . The object named
author is initialized to hold two string s with the values "James" and "Joyce" .

The pair type can be unwieldy to type, so when we wish to define a number of objects of the
same pair type, it is convenient to use a typedef (Section 2.6 , p. 61) :

     typedef pair<string, string> Author;
     Author proust("Marcel", "Proust");
     Author joyce("James", "Joyce");

Table 10.2. Operations on pairs



pair<T1, T2> p1; Create an empty pair with two elements of types T1
and T2 . The elements are value-initialized (Section
3.3.1 , p. 92) .

pair<T1, T2> p1(v1, v2);  

  Create a pair with types T1 and T2 initializing the
first member from v1 and the second from v2 .

make_pair(v1, v2) Creates a new pair from the values v1 and v2 . The
type of the pair is inferred from the types of v1 and
v2 .

p1 < p2 Less than between two pair objects. Less than is
defined as dictionary ordering: Returns true if
p1.first < p2.first or if !(p2.first < p1.first)
&& p1.second < p2.second .

p1 == p2 Two pair s are equal if their first and second
members are respectively equal. Uses the underlying
element == operator.

p.first Returns the (public ) data member of p named
first .

p.second Returns the (public ) data member of p named
second .

Operations on pairs

Unlike other library types, the pair class gives us direct access to its data members: Its
members are public . These members are named first and second , respectively. We can
access them using the normal dot operator (Section 1.5.2 , p. 25) member access notation:

     string firstBook;

     // access and test the data members of the pair
     if (author.first == "James" && author.second == "Joyce")
         firstBook = "Stephen Hero";

The library defines only a limited number of operations on pair s, which are listed in Table 10.2
on the preceding page.

Generating a New pair

In addition to the constructors, the library defines the make_pair function, which generates a
new pair from its two arguments. We might use this function to make a new pair to assign to
an existing pair :

     pair<string, string> next_auth;
     string first, last;
     while (cin >> first >> last) {



         // generate a pair from first and last
         next_auth = make_pair(first, last);

         // process next_auth...
     }

This loop processes a sequence of authors. The call to make_pair generates a new pair from the
names read in the while condition. It is equivalent to the somewhat more complicated

     // use pair constructor to make first and last into a pair
     next_auth = pair<string, string>(first, last);

Because the data members of pair are public , we could read the inputeven more directly as

     pair<string, string> next_auth;

     // read directly into the members of next_auth
     while (cin >> next_auth.first >> next_auth.second) {

         // process next_auth...
     }

Exercises Section 10.1

Exercise
10.1:

Write a program to read a sequence of string s and ints ,
storing each into a pair . Store the pair s in a vector .

Exercise
10.2:

There are at least three ways to create the pair s in the
program for the previous exercise. Write three versions of the
program creating the pair s in each way. Indicate which form
you think is easier to write and understand and why.

 



 

10.2. Associative Containers

Associative containers share many, but not all, of the operations on sequential containers.
Associative containers do not have the front, push_front, pop_front, back, push_back , or
pop_back operations.

The operations common to sequential and associative containers are:

The first three constructors described in Table 9.2 (p. 307 ):

     C<T> c;          // creates an empty container

     // c2 must be same type as c1

     C<T> c1(c2);    // copies elements from c2 into c1

     // b and e are iterators denoting a sequence

     C<T> c(b, e);   // copies elements from the sequence into c

Associative containers cannot be defined from a size, because there would be no way to
know what values to give the keys.

The relational operations described in Section 9.3.4 (p. 321 ).

The begin, end, rbegin , and rend operations of Table 9.6 (p. 317 ).

The typedefs listed in Table 9.5 (p. 316 ). Note that for map , the value_type is not the
same as the element type. Instead, value_type is a pair representing the types of the keys
and associated values. Section 10.3.2 (p. 361 ) explains the typedefs for map s in more
detail.

The swap and assignment operator described in Table 9.11 (p. 329 ). Associative
containers do not provide the assign functions.

The clear and erase operations from Table 9.10 (p. 326 ), except that the erase operation
on an associative container returns void .

The size operations in Table 9.8 (p. 324 ) except for resize , which we cannot use on an
associative container.

Elements Are Ordered by Key

The associative container types define additional operations beyond the ones just listed. They
also redefine the meaning or return type of operations that are in common with the sequential
containers. The differences in these common operations reflect the use of keys in the associative
containers.



There is one important consequence of the fact that elements are
ordered by key: When we iterate across an associative container,
we are guaranteed that the elements are accessed in key order,
irrespective of the order in which the elements were placed in the
container.

Exercises Section 10.2

Exercise
10.3:

Describe the differences between an associative container and
a sequential container.

Exercise
10.4:

Give illustrations on when a list, vector, deque, map , and
set might be most useful.

 



 

10.3. The map Type

A map is a collection of keyvalue pairs. The map type is often referred to as an associative array
: It is like the built-in array type, in that the key can be used as an index to fetch a value. It is
associative in that values are associated with a particular key rather than being fetched by
position in the array.

10.3.1. Defining a map

To use a map , we must include the map header. When we define a map object, we must indicate

both the key and value type :

     // count number of times each word occurs in the input

     map<string, int> word_count; // empty map from string to int

defines a map object word_count that is indexed by a string and that holds an associated int
value.

Table 10.3. Constructors for map

map<k, v> m; Create an empty map named m with key and value
types k and v .

map<k, v> m(m2); Create m as a copy of m2 ; m and m2 must have the
same key and value types.

map<k, v> m(b, e); Create m as a copy of the elements from the
range denoted by iterators b and e . Elements
must have a type that can be converted to
pair<const k, v> .

Constraints on the Key Type

Whenever we use an associative container, its keys have not only a type, but also an associated
comparison function. By default, the library uses the < operator for the key type to compare the
keys. Section 15.8.3 (p. 605 ) will show how we can override the default and provide our own
function.

Whichever comparison function we use must define a strict weak ordering over the key type.
We can think of a strict weak ordering as "less than," although we might choose to define a
more complicated comparison function. However we define it, such a comparison function must
always yield false when we compare a key with itself. Moreover, if we compare two keys, they
cannot both be "less than" each other, and if k1 is "less than" k2 , which in turn is "less than" k3
, then k1 must be "less than" k3 . If we have two keys, neither of which is "less than" the other,



the container will treat them as equal. When used as a key to a map , either value could be used
to access the corresponding element.

In practice, what's important is that the key type must define the <
operator and that that operator should "do the right thing."

As an example, in our bookstore problem, we might add a type named ISBN that would
encapsulate the rules for ISBNs. In our implementation, ISBNs are string s, which we can
compare to determine which ISBN is less than another. Therefore, the ISBN type could support
a < operation. Given that we had such a type, we could define a map that would allow us to
efficiently search for a particular book held by a bookstore.

     map<ISBN, Sales_item> bookstore;

defines a map object named bookstore that is indexed by an ISBN . Each element in the map holds
an associated instance of our Sales_item class.

The key type needs to support only the < operator. There is no
requirement that it support the other relational or equality
operators.

Exercises Section 10.3.1

Exercise
10.5:

Define a map that associates words with a list of line numbers
on which the word might occur.

Exercise
10.6:

Could we define a map from vector<int>::iterator to int ?
What about from list<int>::iterator to int ? What about
from pair<int, string> to int ? In each case, if not, explain
why not.



10.3.2. Types Defined by map

The elements of a map are keyvalue pairs That is, each element has two parts: its key and the
value associated with that key. The value_type for a map reflects this fact. This type is more
complicated than those we've seen for other containers: value_type is a pair that holds the key
and value of a given element. Moreover, the key is const . For example, the value_type of the
word_count array is pair<const string, int> .

Table 10.4. Types Defined by the map Class

map<K, V>::key_type The type of the keys used to index the map .

map<K, V>::mapped_type The type of the values associated with the keys
in the map .

map<K, V>::value_type A pair whose first element has type const

  map<K, V>::key_type and second has type

  map<K, V>::mapped_type .

When learning the map interface, it is essential to remember that the
value_type is a pair and that we can change the value but not the
key member of that pair .

Dereferencing a map Iterator Yields a pair

When we dereference an iterator, we get a reference to a value of the container's value_type .
In the case of map , the value_type is a pair :

     // get an iterator to an element in word_count
     map<string, int>::iterator map_it = word_count.begin();

     // *map_it is a reference to a pair<const string, int> object
     cout << map_it->first;                  // prints the key for this element
     cout << " " << map_it->second;          // prints the value of the element

     map_it->first = "new key";              // error: key is const
     ++map_it->second;     // ok: we can change value through an iterator

Dereferencing the iterator yields a pair object in which first member holds the const key and
second member holds the value.



Additional map Typedefs

The map class defines two additional types, key_type and mapped_type , that let us access the

type of either the key or the value. For word_count , the key_type is string and mapped_type is
int . As with the sequential containers (Section 9.3.1 , p. 317 ), we use the scope operator to
fetch a type memberfor example, map<string, int>::key_type .

Exercises Section 10.3.2

Exercise
10.7:

What are the mapped_type, key_type , and value_type of a map
from int to vector<int>?

Exercise
10.8:

Write an expression using a map iterator to assign a value to
an element.

10.3.3. Adding Elements to a map

Once the map is defined, the next step is to populate it with the keyvalue element pairs. We can
do so either by using the insert member or by fetching an element using the subscript operator
and then assigning a value to the element returned. In both cases, the fact that there can be
only a single element for a given key affects the behavior of these operations.

10.3.4. Subscripting a map

When we write

     map <string, int> word_count; // empty map

     // insert default initialzed element with key Anna; then assign 1 to its value
     word_count["Anna"] = 1;

the following steps take place:

1. word_count is searched for the element whose key is Anna . The element is not found.

2. A new keyvalue pair is inserted into word_count . The key is a const string holding Anna .
The value is value initialized, meaning in this case that the value is 0.

3. The new keyvalue pair is inserted into word_count .

4. The newly inserted element is fetched and is given the value 1.



Subscripting a map behaves quite differently from subscripting an
array or vector : Using an index that is not already present adds an
element with that index to the map .

As with other subscript operators, the map subscript takes an index (that is, a key) and fetches
the value associated with that key. When we look for a key that is already in the map , then the
behavior is the same for a map subscript or a vector subscript: The value associated with the
key is returned. For map s only, if the key is not already present, a new element is created and
inserted into the map for that key. The associated value is value-initialized: An element of class
type is initialized using the default constructor for the element type; a built-in type is initialized
to 0.

Using the Value Returned from a Subscript Operation

As usual, the subscript operator returns an lvalue. The lvalue it returns is the value associated
with the key. We can read or write the element:

     cout << word_count["Anna"]; // fetch element indexed by Anna; prints 1
     ++word_count["Anna"];       // fetch the element and add one to it

     cout << word_count["Anna"]; // fetch the element and print it; prints 2

Unlike vector or string , the type returned by map subscript
operator differs from the type obtained by dereferencing a map
iterator.

As we've seen, a map iterator returns a value_type , which is a pair that contains a const
key_type and mapped_type; the subscript operator returns a value of type mapped_type .

Programming Implications of the Subscript Behavior

The fact that subscript adds an element if it is not already in the map allows us to write
surprisingly succinct programs:

     // count number of times each word occurs in the input

     map<string, int> word_count; // empty map from string to int
     string word;
     while (cin >> word)
       ++word_count[word];



This program creates a map that keeps track of how many times each word occurs. The while
loop reads the standard input one word at a time. Each time it reads a new word, it uses that
word to index word_count . If word is already in the map , then its value is incremented.

The interesting part is what happens when a word is encountered for the first time: A new
element indexed by word , with an initial value of zero, is created and inserted into word_count .
The value of that element is immediately incremented so that each time we insert a new word
into the map it starts off with an occurrence count of one.

Exercises Section 10.3.4

Exercise
10.9:

Write a program to count and print the number of times each
word occurs in the input.

Exercise
10.10:

What does the following program do?

     map<int, int> m;
     m[0] = 1;

Contrast the behavior of the previous program with this one:

     vector<int> v;
     v[0] = 1;

Exercise
10.11:

What type can be used to subscript a map ? What type does the
sub-script operator return? Give a concrete examplethat is,
define a map and then write the types that could be used to
subscript the map and the type that would be returned from
the subscript operator.

10.3.5. Using map::insert

The insert members operate similarly to the operations on sequential containers (Section 9.3.3
, p. 318 ), with one important caveat: We must account for the effect of the key. The key
impacts the argument types: The versions that insert a single element take a value that is a
keyvalue pair . Similarly, for the version that takes an iterator pair, the iterators must refer to
elements that are keyvalue pair s. The other difference is the return type from the version of
insert that takes a single value, which we will cover in the remainder of this section.

Using insert Instead of Subscripting



When we use a subscript to add an element to a map , the value part of the element is value-
initialized. Often we immediately assign to that value, which means that we've initialized and
assigned the same object. Alternatively, we could insert the element directly by using the
syntactically more intimidating insert member:

     // if Anna not already in word_count, inserts new element with value 1
     word_count.insert(map<string, int>::value_type("Anna", 1));

Table 10.5. insert Operations on maps

m.insert(e) e is a value of the value_type for m . If the
key(e.first) is not in m , inserts a new element with
value e.second . If the key is in m , then m is
unchanged. Returns a pair containing a map iterator
referring to the element with key e.first and a bool
indicating whether the element was inserted or not.

m.insert(beg, end) beg and end are iterators that denote a range of
values that are keyvalue pair s with the same type
as m 's value_type . For each element in the range, if
the given key is not already in m , it inserts the key
and its associated value into m . Returns void .

m.insert(iter, e) e is a value of the value_type for m . If the
key(e.first) is not in m , inserts the new element
using the iterator iter as a hint for where to begin
the search for where the new element should be
stored. Returns an iterator that refers to the element
in m with given key.

The argument to this version of insert

     map<string, int>::value_type(anna, 1)

is a newly created pair that is directly inserted into the map . Remember that value_type is a
synonym for the type pair<const K, V> , where K is the key type and V is the type of the
associated value. The argument to insert constructs a new object of the appropriate pair type
to insert into the map . By using insert , we can avoid the extraneous initialization of the value
that happens when we insert a new map element as a side-effect of using a subscript.

The argument to insert is fairly unwieldy. There are two ways to simplify it. We might use
make_pair:

     word_count.insert(make_pair("Anna", 1));

Or use a typedef:



     typedef map<string,int>::value_type valType;
     word_count.insert(valType("Anna", 1));

Either approach improves readability by making the call less complicated.

Testing the Return from insert

There can be only one element with a given key in a map . If we attempt to insert an element
with a key that is already in the map , then insert does nothing. The versions of insert that take
an iterator or iterator pair do not indicate whether or how many elements were inserted.

However, the version of insert that takes a single keyvalue pair does return a value. That value
is a pair that contains an iterator that refers to the element in the map with the corresponding
key, and a bool that indicates whether the element was inserted. If the key is already in the map
, then the value is unchanged, and the bool portion of the return is false . If the key isn't
present, then the element is inserted and the bool is TRue . In either case, the iterator refers to
the element with the given key. We could rewrite our word count program to use insert :

     // count number of times each word occurs in the input

     map<string, int> word_count; // empty map from string to int
     string word;
     while (cin >> word) {

         // inserts element with key equal to word and value 1;

         // if word already in word_count, insert does nothing
         pair<map<string, int>::iterator, bool> ret =
                   word_count.insert(make_pair(word, 1));

         if (!ret.second)          // word already in word_count
             ++ret.first->second;  // increment counter
     }

For each word , we attempt to insert it with a value 1. The if test examines the bool in the
return from the insert . If it is false , then the insertion didn't happen and an element indexed
by word was already in word_count . In this case we increment the value associated with that
element.

Unwinding the Syntax

The definition of ret and the increment may be hard to decipher:

     pair<map<string, int>::iterator, bool> ret =
             word_count.insert(make_pair(word, 1));

It should be easy to see that we're defining a pair and that the second type of the pair is bool .
The first type of that pair is a bit harder to understand. It is the iterator type defined by the
map<string, int> type.



We can understand the increment by first parenthesizing it to reflect the precedence (Section
5.10.1 , p. 168 ) of the operators:

     ++((ret.first)->second); // equivalent expression

Explaining this expression step by step, we have

ret holds return value from insert , which is a pair . The first member of that pair is a
map iterator referring to the key that was inserted.

ret.first fetches the map iterator from the pair returned by insert .

ret.first->second dereferences that iterator obtaining a value_type object. That object is
also a pair , in which the second member is the value part of the element we added.

++ret.first->second increments that value.

Putting it back together, the increment statement fetches the iterator for the element indexed
by word and increments the value part of that element.

Exercises Section 10.3.5

Exercise
10.12:

Rewrite the word-count program that you wrote in the
exercises for Section 10.3.4 (p. 364 ) to use insert instead of
subscripting. Explain which program you think is easier to
write and read. Explain your reasoning.

Exercise
10.13:

Given a map<string, vector<int> > , write the types used as
an argument and as the return value for the version of insert
that inserts one element.

10.3.6. Finding and Retrieving a map Element

The subscript operator provides the simplest method of retrieving a value:

     map<string,int> word_count;
     int occurs = word_count["foobar"];

As we've seen, using a subscript has an important side effect: If that key is not already in the
map , then subscript inserts an element with that key.

Whether this behavior is correct depends on our expectations. In this example, if "foobar"
weren't already present, it would be added to the map with an associated value of 0. In this case,



occurs gets a value of 0.

Our word-counting programs relied on the fact that subscripting a nonexistent element inserts
that element and initializes the value to 0. There are times, though, when we want to know if an
element is present but do not want the element inserted if it is not present. In such cases, we
cannot use the subscript operator to determine whether the element is present.

There are two operations, count and find , that we can use to determine if a key is present
without causing it to be inserted.

Table 10.6. Interrogating a map Without Changing It

m.count(k) Returns the number of occurrences of k within m .

m.find(k) Returns an iterator to the element indexed by k , if
there is one, or returns an off-the-end iterator
(Section 3.4 , p. 97 ) if the key is not present.

Using count to Determine Whether a Key is in the map

The count member for a map always returns either 0 or 1. A map may have only one instance of
any given key, so count effectively indicates whether the key is present. The return from count
is more useful for multimaps , which we cover in Section 10.5 (p. 375 ). If the return value is
nonzero, we can use the subscript operator to fetch the value associated with the key without
worrying that doing so will insert the element into the map :

     int occurs = 0;
     if (word_count.count("foobar"))
         occurs = word_count["foobar"];

Of course, executing count followed by the subscript effectively looks for the element twice. If
we want to use the element if it is present, we should use find .

Retrieving an Element Without Adding It

The find operation returns an iterator to the element or the end iterator if the element is not
present:

     int occurs = 0;
     map<string,int>::iterator it = word_count.find("foobar");
     if (it != word_count.end())
         occurs = it->second;

We should use find when we want to obtain a reference to the element with the specified key if
it exists, and do not want to create the element if it does not exist.



Exercises Section 10.3.6

Exercise
10.14:

What is the difference between the map operations count and
find ?

Exercise
10.15:

What kinds of problems would you use count to solve? When
might you use find instead?

Exercise
10.16:

Define and initialize a variable to hold the result of a call to
find on a map from string to vector of int .

10.3.7. Erasing Elements from a map

There are three variants of the erase operation to remove elements from a map . As with the
sequential containers, we can erase a single element or a range of elements by passing erase
an iterator or an iterator pair. These versions of erase are similar to the corresponding
operations on sequential containers with one exception: The map operations return void ,
whereas those on the sequential containers return an iterator to the element following the one
that was removed.

The map type supplies an additional erase operation that takes a value of the key_type and
removes the element with the given key if the element exists. We could use this version to
remove a specific word from word_count before printing the results:

     // erase of a key returns number of elements removed
     if (word_count.erase(removal_word))
          cout << "ok: " << removal_word << " removed\n";
     else cout << "oops: " << removal_word << " not found!\n";

The erase function returns a count of how many elements were removed. In the case of a map ,
that number is either zero or one. If the return value is zero, then the element we wanted to
erase was not in the map .

Table 10.7. Removing Elements from a map



m.erase(k) Removes the element with key k from m . Returns
size_type indicating the number of elements
removed.

m.erase(p) Removes element referred to by the iterator p from m
. p must refer to an actual element in m ; it must not
be equal to m.end() . Returns void .

m.erase(b, e) Removes the elements in the range denoted by the
iterator pair b, e . b and e must be a valid range of
elements in m : b and e must refer to elements in m
or one past the last element in m . b and e must
either be equalin which case the range is emptyor
the element to which b refers must occur before the
element referred to by e . Returns void .

10.3.8. Iterating across a map

Like any other container, map provides begin and end operations that yield iterators that we can
use to traverse the map . For example, we could print the map named word_count that we built on
page 363 as follows:

     // get iterator positioned on the first element
     map<string, int>::const_iterator
                             map_it = word_count.begin();

     // for each element in the map
     while (map_it != word_count.end()) {
         // print the element key, value pairs
         cout << map_it->first << " occurs "
              << map_it->second << " times" << endl;
         ++map_it; // increment iterator to denote the next element
     }

The while condition and increment for the iterator in this loop look a lot like the programs we
wrote that printed the contents of a vector or a string . We initialize an iterator, map_it , to
refer to the first element in word_count . As long as the iterator is not equal to the end value, we
print the current element and then increment the iterator. The body of the loop is more
complicated than those earlier programs because we must print both the key and value for each
element.

The output of our word-count program prints the words in
alphabetical order. When we use an iterator to traverse a map , the
iterators yield elements in ascending key order.

10.3.9. A Word Transformation Map



We'll close this section with a program to illustrate creating, searching, and iterating across a
map . Our problem is to write a program that, given one string , transforms it into another. The
input to our program is two files. The first file contains several word pairs. The first word in the
pair is one that might be in the input string. The second is the word to use in the output.
Essentially, this file provides a set of word transformationswhen we find the first word, we
should replace it by the second. The second file contains the text to transform. If the contents of
the word transformation file is

'em them

cuz because

gratz grateful

i I

nah no

pos supposed

sez said

tanx thanks

wuz was

and the text we are given to transform is

     nah i sez tanx cuz i wuz pos to
     not cuz i wuz gratz

then the program should generate the following output:

     no I said thanks because I was supposed to
     not because I was grateful

The Word Transformation Program

Our solution, which appears on the next page, stores the word transformation file in a map ,
using the word to be replaced as the key and the word to use as the replacement as its
corresponding value. We then read the input, looking up each word to see if it has a
transformation. If so, we do the transformation and then print the transformed word. If not, we
print the original word.

Our main program takes two arguments (Section 7.2.6 , p. 243 ): the name of the word
transformation file and the name of the file to transform. We start by checking the number of
arguments. The first argument, argv[0] , is always the name of the command. The file names
will be in argv[1] and argv[2] .

Once we know that argv[1] is valid, we call open_file (Section 8.4.3 , p. 299 ) to open the word
transformation file. Assuming the open succeeded, we read the transformation pairs. We call
insert using the first word as the key and the second as the value. When the while concludes,



trans_map contains the data we need to transform the input. If there's a problem with the
arguments, we throw (Section 6.13 , p. 215 ) an exception and exit the program.

Next, we call open_file to open the file we want to transform. The second while uses getline to
read that file a line at a time. We read by line so that our output will have line breaks at the
same position as our input file. To get the words from each line we use a nested while loop that
uses an istringstream . This part of the program is similar to the sketch we wrote on page 300
.

The inner while checks each word to see if it is in the transformation map. If it is, then we
replace the word by its corresponding value from the map . Finally, we print the word,
transformed or not. We use the bool firstword to determine whether to print a space. If it is
the first word in the line, we don't print a space.

    /*
     * A program to transform words.
     * Takes two arguments: The first is name of the word transformation file
     *                      The second is name of the input to transform
     */
    int main(int argc, char **argv)
    {

        // map to hold the word transformation pairs:

        // key is the word to look for in the input; value is word to use in the output
        map<string, string> trans_map;
        string key, value;
        if (argc != 3)
            throw runtime_error("wrong number of arguments");
        // open transformation file and check that open succeeded
        ifstream map_file;
        if (!open_file(map_file, argv[1]))
            throw runtime_error("no transformation file");
        // read the transformation map and build the map
         while (map_file >> key >> value)
             trans_map.insert(make_pair(key, value));
        // ok, now we're ready to do the transformations
        // open the input file and check that the open succeeded
        ifstream input;
        if (!open_file(input, argv[2]))
            throw runtime_error("no input file");
        string line;    // hold each line from the input
        // read the text to transform it a line at a time
        while (getline(input, line)) {
            istringstream stream(line);   // read the line a word at a time
            string word;
            bool firstword = true;   // controls whether a space is printed
            while (stream >> word) {
               // ok: the actual mapwork, this part is the heart of the program
               map<string, string>::const_iterator map_it =
                                  trans_map.find(word);
               // if this word is in the transformation map
               if (map_it != trans_map.end())
                   // replace it by the transformation value in the map
                   word = map_it->second;
               if (firstword)
                   firstword = false;
               else
                   cout << " ";  // print space between words
               cout << word;



            }
            cout << endl;        // done with this line of input
    }
    return 0;
 }

Exercises Section 10.3.9

Exercise
10.17:

Our transformation program uses find to look for each word:

     map<string, string>::const_iterator map_it =
              trans_map.find(word);

Why do you suppose the program uses find ? What would
happen if it used the subscript operator instead?

Exercise
10.18:

Define a map for which the key is the family surname and the
value is a vector of the children's names. Populate the map
with at least six entries. Test it by supporting user queries
based on a surname, which should list the names of children in
that family.

Exercise
10.19:

Extend the map from the previous exercise by having the
vector store a pair that holds a child's name and birthday.
Revise the program accordingly. Test your modified test
program to verify its correctness.

Exercise
10.20:

List at least three possible applications in which the map type
might be of use. Write the definition of each map and indicate
how the elements are likely to be inserted and retrieved.

 



 

10.4. The set Type

A map is a collection of a keyvalue pairs, such as an address and phone number keyed to an
individual's name. In contrast, a set is simply a collection of keys. For example, a business
might define a set named bad_checks , to hold the names of individuals who have issued bad
checks to the company. A set is most useful when we simply want to know whether a value is
present. Before accepting a check, for example, that business would query bad_checks to see
whether the customer's name was present.

With two exceptions, set supports the same operations as map :

All the common container operations listed in Section 10.2 (p. 358 ).

The constructors described in Table 10.3 (p. 360 ).

The insert operations described in Table 10.5 (p. 365 ).

The count and find operations described in Table 10.6 (p. 367 ).

The erase operations described in Table 10.7 (p. 369 ).

The exceptions are that set does not provide a subscript operator and does not define
mapped_type . In a set , the value_type is not a pair ; instead it and key_type are the same
type. They are each the type of the elements stored in the set . These differences reflect the
fact that set holds only keys; there is no value associated with the key. As with map , the keys of
a set must be unique and may not be changed.

Exercises Section 10.4

Exercise
10.21:

Explain the difference between a map and a set . When might
you use one or the other?

Exercise
10.22:

Explain the difference between a set and a list . When might
you use one or the other?

10.4.1. Defining and Using set s

To use a set , we must include the set header. The operations on set s are essentially identical
to those on map s.

As with map , there can be only one element with a given key in a set . When we initialize a set
from a range of elements or insert a range of elements, only one element with a given key is
actually added:



     // define a vector with 20 elements, holding two copies of each number from 0 to 9
     vector<int> ivec;
     for (vector<int>::size_type i = 0; i != 10; ++i) {
         ivec.push_back(i);
         ivec.push_back(i); // duplicate copies of each number
     }
     // iset holds unique elements from ivec
     set<int> iset(ivec.begin(), ivec.end());
     cout << ivec.size() << endl;      // prints 20
     cout << iset.size() << endl;      // prints 10

We first create a vector of int s named ivec that has 20 elements: two copies of each of the
integers from 0 through 9 inclusive. We then use all the elements from ivec to initialize a set of
int s. That set has only ten elements: one for each distinct element in ivec .

Adding Elements to a set

We can add elements to a set by using the insert operation:

     set<string> set1;         // empty set
     set1.insert("the");       // set1 now has one element
     set1.insert("and");       // set1 now has two elements

Alternatively, we can insert a range of elements by providing a pair of iterators to insert . This
version of insert works similarly to the constructor that takes an iterator paironly one element
with a given key is inserted:

     set<int>    iset2; //    empty set
     iset2.insert(ivec.begin(), ivec.end());     // iset2 has 10 elements

Like the map operations, the version of insert that takes a key returns a pair containing an
iterator to the element with this key and a bool indicating whether the element was added. The
one that takes an iterator pair returns void .

Fetching an Element from a set

There is no subscript operator on set s. To fetch an element from a set by its key, we use the
find operation. If we just want to know whether the element is present, we could also use count
, which returns the number of elements in the set with a given key. Of course, for set that
value can be only one (if the element is present) or zero (if it is not):

     iset.find(1)     // returns iterator that refers to the element with key == 1
     iset.find(11)    // returns iterator == iset.end()

     iset.count(1)    // returns 1
     iset.count(11)   // returns 0



Just as we cannot change the key part of a map element, the keys in a set are also const . If we
have an iterator to an element of the set , all we can do is read it; we cannot write through it:

     // set_it refers to the element with key == 1
     set<int>::iterator set_it = iset.find(1);
     *set_it = 11;               // error: keys in a set are read-only
     cout << *set_it << endl;    // ok: can read the key

10.4.2. Building a Word-Exclusion Set

On page 369 we removed a given word from our word_count map . We might want to extend this
approach to remove all the words in a specified file. That is, our word-count program should
count only words that are not in a set of excluded words. Using set and map , this program is
fairly straightforward:

     void restricted_wc(ifstream &remove_file,
                        map<string, int> &word_count)
     {

         set<string> excluded; // set to hold words we'll ignore
         string remove_word;
         while (remove_file >> remove_word)
             excluded.insert(remove_word);

         // read input and keep a count for words that aren't in the exclusion set
         string word;
         while (cin >> word)

            // increment counter only if the word is not in excluded
            if (!excluded.count(word))
                 ++word_count[word];
     }

This program is similar to the word-count program on page 363 . The difference is that we do
not bother to count the common words.

The function starts by reading the file it was passed. That file contains the list of excluded
words, which we store in the set named excluded . When the first while completes, that set
contains an entry for each word in the input file.

The next part of the program looks a lot like our original word-count program. The important
difference is that before counting each word, we check whether the word is in the exclusion set.
We do this check in the if inside the second while :

     // increment counter only if the word is not in excluded
     if (!excluded.count(word))

The call to count returns one if word is in excluded and zero otherwise. We negate the return
from count so that the test succeeds if word is not in excluded . If word is not in excluded , we



update its value in the map .

As in the previous version of our word count program, we rely on the fact that subscripting a
map inserts an element if the key is not already in the map . Hence, the effect of

     ++word_count[word];

is to insert word into word_count if it wasn't already there. If the element is inserted, its value is
initially set to 0. Regardless of whether the element had to be created, the value is then
incremented.

Exercises Section 10.4.2

Exercise
10.23:

Write a program that stores the excluded words in a vector
instead of in a set . What are the advantages to using a set ?

Exercise
10.24:

Write a program that generates the non-plural version of a
word by stripping the 's' off the end of the word. Build an
exclusion set to recognize words in which the trailing 's'
should not be removed. Two examples of words to place in
this set are success, class . Use this exclusion set to write a
program that strips plural suffixes from its input but leaves
words in the exclusion set unchanged.

Exercise
10.25:

Define a vector of books you'd like to read within the next six
months and a set of titles that you've read. Write a program
that chooses a next book for you to read from the vector ,
provided that you have not yet read it. When it returns the
selected title to you, it should enter the title in the set of
books read. If in fact you end up putting the book aside,
provide support for removing the title from the set of books
read. At the end of our virtual six months, print the set of
books read and those books that were not read.

 



 

10.5. The multimap and multiset Types

Both map and set can contain only a single instance of each key. The types multiset and a
multimap allow multiple instances of a key. In a phone directory, for example, someone might

wish to provide a separate listing for each phone number associated with an individual. A listing
of available texts by an author might provide a separate listing for each title. The multimap and
multiset types are defined in the same headers as the corresponding single-element versions:
the map and set headers, respectively.

The operations supported by multimap and multiset are the same as those on map and set ,
respectively, with one exception: multimap does not support subscripting. We cannot subscript a
multimap because there may be more than one value associated with a given key. The
operations that are common to both map and multimap or set and multiset change in various
ways to reflect the fact that there can be multiple keys. When using either a multimap or
multiset , we must be prepared to handle multiple values, not just a single value.

10.5.1. Adding and Removing Elements

The insert operations described in Table 10.5 (p. 365 ) and the erase operations described in
Table 10.7 (p. 369 ) are used to add and remove elements of a multimap or multiset .

Because keys need not be unique, insert always adds an element. As an example, we might
define a multimap to map authors to titles of the books they have written. The map might hold
multiple entries for each author:

     // adds first element with key Barth
     authors.insert(make_pair(
       string("Barth, John"),
       string("Sot-Weed Factor")));

     // ok: adds second element with key Barth
     authors.insert(make_pair(
       string("Barth, John"),
       string("Lost in the Funhouse")));

The version of erase that takes a key removes all elements with that key. It returns a count of
how many elements were removed. The versions that take an iterator or an iterator pair remove
only the indicated element(s). These versions return void :

     multimap<string, string> authors;
     string search_item("Kazuo Ishiguro");

     // erase all elements with this key; returns number of elements removed
     multimap<string, string>::size_type cnt =
                               authors.erase(search_item);



10.5.2. Finding Elements in a multimap or multiset

We noted that map s and sets store their elements in order. The multimap and multiset types do
so as well. As a result, when a multimap or multiset has multiple instances of a given key, those
instances will be adjacent elements within the container.

We are guaranteed that iterating across a multimap or multiset
returns all the elements with a given key in sequence.

Finding an element in a map or a set is a simple matterthe element is or is not in the container.
For multimap and multiset the process is more complicated: the element may be present many
times. For example, given our map from author to titles, we might want to find and print all the
books by a particular author.

It turns out that there are three strategies we might use to find and print all the books by a
given author. Each of these strategies relies on the fact that we know that all the entries for a
given author will be adjacent within the multimap .

We'll start by presenting a strategy that uses only functions we've already seen. This version
turns out to require the most code, so we will continue by exploring more compact alternatives.

Using find and count

We could solve our problem using find and count . The count function tells us how many times a
given key occurs, and the find operation returns an iterator that refers to the first instance of
the key we're looking for:

     // author we'll look for
     string search_item("Alain de Botton");

     // how many entries are there for this author
     typedef multimap<string, string>::size_type sz_type;
     sz_type entries = authors.count(search_item);

     // get iterator to the first entry for this author
     multimap<string,string>::iterator iter =
                              authors.find(search_item);

     // loop through the number of entries there are for this author
     for (sz_type cnt = 0; cnt != entries; ++cnt, ++iter) cout <<
            iter->second << endl; // print each title

We start by determining how many entries there are for the author by calling count and getting
an iterator to the first element with this key by calling find . The number of iterations of the for
loop depends on the number returned from count . In particular, if the count was zero, then the



loop is never executed.

A Different, Iterator-Oriented Solution

Another, more elegant strategy uses two associative container operations that we haven't seen
yet: lower_bound and upper_bound . These operations, listed in Table 10.8 (p. 379 ), apply to all
associative containers. They can be used with (plain) map s or sets but are most often used with
multimap s or multisets . Each of these operations takes a key and returns an iterator.

Calling lower_bound and upper_bound on the same key yields an iterator range (Section 9.2.1 , p.
314 ) that denotes all the elements with that key. If the key is in the container, the iterators will
differ: the one returned from lower_bound will refer to the first instance of the key, whereas
upper_bound will return an iterator referring just after the last instance. If the element is not in
the multimap , then lower_bound and upper_bound will return equal iterators; both will refer to
the point at which the key could be inserted without disrupting the order.

Of course, the iterator returned from these operations might be the off-the-end iterator for the
container itself. If the element we look for has the largest key in the multimap , then
upper_bound on that key returns the off-the-end iterator. If the key is not present and is larger
than any key in the multimap , then the return from lower_bound will also be the off-the-end
iterator.

The iterator returned from lower_bound may or may not refer to an
element with the given key. If the key is not in the container, then
lower_bound refers to the first point at which this key could be
inserted while preserving the element order within the container.

Using these operations, we could rewrite our program as follows:

     // definitions of authors and search_item as above

     // beg and end denote range of elements for this author
     typedef multimap<string, string>::iterator authors_it;
     authors_it beg = authors.lower_bound(search_item),
                end = authors.upper_bound(search_item);

     // loop through the number of entries there are for this author
     while (beg != end) {
         cout << beg->second << endl; // print each title
         ++beg;
     }

This program does the same work as the previous one that used count and find but
accomplishes its task more directly. The call to lower_bound positions beg so that it refers to the
first element matching search_item if there is one. If there is no such element, then beg refers
to first element with a key larger than search_item . The call to upper_bound sets end to refer to
the element with the key just beyond the last element with the given key.



These operations say nothing about whether the key is present. The
important point is that the return values act like an iterator range.

If there is no element for this key, then lower_bound and upper_bound will be equal: They will
both refer to the same element or they will both point one past the end of the multimap . They
both will refer to the point at which this key could be inserted while maintaining the container
order.

If there are elements with this key, then beg will refer to the first such element. We can
increment beg to traverse the elements with this key. The iterator in end will signal when we've
seen all the elements. When beg equals end , we have seen every element with this key.

Given that these iterators form a range, we can use the same kind of while loop that we've used
to traverse other ranges. The loop is executed zero or more times and prints the entries, if any,
for the given author. If there are no elements, then beg and end are equal and the loop is never
executed. Otherwise, we know that the increment to beg will eventually reach end and that in
the process we will print each record associated with this author.

Table 10.8. Associative Container Operations Returning
Iterators

m.lower_bound(k) Returns an iterator to the first element with
key not less than k .

m.upper_bound(k) Returns an iterator to the first element with
key greater than k .

m.equal_range(k) Returns a pair of iterators.

The first member is equivalent to
m.lower_bound(k) and second is equivalent to
m.upper_bound(k) .

The equal_range Function

It turns out that there is an even more direct way to solve this problem: Instead of calling
upper_bound and lower_bound , we can call equal_range . This function returns a pair of
iterators. If the value is present, then the first iterator refers to the first instance of the key and
the second iterator refers one past the last instance of the key. If no matching element is found,
then both the first and second iterator refer to the position where this key could be inserted.

We could use equal_range to modify our program once again:

     // definitions of authors and search_item as above



     // pos holds iterators that denote range of elements for this key
     pair<authors_it, authors_it>
                      pos = authors.equal_range(search_item);

     // loop through the number of entries there are for this author
     while (pos.first != pos.second) {
         cout << pos.first->second << endl; // print each title
         ++pos.first;
     }

This program is essentially identical to the previous one that used upper_bound and lower_bound
. Instead of using local variables, beg and end , to hold the iterator range, we use the pair
returned by equal_range . The first member of that pair holds the same iterator as the one
lower_bound would have returned. The iterator that upper_bound would have returned is in the
second member.

Thus, in this program pos.first is equivalent to beg , and pos.second is equivalent to end .

 



 

10.6. Using Containers: Text-Query Program

To conclude this chapter, we'll implement a simple text-query program.

Our program will read a file specified by the user and then allow the user to search the file for
words that might occur in it. The result of a query will be the number of times the word occurs
and a list of lines on which it appears. If a word occurs more than once on the same line, our
program should be smart enough to display that line only once. Lines should be displayed in
ascending orderthat is, line 7 should be displayed before line 9, and so on.

Exercises Section 10.5.2

Exercise
10.26:

Write a program that populates a multimap of authors and
their works. Use find to find an element in the multimap and
erase that element. Be sure your program works correctly if
the element you look for is not in the map .

Exercise
10.27:

Repeat the program from the previous exercise, but this time
use equal_range to get iterators so that you can erase a range
of elements.

Exercise
10.28:

Using the multimap from the previous exercise, write a
program to generate the list of authors whose name begins
with the each letter in the alphabet. Your output should look
something like:

     Author Names Beginning with 'A':
     Author, book, book, ...
     ...
     Author Names Beginning with 'B':
     ...

Exercise
10.29:

Explain the meaning of the operand pos.first->second used in
the output expression of the final program in this section.

For example, we might read the file that contains the input for this chapter and look for the
word "element." The first few lines of the output would be:

     element occurs 125 times
        (line 62) element with a given key.
        (line 64) second element with the same key.



        (line 153) element |==| operator.
        (line 250) the element type.
        (line 398) corresponding element.

followed by the remaining 120 or so lines in which the word "element" occurs.

10.6.1. Design of the Query Program

A good way to start the design of a program is to list the program's operations. Knowing what
operations we need to provide can then help us see what data structures we'll need and how we
might implement those actions. Starting from requirements, the tasks our program needs to
support include:

It must allow the user to indicate the name of a file to process. The program will store the
contents of the file so that we can display the original line in which each word appears.

1.

The program must break each line into words and remember all the lines in which each
word appears. When it prints the line numbers, they should be presented in ascending
order and contain no duplicates.

2.

The result of querying for a particular word should be the line numbers on which that word
appeared.

3.

To print the text in which the word appeared, it must be possible to fetch the line from the
input file corresponding to a given line number.

4.

Data Structure

We'll implement our program as a simple class that we'll name TextQuery . Our requirements
can be met quite neatly by using various containers:

We'll use a vector<string> to store a copy of the entire input file. Each line in the input file
will be an element in this vector . That way, when we want to print a line, we can fetch it
by using the line number as an index.

1.

We'll store each word's line numbers in a set . Using a set will guarantee that there is only
one entry per line and that the line numbers will be automatically stored in ascending
order.

2.

We'll use a map to associate each word with the set of line numbers on which the word
appears.

3.

Our class will have two data members: a vector to hold the input file and a map to associate
each input word with the set of line numbers on which it appears.

Operations

The requirements also lead fairly directly to an interface for our class. However, we have one
important design decision to make first: The function that does the query will need to return a



set of line numbers. What type should it use to do so?

We can see that doing the query will be simple: We'll index into the map to obtain the associated
set . The only question is how to return the set that we find. The safest design is to return a
copy of that set . However, doing so means that each element in the set must be copied.
Copying the set could be expensive if we process a very large file. Other possible return values
are a pair of iterators into the set , or a const reference to the set . For simplicity, we'll return
a copy, noting that this decision is one that we might have to revisit if the copy is too expensive
in practice.

The first, third, and fourth tasks are actions programmers using our class will perform. The
second task is internal to the class. Mapping these tasks to member functions, we'll have three
public functions in the class interface:

read_file takes an ifstream& , which it reads a line at a time, storing the lines in the
vector . Once it has read all the input, read_file will create the map that associates each
word to the line numbers on which it appears.

run_query takes a string and returns the set of line numbers on which that string
appears.

text_line takes a line number and returns the corresponding text for that line from the
input file.

Neither run_query nor text_line changes the object on which it runs, so we'll define these
operations as const member functions (Section 7.7.1 , p. 260 ).

To do the work of read_file , we'll also define two private functions to read the input file and
build the map:

store_file will read the file and store the data in our vector .

build_map will break each line into words and build the map , remembering the line number
on which each word appeared.

10.6.2. TextQuery Class

Having worked through our design, we can now write our TextQuery class:

     class TextQuery {
     public:
         // typedef to make declarations easier
         typedef std::vector<std::string>::size_type line_no;
         /* interface:
          * read_file builds internal data structures for the given file
          * run_query finds the given word and returns set of lines on which it appears
          * text_line returns a requested line from the input file
          */
         void read_file(std::ifstream &is)
                    { store_file(is); build_map(); }
         std::set<line_no> run_query(const std::string&) const;
         std::string text_line(line_no) const;
     private:
         // utility functions used by read_file
         void store_file(std::ifstream&); // store input file



         void build_map(); // associated each word with a set of line numbers
         // remember the whole input file
         std::vector<std::string> lines_of_text;
         // map word to set of the lines on which it occurs
         std::map< std::string, std::set<line_no> > word_map;
     };

The class directly reflects our design decisions. The only part we hadn't described is the typedef
that defines an alias for size_type of vector .

For the reasons described on page 80 , this class definition uses
fully qualified std:: names for all references to library entities.

The read_file function is defined inside the class. It calls store_file to read and store the input
file and build_map to build the map from words to line numbers. We'll define the other functions
in Section 10.6.4 (p. 385 ). First, we'll write a program that uses this class to solve our text-
query problem.

Exercises Section 10.6.2

Exercise
10.30:

The member functions of TextQuery use only capabilities that
we have already covered. Without looking ahead, write your
own versions of the member functions. Hint: The only tricky
part is what to return from run_query if the line number set is
empty. The solution is to construct and return a new
(temporary) set .

10.6.3. Using the TextQuery Class

The following main program uses a TextQuery object to perform a simple query session with the
user. Most of the work in this program involves managing the interaction with the user:
prompting for the next search word and calling the print_results functionwhich we shall write
nextto print the results.

     // program takes single argument specifying the file to query
     int main(int argc, char **argv)
     {
         // open the file from which user will query words



         ifstream infile;
         if (argc < 2 || !open_file(infile, argv[1])) {
             cerr << "No input file!" << endl;
             return EXIT_FAILURE;
         }
         TextQuery tq;
         tq.read_file(infile); // builds query map
         // iterate with the user: prompt for a word to find and print results
         // loop indefinitely; the loop exit is inside the while
         while (true) {
             cout << "enter word to look for, or q to quit: ";
             string s;
             cin >> s;

             // stop if hit eof on input or a 'q'is entered
             if (!cin || s == "q") break;

             // get the set of line numbers on which this word appears
             set<TextQuery::line_no> locs = tq.run_query(s);
             // print count and all occurrences, if any
             print_results(locs, s, tq);
          }
         return 0;
     }

Preliminaries

This program checks that argv[1] is valid and then uses the open_file function (Section 8.4.3 ,
p. 299 ) to open the file we're given as an argument to main . We test the stream to determine
whether the input file is okay. If not, we generate an appropriate message and exit, returning
EXIT_FAILURE (Section 7.3.2 , p. 247 ) to indicate that an error occurred.

Once we have opened the file, it is a simple matter to build up the map that will support queries.
We define a local variable named tq to hold the file and associated data structures:

     TextQuery tq;
     tq.read_file(infile);   builds query map

We call the read_file operation on tq , passing it the file opened by open_file .

After read_file completes, tq holds our two data structures: the vector that corresponds to the
input file and the map from word to set of line numbers. That map contains an entry for each
unique word in the input file. The map associates with each word the set of line numbers on
which that word appeared.

Doing the Search

We want the program to let the user look for more than one word in each session, so we wrap
the prompt in a while loop:

      // iterate with the user: prompt for a word to find and print results

      // loop indefinitely; the loop exit is inside the while



       while (true) {
          cout << "enter word to look for, or q to quit: ";
          string s;
          cin >> s;

          // stop if hit eof on input or a 'q' is entered
          if (!cin || s == "q") break;

          // get the set of line numbers on which this word appears
          set<TextQuery::line_no> locs = tq.run_query(s);
          // print count and all occurrences, if any
          print_results(locs, s, tq);
      }

The test in the while is the boolean literal true , which means that the test always succeeds. We
exit the loop through the break after the test on cin and the value read into sought . The loop
exits when cin hits an error or end-of-file or when the user enters a 'q' to quit.

Once we have a word to look for, we ask tq for the set of line numbers on which that word
appears. We pass that set along with the word we are looking for and the TextQuery object to
the print_results function. That function will write the output of our program.

Printing the Results

What remains is to define the print_results function:

      void print_results(const set<TextQuery::line_no>& locs,
                         const string& sought, const TextQuery &file)
      {
          // if the word was found, then print count and all occurrences
          typedef set<TextQuery::line_no> line_nums;
          line_nums::size_type size = locs.size();
          cout << "\n" << sought << " occurs "
               << size << " "
               << make_plural(size, "time", "s") << endl;

          // print each line in which the word appeared
          line_nums::const_iterator it = locs.begin();
          for ( ; it != locs.end(); ++it) {
              cout << "\t(line "
                   // don't confound user with text lines starting at 0
                   << (*it) + 1 << ") "
                   << file.text_line(*it) << endl;
          }
     }

The function starts by defining a typedef to simplify the use of the line number set . Our output
first reports how many matches were found, which we know from the size of the set . We call
make_plural (Section 7.3.2 , p. 248 ) to print time or times , depending on whether that size is
equal to one.

The messiest part of the program is the for loop that processes locs to print the line numbers
on which the word was found. The only subtlety here is remembering to change the line
numbers into more human-friendly counting. When we stored the text, we stored the first line



as line number zero, which is consistent with how C++ containers and arrays are numbered.
Most users think of the first line as line number 1, so we systematically add one to our stored
line numbers to convert to this more common notation.

Exercises Section 10.6.3

Exercise
10.31:

What is the output of main if we look for a word that is not
found?

10.6.4. Writing the Member Functions

What remains is to write the definitions of the member functions that were not defined inside
the class.

Storing the Input File

Our first task is to read the file that our user wishes to query. Using string and vector
operations, this task is handled easily:

     // read input file: store each line as element in lines_of_text
     void TextQuery::store_file(ifstream &is)
     {
         string textline;
         while (getline(is, textline))
            lines_of_text.push_back(textline);
     }

Because we want to store the file a line at a time, we use getline to read our input. We push
each line we read onto the lines_of_text vector .

Building the Word map

Each element in the vector holds a line of text. To build the map from words to line numbers, we
need to break each line into its individual words. We again use an istringstream in ways
outlined in the program on page 300 :

      // finds whitespace-separated words in the input vector

      // and puts the word in word_map along with the line number
      void TextQuery::build_map()
      {

          // process each line from the input vector
          for (line_no line_num = 0;



                       line_num != lines_of_text.size();
                       ++line_num)
          {

              //we'll use line to read the text a word at a time
              istringstream line(lines_of_text[line_num]);
              string word;
              while (line >> word)

                  // add this line number to the set;

                  // subscript will add word to the map if it's not already there
                  word_map[word].insert(line_num);
          }
     }

The for loop marches through lines_of_text a line at a time. We start by binding an
istringstream object named line to the current line and use the istringstream input operator
to read each word on the line. Remember that that operator, like the other istream operators,
ignores whitespace. Thus, the while reads each whitespace-separated word from line into word
.

The last part of this function is similar to our word-count programs. We use word to subscript the
map . If word was not already present, then the subscript operator adds word to the word_map ,
giving it an inital value that is the empty set . Regardless of whether word was added, the
return value from the subscript is a set . We then call insert to add the current line number. If
the word occurs more than once in the same line, then the call to insert does nothing.

Supporting Queries

The run_query function handles the actual queries:

     set<TextQuery::line_no>
     TextQuery::run_query(const string &query_word) const
     {

         //Note: must use find and not subscript the map directly

         //to avoid adding words to word_map!
         map<string, set<line_no> >::const_iterator
                               loc = word_map.find(query_word);
     if (loc == word_map.end())

         return set<line_no>(); // not found, return empty set
     else

         // fetch and return set of line numbers for this word
         return loc->second;
     }

The run_query function takes a reference to a const string and uses that value to index the
word_map . Assuming the string is found, it returns the set of line numbers associated with the
string . Otherwise, it returns an empty set .

Using the Return from run_query

Once we've run the run_query function, we get back a set of line numbers on which the word we



sought appears. In addition to printing how many times each word appears, we also want to
print the line on which the word appeared. The text_line function lets us do so:

   string TextQuery::text_line(line_no line) const
   {
       if (line < lines_of_text.size())
           return lines_of_text[line];
       throw std::out_of_range("line number out of range");
   }

This function takes a line number and returns the input text line corresponding to that line
number. Because the code using our TextQuery class cannot do so lines_of_text is private we
first check that the line we are asked for is in range. If it is, we return the corresponding line. If
it is not, we tHRow an out_of_range exception.

Exercises Section 10.6.4

Exercise
10.32:

Reimplement the text-query program to use a vector instead
of a set to hold the line numbers. Note that because lines
appear in ascending order, we can append a new line number
to the vector only if the last element of the vector isn't that
line number. What are the performance and design
characteristics of the two solutions? Which do you feel is the
preferred design solution? Why?

Exercise
10.33:

Why doesn't the TextQuery::text_line function check whether
its argument is negative?

 



 

Chapter Summary

The elements in an associative container are ordered and accessed by key. The associative
containers support efficient lookup and retrieval of elements by key. The use of a key
distinguishes them from the sequential containers, in which elements are accessed positionally.

The map and multimap types store elements that are keyvalue pairs. These types use the library
pair class, defined in the utility header, to represent these pairs. Dereferencing a map or
multimap iterator yields a value that is a pair . The first member of the pair is a const key,
and the second member is a value associated with that key. The set and multiset types store
keys. The map and set types allow only one element with a given key. The multimap and
multiset types allow multiple elements with the same key.

The associative containers share many operations with the sequential containers. However, the
associative containers define some new operations and redefine the meaning or return types of
some operations that are in common with the sequential containers. The differences in the
operations reflect the use of keys in associative containers.

Elements in an associative container can be accessed by iterators. The library guarantees that
iterators access elements in order by key. The begin operation yields the element with the
lowest key. Incrementing that iterator yields elements in nondescending order.

 



 

Defined Terms

associative array

Array whose elements are indexed by key rather than positionally. We say that the array
maps a key to its associated value.

associative container

A type that holds a collection of objects that supports efficient lookup by key.

key_type

Type defined by the associative containers that is the type for the keys used to store and
retrieve values. For a map, key_type is the type used to index the map . For set, key_type
and value_type are the same.

map

Associative container type that defines an associative array. Like vector, map is a class
template. A map , however, is defined with two types: the type of the key and the type of
the associated value. In a map a given key may appear only once. Each key is associated
with a particular value. Dereferencing a map iterator yields a pair that holds a const key
and its associated value.

mapped_type

Type defined by map and multimap that is the type for the values stored in the map .

multimap

Associative container similar to map except that in a multimap , a given key may appear
more than once.

multiset

Associative container type that holds keys. In a multiset , a givenkey may appear more
than once.

pair



Type that holds two public data members named first and second . The pair type is a
template type that takes two type parameters that are used as the types of these
members.

set

Associative container that holds keys. In a set , a given key may appear only once.

strict weak ordering

Relationship among the keys used in an associative container. In a strict weak ordering, it
is possible to compare any two values and determine which of the two is less than the
other. If neither value is less than the other, then the two values are considered equal.
See Section 10.3.1 (p. 360 ).

value_type

The type of the element stored in a container. For set and multiset, value_type and
key_type are the same. For map and multimap , this type is a pair whose first member
has type const key_type and whose second member has type mapped_type .

* operator

The dereference operator when applied to a map, set, multimap , or multiset iterator
yields a value_type . Note, that for map and multimap the value_type is a pair .

[] operator

Subscript operator. When applied to a map, [] takes an index that must be a key_type (or
type that can be converted to key_type) value. Yields a mapped_type value.
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The library containers define a surprisingly small set of operations. Rather than adding lots of
functionality to the containers, the library instead provides a set of algorithms, most of which
are independent of any particular container type. These algorithms are "generic:" They operate
on different types of containers and on elements of various types.

The generic algorithms, and a more detailed look at iterators, form the subject matter of this
chapter.

The standard containers define few operations. For the most part they allow us to add and
remove elements; to access the first or last element; to obtain and in some cases reset the size
of the container; and to obtain iterators to the first and one past the last element.

We can imagine many other useful operations one might want to do on the elements of a
container. We might want to sort a sequential container, or find a particular element, or find the
largest or smallest element, and so on. Rather than define each of these operations as members
of each container type, the standard library defines a set of generic algorithms : "algorithms"
because they implement common operations; and "generic" because they operate across
multiple container typesnot only library types such as vector or list , but also the built-in array
type, and, as we shall see, over other kinds of sequences as well. The algorithms also can be
used on container types we might define ourselves, as long as our types conform to the
standard library conventions.

Most of the algorithms operate by traversing a range of elements bounded by two iterators.
Typically, as the algorithm traverses the elements in the range, it operates on each element.
The algorithms obtain access to the elements through the iterators that denote the range of
elements to traverse.

 



 

11.1. Overview

Suppose we have a vector of int s, named vec , and we want to know if it holds a particular
value. The easiest way to answer this question is to use the library find operation:

     // value we'll look for
     int search_value = 42;

     // call find to see if that value is present
     vector<int>::const_iterator result =
             find(vec.begin(), vec.end(), search_value);

     // report the result
     cout << "The value " << search_value
          << (result == vec.end()
                ? " is not present" : " is present")
          << endl;

The call to find takes two iterators and a value. It tests each element in the range (Section
9.2.1 , p. 314 ) denoted by its iterator arguments. As soon as it sees an element that is equal to
the given value, find returns an iterator referring to that element. If there is no match, then
find returns its second iterator to indicate failure. We can test whether the return is equal to the
second argument to determine whether the element was found. We do this test in the output
statement, which uses the conditional operator (Section 5.7 , p. 165 ) to report whether the
value was found.

Because find operates in terms of iterators, we can use the same find function to look for
values in any container. For example, we can use find to look for a value in a list of int
named lst :

     // call find to look through elements in a list
     list<int>::const_iterator result =
              find(lst.begin(), lst.end(), search_value);
     cout << "The value " << search_value
           << (result == lst.end()
                 ? " is not present" : " is present")
           << endl;

Except for the type of result and the iterators passed to find , this code is identical to the
program that used find to look at elements of a vector .

Similarly, because pointers act like iterators on built-in arrays, we can use find to look in an
array:

     int ia[6] = {27, 210, 12, 47, 109, 83};
     int search_value = 83;



     int *result = find(ia, ia + 6, search_value);

     cout << "The value " << search_value
          << (result == ia + 6
                ? " is not present" : " is present")
          << endl;

Here we pass a pointer to the first element in ia and another pointer that is six elements past
the start of ia (that is, one past the last element of ia ). If the pointer returned is equal to ia +
6 then the search is unsuccessful; otherwise, the pointer points to the value that was found.

If we wish to pass a subrange, we pass iterators (or pointers) to the first and one past the last
element of that subrange. For example, in this invocation of find , only the elements ia [1] and
ia [2] are searched:

    // only search elements ia[1] and ia[2]
    int *result = find(ia + 1, ia + 3, search_value);

How the Algorithms Work

Each generic algorithm is implemented independently of the individual container types. The
algorithms are also largely, but not completely, independent of the types of the elements that
the container holds. To see how the algorithms work, let's look a bit more closely at find . Its
job is to find a particular element in an unsorted collection of elements. Conceptually the steps
that find must take include:

1. Examine each element in turn.

2. If the element is equal to the value we want, then return an iterator that refers to that
element.

3. Otherwise, examine the next element, repeating step 2 until either the value is found or all
the elements have been examined.

4. If we have reached the end of the collection and we have not found the value, return a
value that indicates that the value was not found.

The Standard Algorithms Are Inherently Type-Independent

The algorithm, as we've stated it, is independent of the type of the container: Nothing in our
description depends on the container type. Implicitly, the algorithm does have one dependency
on the element type: We must be able to compare elements. More specifically, the requirements
of the algorithm are:

We need a way to traverse the collection: We need to be able to advance from one
element to the next.

1.

We need to be able to know when we have reached the end of the collection.2.

3.

4.



2.

We need to be able to compare each element to the value we want.3.

We need a type that can refer to an element's position within the container or that can
indicate that the element was not found.

4.

Iterators Bind Algorithms to Containers

The generic algorithms handle the first requirement, container traversal, by using iterators. All
iterators support the increment operator to navigate from one element to the next, and the
dereference operator to access the element value. With one exception that we'll cover in Section
11.3.5 (p. 416 ), the iterators also support the equality and inequality operators to determine
whether two iterators are equal.

For the most part, the algorithms each take (at least) two iterators that denote the range of
elements on which the algorithm is to operate. The first iterator refers to the first element, and
the second iterator marks one past the last element. The element addressed by the second
iterator, sometimes referred to as the off-the-end iterator , is not itself examined; it serves as
a sentinel to terminate the traversal.

The off-the-end iterator also handles requirement 4 by providing a convenient return value that
indicates that the search element wasn't found. If the value isn't found, then the off-the-end
iterator is returned; otherwise, the iterator that refers to the matching element is returned.

Requirement 3, value comparison, is handled in one of two ways. By default, the find operation
requires that the element type define operator == . The algorithm uses that operator to compare
elements. If our type does not support the == operator, or if we wish to compare elements using
a different test, we can use a second version of find . That version takes an extra argument
that is the name of a function to use to compare the elements.

The algorithms achieve type independence by never using container operations; rather, all
access to and traversal of the elements is done through the iterators. The actual container type
(or even whether the elements are stored in a container) is unknown.

The library provides more than 100 algorithms. Like the containers, the algorithms have a
consistent architecture. Understanding the design of the algorithms makes learning and using
them easier than memorizing all 100+ algorithms. In this chapter we'll both illustrate the use of
the algorithms and describe the unifying principles used by the library algorithms. Appendix A
lists all the algorithms classified by how they operate.

Exercises Section 11.1

Exercise
11.1:

The algorithm header defines a function named count that is
similar to find . It takes a pair of iterators and a value and
returns a count of how often that value appears. Read a
sequence of int s into a vector . Count how many elements
have a given value.

Exercise
11.2:

Repeat the previous program, but read values into a list of
string s.



Key Concept: Algorithms Never Execute Container

Operations

The generic algorithms do not themselves execute container operations.
They operate solely in terms of iterators and iterator operations. The fact
that the algorithms operate in terms of iterators and not container
operations has a perhaps surprising but essential implication: When used
on "ordinary" iterators, algorithms never change the size of the underlying
container. As we'll see, algorithms may change the values of the elements
stored in the container, and they may move elements around within the
container. They do not, however, ever add or remove elements directly.

As we'll see in Section 11.3.1 (p. 406 ), there is a special class of iterator,
the inserters, that do more than traverse the sequence to which they are
bound. When we assign to these iterators, they execute insert operations
on the underlying container. When an algorithm operates on one of these
iterators, the iterator may have the effect of adding elements to the
container. The algorithm itself, however, never does so.

 



 

11.2. A First Look at the Algorithms

Before covering the structure of the algorithms library, let's look at a couple of examples. We've
already seen the use of find ; in this section we'll use a few additional algorithms. To use a
generic algorithm, we must include the algorithm header:

    #include <algorithm>

The library also defines a set of generalized numeric algorithms, using the same conventions as
the generic algorithms. To use these algorithms we include the numeric header:

    #include <numeric>

With only a handful of exceptions, all the algorithms operate over a range of elements. We'll
refer to this range as the "input range." The algorithms that take an input range always use
their first two parameters to denote that range. These parameters are iterators used to denote
the first and one past the last element that we want to process.

Although most algorithms are similar in that they operate over an input range, they differ in
how they use the elements in that range. The most basic way to understand the algorithms is to
know whether they read elements, write elements, or rearrange the order of the elements. We'll
look at samples of each kind of algorithm in the remainder of this section.

11.2.1. Read-Only Algorithms

A number of the algorithms read, but never write to, the elements in their input range. find is
one such algorithm. Another simple, read-only algorithm is accumulate , which is defined in the
numeric header. Assuming vec is a vector of int values, the following code

     // sum the elements in vec starting the summation with the value 42
     int sum = accumulate(vec.begin(), vec.end(), 42);

sets sum equal to the sum of the elements in vec plus 42. accumulate takes three parameters.
The first two specify a range of elements to sum. The third is an initial value for the sum. The
accumulate function sets an internal variable to the initial value. It then adds the value of each
element in the range to that initial value. The algorithm returns the result of the summation.
The return type of accumulate is the type of its third argument.



The third argument, which specifies the starting value, is necessary
because accumulate knows nothing about the element types that it
is accumulating. Therefore, it has no way to invent an appropriate
starting value or associated type.

There are two implications of the fact that accumulate doesn't know about the types over which
it sums. First, we must pass an initial starting value because otherwise accumulate cannot know
what starting value to use. Second, the type of the elements in the container must match or be
convertible to the type of the third argument. Inside accumulate , the third argument is used as
the starting point for the summation; the elements in the container are successively added into
this sum. It must be possible to add the element type to the type of the sum.

As an example, we could use accumulate to concatenate the elements of a vector of string s:

     // concatenate elements from v and store in sum
     string sum = accumulate(v.begin(), v.end(), string(""));

The effect of this call is to concatenate each element in vec onto a string that starts out as the
empty string. Note that we explicitly create a string as the third parameter. Passing a
character-string literal would be a compile-time error. If we passed a string literal, the
summation type would be const char* but the string addition operator (Section 3.2.3 , p. 86 )
for operands of type string and const char* yields a string not a const char* .

Using find_first_of

In addition to find , the library defines several other, more complicated searching algorithms.
Several of these are similar to the find operations of the string class (Section 9.6.4 , p. 343 ).
One such is find_first_of . This algorithm takes two pairs of iterators that denote two ranges
of elements. It looks in the first range for a match to any element from the second range and
returns an iterator denoting the first element that matches. If no match is found, it returns the
end iterator of the first range. Assuming that roster1 and roster2 are two list s of names, we
could use find_first_of to count how many names are in both lists:

     // program for illustration purposes only:
     // there are much faster ways to solve this problem
     size_t cnt = 0;
     list<string>::iterator it = roster1.begin();

     // look in roster1 for any name also in roster2
     while   ((it = find_first_of(it, roster1.end(),
                  roster2.begin(), roster2.end()))
                     != roster1.end()) {
        ++cnt;

        // we got a match, increment it to look in the rest of roster1
        ++it;
     }
     cout << "Found " << cnt
          << " names on both rosters" << endl;



The call to find_first_of looks for any element in roster2 that matches an element from the
first rangethat is, it looks for an element in the range from it to roster1.end() . The function
returns the first element in that range that is also in the second range. On the first trip through
the while , we look in the entire range of roster1 . On second and subsequent trips, we look in
that part of roster1 that has not already been matched.

In the condition, we check the return from find_first_of to see whether we found a matching
name. If we got a match, we increment our counter. We also increment it so that it refers to
the next element in roster1 . We know we're done when find_first_of returns roster1.end() ,
which it does if there is no match.

Key Concept: Iterator Argument Types

In general, the generic algorithms operate on iterator pairs that denote a
range of elements in a container (or other sequence). The types of the
arguments that denote the range must match exactly, and the iterators
themselves must denote a range: They must refer to elements in the same
container (or to the element just past the end of that container), and if they
are unequal, then it must be possible to reach the second iterator by
repeatedly incrementing the first iterator.

Some algorithms, such as find_first_of , take two pairs of iterators. The

iterator types in each pair must match exactly, but there is no requirement
that the type of the two pairs match each other. In particular, the elements
can be stored in different kinds of sequences. What is required is that we
be able to compare elements from the two sequences.

In our program, the types of roster1 and roster2 need not match exactly:
roster1 could be a list while roster2 was a vector , deque , or other sequence

that we'll learn about later in this chapter. What is required is that we be
able to compare the elements from these two sequences using the ==
operator. If roster1 is a list<string> , then roster2 could be a vector<char*>
because the string library defines == on a string and a char* .

Exercises Section 11.2.1

Exercise
11.3:

Use accumulate to sum the elements in a vector<int> .

Exercise
11.4:

Assuming v is a vector<double> what, if anything, is wrong
with calling accumulate<v.begin(), v.end(), 0) ?

Exercise
11.5:

What would happen if the program that called find_first_of
did not increment it ?



11.2.2. Algorithms that Write Container Elements

Some algorithms write element values. When using algorithms that write elements, we must
take care to ensure that the sequence into which the algorithm writes is at least as large as the
number of elements being written.

Some algorithms write directly into the input sequence. Others take an additional iterator that
denotes a destination. Such algorithms use the destination iterator as a place in which to write
output. Still a third kind writes a specified number of elements to some sequence.

Writing to the Elements of the Input Sequence

The algorithms that write to their input sequence are inherently safethey write only as many
elements as are in the specified input range.

A simple example of an algorithm that writes to its input sequence is fill :

     fill(vec.begin(), vec.end(), 0); // reset each element to 0
     // set subsequence of the range to 10
     fill(vec.begin(), vec.begin() + vec.size()/2, 10);

fill takes a pair of iterators that denote a range in which to write copies of its third parameter.
It executes by setting each element in the range to the given value. Assuming that the input
range is valid, then the writes are safe. The algorithm writes only to elements known to exist in
the input range itself.

Algorithms Do Not Check Write Operations

The fill_n function takes an iterator, a count, and a value. It writes the specified number of
elements with the given value starting at the element referred to by the iterator. The fill_n
function assumes that it is safe to write the specified number of elements. It is a fairly common
beginner mistake to call fill_n (or similar algorithms that write to elements) on a container that
has no elements:

     vector<int> vec; // empty vector

     // disaster: attempts to write to 10 (nonexistent) elements in vec
     fill_n(vec.begin(), 10, 0);

This call to fill_n is a disaster. We specified that ten elements should be written, but there are
no such elements vec is empty. The result is undefined and will probably result in a serious run-
time failure.



Algorithms that write a specified number of elements or that write
to a destination iterator do not check whether the destination is
large enough to hold the number of elements being written.

Introducing back_inserter

One way to ensure that an algorithm has enough elements to hold the output is to use an
insert iterator . An insert iterator is an iterator that adds elements to the underlying container.
Ordinarily, when we assign to a container element through an iterator, we assign to the element
to which the iterator refers. When we assign through an insert iterator, a new element equal to
the right-hand value is added to the container.

We'll have more to say about insert iterators in Section 11.3.1 (p. 406 ). However, in order to
illustrate how to safely use algorithms that write to a container, we will use back_inserter .

Programs that use back_inserter must include the iterator header.

The back_inserter function is an iterator adaptor. Like the container adaptors (Section 9.7 , p.
348 ), an iterator adaptor takes an object and generates a new object that adapts the behavior
of its argument. In this case, the argument to back_inserter is a reference to a container.
back_inserter generates an insert iterator bound to that container. When we attempt to assign
to an element through that iterator, the assignment calls push_back to add an element with the
given value to the container. We can use back_inserter to generate an iterator to use as the
destination in fill_n:

     vector<int> vec; // empty vector

     // ok: back_inserter creates an insert iterator that adds elements to vec

     fill_n (back_inserter(vec), 10, 0); // appends 10 elements to vec

Now, each time fill_n writes a value, it will do so through the insert iterator generated by
back_inserter . The effect will be to call push_back on vec , adding ten elements to the end of
vec , each of which has the value 0.

Algorithms that Write to a Destination Iterator

A third kind of algorithm writes an unknown number of elements to a destination iterator. As
with fill_n , the destination iterator refers to the first element of a sequence that will hold the
output. The simplest such algorithm is copy . This algorithm takes three iterators: The first two
denote an input range and the third refers to an element in the destination sequence. It is
essential that the destination passed to copy be at least as large as the input range. Assuming
ilst is a list holding int s, we might copy it into a vector :

     vector<int> ivec; // empty vector

     // copy elements from ilst into ivec
     copy (ilst.begin(), ilst.end(), back_inserter(ivec));



copy reads elements from the input range, copying them to the destination.

Of course, this example is a bit inefficient: Ordinarily if we want to create a new container as a
copy of an existing container, it is better to use an input range directly as the initializer for a
newly constructed container:

     // better way to copy elements from ilst
     vector<int> ivec(ilst.begin(), ilst.end());

Algorithm _copy Versions

Several algorithms provide so-called "copying" versions. These algorithms do some processing
on the elements of their input sequence but do not change the original elements. Instead, a new
sequence is written that contains the result of processing the elements of the original.

The replace algorithm is a good example. This algorithm reads and writes to an input sequence,
replacing a given value by a new value. The algorithm takes four parameters: a pair of iterators
denoting the input range and a pair of values. It substitutes the second value for each element
that is equal the first:

     // replace any element with value of 0 by 42
     replace(ilst.begin(), ilst.end(), 0, 42);

This call replaces all instances of 0 by the 42. If we wanted to leave the original sequence
unchanged, we would call replace_copy . That algorithm takes a third iterator argument
denoting a destination in which to write the adjusted sequence:

     // create empty vector to hold the replacement
     vector<int> ivec;

     // use back_inserter to grow destination as needed
     replace_copy (ilst.begin(), ilst.end(),
                  back_inserter(ivec), 0, 42);

After this call, ilst is unchanged, and ivec contains a copy of ilst with the exception that every
element in ilst with the value 0 has the value 42 in ivec .

11.2.3. Algorithms that Reorder Container Elements

Suppose we want to analyze the words used in a set of children's stories. For example, we
might want know how many words contain six or more characters. We want to count each word
only once, regardless of how many times it appears or whether it appears in multiple stories.
We'd like to be able to print the words in size order, and we want the words to be in alphabetic
order within a given size.



We'll assume that we have read our input and stored the text of each book in a vector of string
s named words . How might we solve the part of the problem that involves counting word
occurrences? To solve this problem, we'd need to:

Eliminate duplicate copies of each word1.

Order the words based on size2.

Count the words whose size is 6 or greater3.

Exercises Section 11.2.2

Exercise
11.6:

Using fill_n , write a program to set a sequence of int values
to 0.

Exercise
11.7:

Determine if there are any errors in the following programs
and, if so, correct the error(s):

     (a) vector<int> vec; list<int> lst; int i;
         while (cin >> i)
             lst.push_back(i);
         copy(lst.begin(), lst.end(), vec.begin());

     (b) vector<int> vec;
         vec.reserve(10);
         fill_n(vec.begin(), 10, 0);

Exercise
11.8:

We said that algorithms do not change the size of the
containers over which they operate. Why doesn't the use of
back_inserter invalidate this claim?

We can use generic algorithms in each of these steps.

For purposes of illustration, we'll use the following simple story as our input:

     the quick red fox jumps over the slow red turtle

Given this input, our program should produce the following output:

     1 word 6 characters or longer



Eliminating Duplicates

Assuming our input is in a vector named words , our first subproblem is to eliminate duplicates
from the words :

     // sort words alphabetically so we can find the duplicates
     sort(words.begin(), words.end());
     /* eliminate duplicate words:

      * unique reorders words so that each word appears once in the

      *    front portion of words and returns an iterator one past the unique range;

      * erase uses a vector operation to remove the nonunique elements
      */
     vector<string>::iterator end_unique =
                    unique(words.begin(), words.end());
     words.erase(end_unique, words.end());

Our input vector contains a copy of every word used in each story. We start by sorting this
vector . The sort algorithm takes two iterators that denote the range of elements to sort. It
uses the < operator to compare the elements. In this call we ask that the entire vector be
sorted.

After the call to sort , our vector elements are ordered:

     fox jumps over quick red red slow the the turtle

Note that the words red and the are duplicated.

Using unique

Once words is sorted, our problem is to keep only one copy of each word that is used in our
stories. The unique algorithm is well suited to this problem. It takes two iterators that denote a
range of elements. It rearranges the elements in the input range so that adjacent duplicated
entries are eliminated and returns an iterator that denotes the end of the range of the unique
values.

After the call to unique , the vector holds

words

Note that the size of words is unchanged. It still has ten elements; only the order of these
elements has changed. The call to unique "removes" adjacent duplicates. We put remove in
quotes because unique doesn't remove any elements. Instead, it overwrites adjacent duplicates
so that the unique elements are copied into the front of the sequence. The iterator returned by



unique denotes one past the end of the range of unique elements.

Using Container Operations to Remove Elements

If we want to eliminate the duplicate items, we must use a container operation, which we do in
the call to erase . This call erases the elements starting with the one to which end_unique refers
through the end of words . After this call, words contains the eight unique words from the input.

Algorithms never directly change the size of a container. If we want
to add or remove elements, we must use a container operation.

It is worth noting that this call to erase would be safe even if there were no duplicated words in
our vector . If there were no duplicates, then unique would return words.end() . Both arguments
in the call to erase would have the same value, words.end() . The fact that the iterators are
equal would mean that the range to erase would be empty. Erasing an empty range has no
effect, so our program is correct even if the input has no duplicates.

Defining Needed Utility Functions

Our next subproblem is to count how many words are of length six or greater. To solve this
problem, we'll use two additional generic algorithms: stable_sort and count_if . To use each of
these algorithms we'll need a companion utility function, known as a predicates . A predicate is
a function that performs some test and returns a type that can be used in a condition to indicate
success or failure.

The first predicate we need will be used to sort the elements based on size. To do this sort, we
need to define a predicate function that compares two string s and returns a bool indicating
whether the first is shorter in length than the second:

     // comparison function to be used to sort by word length
     bool isShorter(const string &s1, const string &s2)
     {
         return s1.size() < s2.size();
     }

The other function we need will determine whether a given string is of length six or greater:

     // determine whether a length of a given word is 6 or more
     bool GT6(const string &s)
     {
          return s.size() >= 6;
     }



Although this function solves our problem, it is unnecessarily limitedthe function hardwires the
size into the function itself. If we wanted to find out how many words were of another length,
we'd have to write another function. We could easily write a more general comparison function
that took two parameters, the string and the size. However, the function we pass to count_if
takes a single argument, so we cannot use the more general approach in this program. We'll see
a better way to write this part of our solution in Section 14.8.1 (p. 531 ).

Sorting Algorithms

The library defines four different sort algorithms, of which we've used the simplest, sort , tosort
words into alphabetical order. In addition to sort , the library also defines a stable_sort
algorithm. A stable_sort maintains the original order among equal elements. Ordinarily, we
don't care about the relative order of equal elements in a sorted sequence. After all, they're
equal. However, in this case, we have defined "equal" to mean "the same length." Elements that
have the same length can still be distinct when viewed alphabetically. By calling stable_sort ,
we maintain alphabetic order among those elements that have the same length.

Both sort and stable_sort are overloaded functions. One version uses the < operator for the
element type to do the comparison. We used this version of sort to sort words before looking for
duplicate elements. The second version takes a third parameter: the name of a predicate to use
when comparing elements. That function must take two arguments of the same type as the
element type and return a value that can be tested in a condition. We will use this second
version, passing our isShorter function to compare elements:

     // sort words by size, but maintain alphabetic order for words of the same size
     stable_sort(words.begin(), words.end(), isShorter);

After this call, words is sorted by element size, but the words of each length are also still in
alphabetical order:

Counting Words of Length Six or More

Now that we've reordered our vector by word size, our remaining problem is to count how many
words are of length six or greater. The count_if algorithm handles this problem:

     vector<string>::size_type wc =
                  count_if(words.begin(), words.end(), GT6);

count_if executes by reading the range denoted by its first two parameters. It passes each
value that it reads to the predicate function represented by its third argument. That function
must take a single argument of the element type and must return a value that can be tested as
a condition. The algorithm returns a count of the number of elements for which the function
succeeded. In this case, count_if passes each word to GT6 , which returns the bool value true if
the word's length is six or more.



Putting It All Together

Having looked at the program in detail, here is the program as a whole:

     // comparison function to be used to sort by word length
     bool isShorter(const string &s1, const string &s2)
     {
         return s1.size() < s2.size();
     }
     // determine whether a length of a given word is 6 or more
     bool GT6(const string &s)
     {
         return s.size() >= 6;
     }
     int main()
     {
         vector<string> words;

         // copy contents of each book into a single vector
         string next_word;
         while (cin >> next_word) {

             // insert next book's contents at end of words
             words.push_back(next_word);
         }

         // sort words alphabetically so we can find the duplicates
         sort (words.begin(), words.end());
         /* eliminate duplicate words:

          * unique reorders words so that each word appears once in the

          *       front portion of words and returns an iterator one past the unique range;

          * erase uses a vector operation to remove the nonunique elements
          */
         vector<string>::iterator end_unique =
                     unique(words.begin(), words.end());
         words.erase(end_unique, words.end());

          // sort words by size, but maintain alphabetic order for words of the same size
          stable_sort(words.begin(), words.end(), isShorter);
          vector<string>::size_type wc =
                          count_if (words.begin(), words.end(), GT6);
          cout << wc << " " << make_plural(wc, "word", "s")
               << " 6 characters or longer" << endl;
          return 0;
     }

We leave as an exercise the problem of printing the words in size order.



Exercises Section 11.2.3

Exercise
11.9:

Implement the program to count words of size 4 or greater,
including printing the list of unique words in the input. Test
your program by running it on the program's source file.

Exercise
11.10:

The library defines a find_if function. Like find , the find_if
function takes a pair of iterators that indicates a range over
which to operate. Like count_if , it also takes a third
parameter that names a predicate that can be used to test
each element in the range. find_if returns an iterator that
refers to the first element for which the function returns a
nonzero value. It returns its second iterator argument if there
is no such element. Use the find_if function to rewrite the
portion of our program that counted how many words are
greater than length six.

Exercise
11.11:

Why do you think the algorithms don't change the size of
containers?

Exercise
11.12:

Why was it be necessary to use erase rather than define a
generic algorithm that could remove elements from the
container?

 



 

11.3. Revisiting Iterators

In Section 11.2.2 (p. 398 ) we saw that the library defines iterators that are independent of a
particular container. In fact, there are three additional kinds of iterators:

insert iterators: These iterators are bound to a container and can be used to insert
elements to the container.

iostream iterators: These iterators can be bound to input or output streams and used to

iterate through the associated IO stream.

reverse iterators: These iterators move backward, rather than forward. Each container
type defines its own reverse_iterator types, which are retuned by the rbegin and rend
functions.

These iterator types are defined in the iterator header.

This section will look at each of these kinds of iterators and show how they can be used with the
generic algorithms. We'll also take a look at how and when to use the container const_iterators
.

11.3.1. Insert Iterators

In Section 11.2.2 (p. 398 ) we saw that we can use back_inserter to create an iterator that
adds elements to a container. The back_inserter function is an example of an inserter . An
inserter is an iterator adaptor (Section 9.7 , p. 348 ) that takes a container and yields an
iterator that inserts elements into the specified container. When we assign through an insert
iterator, the iterator inserts a new element. There are three kinds of inserters, which differ as to
where elements are inserted:

back_inserter , which creates an iterator that uses push_back .

front_inserter , which uses push_front .

inserter , which uses insert . In addition to a container, inserter takes a second
argument: an iterator indicating the position ahead of which insertion should begin.

front_inserter Requires push_front

front_inserter operates similarly to back_inserter: It creates an iterator that treats

assignment as a call to push_front on its underlying container.

We can use front_inserter only if the container has a push_front
operation. Using front_inserter on a vector , or other container
that does not have push_front , is an error.



inserter Yields an Iterator that Inserts at a Given Place

The inserter adaptor provides a more general form. This adaptor takes both a container and an
iterator denoting a position at which to do the insertion:

     // position an iterator into ilst
     list<int>::iterator it =
                      find (ilst.begin(), ilst.end(), 42);
     // insert replaced copies of ivec at that point in ilst
     replace_copy (ivec.begin(), ivec.end(),
                   inserter (ilst, it), 100, 0);

We start by using find to locate an element in ilst . The call to replace_copy uses an inserter
that will insert elements into ilst just before of the element denoted by the iterator returned
from find . The effect of the call to replace_copy is to copy the elements from ivec , replacing
each value of 100 by 0 . The elements are inserted just ahead of the element denoted by it .

When we create an inserter , we say where to insert new elements. Elements are always
inserted in front of the position denoted by the iterator argument to inserter .

We might think that we could simulate the effect of front_inserter by using inserter and the
begin iterator for the container. However, an inserter behaves quite differently from
front_inserter . When we use front_inserter , the elements are always inserted ahead of the
then first element in the container. When we use inserter , elements are inserted ahead of a
specific position. Even if that position initially is the first element, as soon as we insert an
element in front of that element, it is no longer the one at the beginning of the container:

     list<int> ilst, ilst2, ilst3;     // empty lists

     // after this loop ilst contains: 1 2 3 4
     for (list<int>::size_type i = 0; i != 4; ++i)
          ilst.push_front(i);
     // after copy ilst2 contains: 4 3 2 1
     copy (ilst.begin(), ilst.end(), front_inserter(ilst2));

     // after copy, ilst3 contains: 1 2 3 4
     copy (ilst.begin(), ilst.end(),
                  inserter (ilst3, ilst3.begin()));

When we copy into ilst2 , elements are always inserted ahead of any other element in the list
. When we copy into ilst3 , elements are inserted at a fixed point. That point started out as the
head of the list , but as soon as even one element is added, it is no longer the first element.



Recalling the discussion in Section 9.3.3 (p. 318 ), it is important to
understand that using front_inserter results in the elements
appearing in the destination in reverse order.

Exercises Section 11.3.1

Exercise
11.13:

Explain the differences among the three insert iterators.

Exercise
11.14:

Write a program that uses replace_copy to copy a sequence
from one container to another, replacing elements with a
given value in the first sequence by the specified new value.
Write the program to use an inserter , a back_inserter and a
front_inserter . Discuss how the output sequence varies in
each case.

Exercise
11.15:

The algorithms library defines a function named unique_copy
that operates like unique , except that it takes a third iterator
denoting a sequence into which to copy the unique elements.
Write a program that uses unique_copy to copy the unique
elements from a list into an initially empty vector .

11.3.2. iostream Iterators

Even though the iostream types are not containers, there are iterators that can be used with
iostream objects: An istream_iterator reads an input stream, and an ostream_iterator writes

an output stream. These iterators treat their corresponding stream as a sequence of elements of
a specified type. Using a stream iterator , we can use the generic algorithms to read (or write)
data to (or from) stream objects.

The stream iterators define only the most basic of the iterator operations: increment,
dereference, and assignment. In addition, we can compare two istream iterators for equality (or
inequality). There is no comparison for ostream iterators.

Defining Stream Iterators

The stream iterators are class templates: An istream_iterator can be defined for any type for
which the input operator (the >> operator) is defined. Similarly, an ostream_iterator can be
defined for any type that has an output operator (the << operator).



Table 11.1. iostream Iterator Constructors

istream_iterator<T> in(strm); Create istream_iterator that reads objects
of type T from input stream strm .

istream_iterator<T> in; Off-the-end iterator for istream_iterator .

ostream_iterator<T> in(strm); Create ostream_iterator that writes objects
of type T to the output stream strm .

ostream_iterator<T> in(strm, delim);

  Create ostream_iterator that writes objects
of type T to the output stream strm using
delim as a separator between elements.
delim is a null-terminated character array.

When we create a stream iterator, we must specify the type of objects that the iterator will read
or write:

     istream_iterator<int> cin_it(cin);    // reads ints1 from cin
     istream_iterator<int> end_of_stream;  // end iterator value

     // writes Sales_items from the ofstream named outfile
     // each element is followed by a space
     of stream outfile;
     ostream_iterator<Sales_item> output(outfile, " ");

We must bind an ostream_iterator to a specific stream. When we create an istream_iterator ,
we can bind it to a stream. Alternatively, we can supply no argument, which creates an iterator
that we can use as the off-the-end value. There is no off-the-end iterator for ostream_iterator .

When we create an ostream_iterator , we may (optionally) provide a second argument that
specifies a delimiter to use when writing elements to the output stream. The delimiter must be a
C-style character string. Because it is a C-style string, it must be null-terminated; otherwise, the
behavior is undefined.

Operations on istream_iterators

Constructing an istream_iterator bound to a stream positions the iterator so that the first
dereference reads the first value from the stream.

Table 11.2. istream_iterator Operations



it1 == it2
it1 != it2

Equality (inequality) between two istream_iterators .
The iterators must read the same type. Two iterators are
equal if they are both the end value. Two non-end-of-
stream iterators are equal if they are constructed using
the same input stream.

*it Returns the value read from the stream.

it->mem Synonym for (*it).mem . Returns member, mem , of the
object read from the stream.

++it it++ Advances the iterator by reading the next value from the
input stream using the » operator for the element type.
As usual, the prefix version advances the stream and
returns a reference to the incremented iterator. The
postfix version advances the stream but returns the old
value.

As an example, we could use an istream_iterator to read the standard input into a vector :

     istream_iterator<int> in_iter(cin); // read ints from cin
     istream_iterator<int> eof; // istream "end" iterator
     // read until end of file, storing what was read in vec
     while (in_iter != eof)
             // increment advances the stream to the next value

             // dereference reads next value from the istream
             vec.push_back(*in_iter++);

This loop reads int s from cin , and stores what was read in vec . On each trip the loop checks
whether in_iter is the same as eof . That iterator was defined as the empty istream_iterator ,
which is used as the end iterator. An iterator bound to a stream is equal to the end iterator once
its associated stream hits end-of-file or encounters another error.

The hardest part of this program is the argument to push_back , which uses the dereference and
postfix increment operators. Precedence rules (Section 5.5 , p. 163 ) say that the result of the
increment is the operand to the dereference. Incrementing an istream_iterator advances the
stream. However, the expression uses the postfix increment, which yields the old value of the
iterator. The effect of the increment is to read the next value from the stream but return an
iterator that refers to the previous value read. We dereference that iterator to obtain that value.

What is more interesting is that we could rewrite this program as:

     istream_iterator<int> in_iter(cin); // read ints from cin

     istream_iterator<int> eof;      // istream "end" iterator

     vector<int> vec(in_iter, eof);  // construct vec from an iterator range

Here we construct vec from a pair of iterators that denote a range of elements. Those iterators
are istream_iterators , which means that the range is obtained by reading the associated
stream. The effect of this constructor is to read cin until it hits end-of-file or encounters an
input that is not an int . The elements that are read are used to construct vec .



Using ostream_iterators and ostream_iterators

We can use an ostream_iterator to write a sequence of values to a stream in much the same
way that we might use an iterator to assign a sequence of values to the elements of a
container:

     // write one string per line to the standard output
     ostream_iterator<string> out_iter(cout, "\n");
     // read strings from standard input and the end iterator
     istream_iterator<string> in_iter(cin), eof;
     // read until eof and write what was read to the standard output
     while (in_iter != eof)

         // write value of in_iter to standard output

         // and then increment the iterator to get the next value from cin
        *out_iter++ = *in_iter++;

This program reads cin , writing each word it reads on separate line on cout .

We start by defining an ostream_iterator to write string s to cout , following each string by a
newline. We define two istream_iterators that we'll use to read string s from cin . The while
loop works similarly to our previous example. This time, instead of storing the values we read
into a vector , we print them to cout by assigning the values we read to out_iter .

The assignment works similarly to the one in the program on page 205 that copied one array
into another. We dereference both iterators, assigning the right-hand value into the left,
incrementing each iterator. The effect is to write what was read to cout and then increment
each iterator, reading the next value from cin .

Using istream_iterators with Class Types

We can create an istream_iterator for any type for which an input operator (>> ) exists. For
example, we might use an istream_iterator to read a sequence of Sales_item objects to sum:

     istream_iterator<Sales_item> item_iter(cin), eof;

     Sales_item sum; // initially empty Sales_item
     sum = *item_iter++; // read first transaction into sum and get next record
     while (item_iter != eof) {
        if (item_iter->same_isbn(sum))
            sum = sum + *item_iter;
        else {
            cout << sum << endl;
            sum = *item_iter;
        }
        ++item_iter; // read next transaction
     }
     cout << sum << endl; // remember to print last set of records

This program binds item_iter to cin and says that the iterator will read objects of type
Sales_item . The program next reads the first record into sum :



     sum = *item_iter++; // read first transaction into sum and get next record

This statement uses the dereference operator to fetch the first record from the standard input
and assigns that value to sum . It increments the iterator, causing the stream to read the next
record from the standard input.

The while loop executes until we hit end-of-file on cin . Inside the while , we compare the isbn
of the record we just read with sum 's isbn . The first statement in the while uses the arrow
operator to dereference the istream iterator and obtain the most recently read object. We then
run the same_isbn member on that object and the object in sum .

If the isbn s are the same, we increment the totals in sum . Otherwise, we print the current
value of sum and reset it as a copy of the most recently read transaction. The last step in the
loop is to increment the iterator, which in this case causes the next transaction to be read from
the standard input. The loop continues until an error or end-of-file is encountered. Before exiting
we remember to print the values associated with the last ISBN in the input.

Limitations on Stream Iterators

The stream iterators have several important limitations:

It is not possible to read from an ostream_iterator , and it is not possible to write to an
istream_iterator .

Once we assign a value to an ostream_iterator , the write is committed. There is no way
to subsequently change a value once it is assigned. Moreover, each distinct value of an
ostream_iterator is expected to be used for output exactly once.

There is no -> operator for ostream_iterator .

Using Stream Iterators with the Algorithms

As we know, the algorithms operate in terms of iterator operations. And as we've seen, stream
iterators define at least some of the iterator operations. Because the stream iterators support
iterator operations, we can use them with at least some of the generic algorithms. As an
example, we could read numbers from the standard input and write the unique numbers we
read on the standard output:

     istream_iterator<int> cin_it(cin);    // reads ints from cin
     istream_iterator<int> end_of_stream;  // end iterator value

     // initialize vec from the standard input:
     vector<int> vec(cin_it, end_of_stream);
     sort(vec.begin(), vec.end());

     // writes ints to cout using " " as the delimiter
     ostream_iterator<int> output(cout, " ");

     // write only the unique elements in vec to the standard output
     unique_copy(vec.begin(), vec.end(), output);



If the input to this program is

     23 109 45 89 6 34 12 90 34 23 56 23 8 89 23

then the output would be

     6 8 12 23 34 45 56 89 90 109

The program creates vec from the iterator pair, input and end_of_stream . The effect of this
initializer is to read cin until end-of-file or an error occurs. The values read are stored in vec .

Once the input is read and vec initialized, we call sort to sort the input. Duplicated items from
the input will be adjacent after the call to sort .

The program uses unique_copy , which is a copying version of unique . It copies the unique
values in its input range to the destination iterator. This call uses our output iterator as the
destination. The effect is to copy the unique values from vec to cout , following each value by a
space.

Exercises Section 11.3.2

Exercise
11.16:

Rewrite the program on 410 to use the copy algorithm to write
the contents of a file to the standard output.

Exercise
11.17:

Use a pair of istream_iterators to initialize a vector of int s.

Exercise
11.18:

Write a program to read a sequence of integer numbers from
the standard input using an istream_iterator . Write the odd
numbers into one file, using an ostream_iterator . Each value
should be followed by a space. Write the even numbers into a
second file, also using an ostream_iterator . Each of these
values should be placed on a separate line.

11.3.3. Reverse Iterators

A reverse iterator is an iterator that traverses a container backward. That is, it traverses from
the last element toward the first. A reverse iterator inverts the meaning of increment (and
decrement): ++ on a reverse iterator accesses the previous element; -- accesses the next
element.

Recall that each container defines begin and end members. These members return respectively
an iterator to the first element of the container and an iterator one past the last element of the
container. The containers also define rbegin and rend , which return reverse iterators to the last



element in the container and one "past" (that is, one before) the beginning of the container. As
with ordinary iterators, there are both const and nonconst reverse iterators. Figure 11.1 on the
facing page illustrates the relationship between these four iterators on a hypothetical vector
named vec .

Figure 11.1. Comparing begin /end and rbegin /rend Iterators

Given a vector that contains the numbers from 0 to 9 in ascending order

     vector<int> vec;
     for (vector<int>::size_type i = 0; i != 10; ++i)

         vec.push_back(i); // elements are 0,1,2,...9

the following for loop prints the elements in reverse order:

     // reverse iterator of vector from back to front
     vector<int>::reverse_iterator r_iter;

     for (r_iter = vec.rbegin(); // binds r_iter to last element

          r_iter != vec.rend();  // rend refers 1 before 1st element
          ++r_iter)              // decrements iterator one element
         cout << *r_iter << endl;    // prints 9,8,7,...0

Although it may seem confusing to have the meaning of the increment and decrement operators
reversed, doing so lets us use the algorithms transparently to process a container forward or
backward. For example, we could sort our vector in descending order by passing sort a pair of
reverse iterators:

     // sorts vec in "normal" order
     sort(vec.begin(), vec.end());
     // sorts in reverse: puts smallest element at the end of vec
     sort(vec.rbegin(), vec.rend());

Reverse Iterators Require Decrement Operators

Not surprisingly, we can define a reverse iterator only from an iterator that supports -- as well
as ++ . After all, the purpose of a reverse iterator is to move the iterator backward through the



sequence. The iterators on the standard containers all support decrement as well as increment.
However, the stream iterators do not, because it is not possible to move backward through a
stream. Therefore, it is not possible to create a reverse iterator from a stream iterator.

Relationship between Reverse Iterators and Other Iterators

Suppose we have a string named line that contains a comma-separated list of words, and we
want to print the first word in line . Using find , this task is easy:

     // find first element in a comma-separated list
     string::iterator comma = find(line.begin(), line.end(), ',');
     cout << string(line.begin(), comma) << endl;

If there is a comma in line , then comma refers to that comma; otherwise it is line.end() . When
we print the string from line.begin() to comma we print characters up to the comma, or the
entire string if there is no comma.

If we wanted the last word in the list, we could use reverse iterators instead:

     // find last element in a comma-separated list
     string::reverse_iterator rcomma =
                            find(line.rbegin(), line.rend(), ',');

Because we pass rbegin() and rend() , this call starts with the last character in line and
searches backward. When find completes, if there is a comma, then rcomma refers to the last
comma in the linethat is it refers to the first comma found in the backward search. If there is no
comma, then rcomma is line.rend() .

The interesting part comes when we try to print the word we found. The direct attempt

     // wrong: will generate the word in reverse order
     cout << string(line.rbegin(), rcomma) << endl;

generates bogus output. For example, had our input been

     FIRST,MIDDLE,LAST

then this statement would print TSAL !

Figure 11.2 illustrates the problem: We are using reverse iterators, and such iterators process
the string backward. To get the right output, we need to transform the reverse iterators
line.rbegin() and rcomma into normal iterators that go forward. There is no need to transform
line.rbegin() as we already know that the result of that transformation would be line.end() .
We can transform rcomma by calling base , which is a member of each reverse iterator type:



Figure 11.2. Relationship between Reverse and Ordinary Iterators

     // ok: get a forward iterator and read to end of line
     cout << string(rcomma.base(), line.end()) << endl;

Given the same preceeding input, this statement prints LAST as expected.

The objects shown in Figure 11.2 visually illustrate the relationship between ordinary and
reverse iterators. For example, rcomma and rcomma.base() refer to different elements, as do
line.rbegin() and line.end() . These differences are needed to ensure that the range of
elements whether processed forward or backward is the same. Technically speaking, the
relationship between normal and reverse iterators is designed to accommodate the properties of
a left-inclusive range (Section 9.2.1 , p. 314 ), so that [line.rbegin(), rcomma) and
[rcomma.base(), line.end()) refer to the same elements in line .

The fact that reverse iterators are intended to represent ranges and
that these ranges are asymmetric has an important consequence.
When we initialize or assign a reverse iterator from a plain iterator,
the resulting iterator does not refer to the same element as the
original.



Exercises Section 11.3.3

Exercise
11.19:

Write a program that uses reverse_iterators to print the
contents of a vector in reverse order.

Exercise
11.20:

Now print the elements in reverse order using ordinary
iterators.

Exercise
11.21:

Use find to find the last element in a list of int s with value
0.

Exercise
11.22:

Given a vector that has 10 elements, copy the elements from
position 3 through 7 in reverse order to a list .

11.3.4. const Iterators

Careful readers will have noted that in the program on page 392 that used find , we defined
result as a const_iterator . We did so because we did not intend to use the iterator to change
a container element.

On the other hand, we used a plain, nonconst iterator to hold the return from find_first_of on
page 397 , even though we did not intend to change any container elements in that program
either. The difference in treatment is subtle and deserves an explanation.

The reason is that in the second case, we use the iterator as an argument to find_first_of:

     find_first_of(it, roster1.end(),
                   roster2.begin(), roster2.end())

The input range for this call is specified by it and the iterator returned from a call to
roster1.end() . Algorithms require the iterators that denote a range to have exactly the same
type. The iterator returned by roster1.end() depends on the type of roster1 . If that container
is a const object, then the iterator is const_iterator; otherwise, it is the plain iterator type. In
this program, roster1 was not const , and so end returns an iterator .

If we defined it as a const_iterator , the call to find_first_of would not compile. The types of
the iterators used to denote the range would not have been identical. it would have been a
const_iterator , and the iterator returned by roster1.end() would be iterator .

11.3.5. The Five Iterator Categories

Iterators define a common set of operations, but some iterators are more powerful than other
iterators. For example, ostream_iterators support only increment, dereference, and
assignment. Iterators on vector s support these operations and the decrement, relational, and
arithmetic operators as well. As a result, we can classify iterators based on the set of operations
they provide.



Similarly, we can categorize algorithms by the kinds of operations they require from their
iterators. Some, such as find , require only the ability to read through the iterator and to
increment it. Others, such as sort , require the ability to read, write, and randomly access
elements. The iterator operations required by the algorithms are grouped into five categories.
These five categories correspond to five categories of iterators, which are summarized in Table
11.3 .

Table 11.3. Iterator Categories

Input iterator Read, but not write; increment only

Output iterator Write, but not read; increment only

Forward iterator Read and write; increment only

Bidirectional iterator Read and write; increment and decrement

Random access iterator Read and write; full iterator arithmetic

Input iterators can read the elements of a container but are not guaranteed to be able to
write into a container. An input iterator must provide the following minimum support:

Equality and inequality operators (==, != ) to compare two iterators.

Prefix and postfix increment (++ ) to advance the iterator.

Dereference operator (* ) to read an element; dereference may appear only on the
right-hand side of an assignment.

The arrow operator (-> ) as a synonym for (*it).member that is, dereference the
iterator and fetch a member from the underlying object.

Input iterators may be used only sequentially; there is no way to examine an element once
the input iterator has been incremented. Generic algorithms requiring only this level of
support include find and accumulate . The library istream_iterator type is an input
iterator.

1.

Output iterators can be thought of as having complementary functionality to input
iterators; An output iterator can be used to write an element but it is not guaranteed to
support reading. Output iterators require:

Prefix and postfix increment (++ ) to advance the iterator.

Dereference (* ), which may appear only as the left-hand side of an assignment.
Assigning to a dereferenced output iterator writes to the underlying element.

Output iterators may require that each iterator value must be written exactly once. When
using an output iterator, we should use * once and only once on a given iterator value.
Output iterators are generally used as a third argument to an algorithm and mark the
position where writing should begin. For example, the copy algorithm takes an output
iterator as its third parameter and copies elements from its input range to the destination
indicated by the output iterator. The ostream_iterator type is an output iterator.

2.

3.



Forward iterators read from and write to a given container. They move in only one
direction through the sequence. Forward iterators support all the operations of both input
iterators and output iterators. In addition, they can read or write the same element
multiple times. We can copy a forward iterator to remember a place in the sequence so as
to return to that place later. Generic algorithms that require a forward iterator include
replace .

3.

Bidirectional iterators read from and write to a container in both directions. In addition
to supporting all the operations of a forward iterator, a bidirectional iterator also supports
the prefix and postfix decrement (-- ) operators. Generic algorithms requiring a
bidirectional iterator include reverse . All the library containers supply iterators that at a
minimum meet the requirements for a bidirectional iterator.

4.

Random-access iterators provide access to any position within the container in constant
time. These iterators support all the functionality of bidirectional iterators. In addition,
random-access iterators support:

The relational operators <, <=, > , and >= to compare the relative positions of two
iterators.

Addition and subtraction operators +, +=, - , and -= between an iterator and an
integral value. The result is the iterator advanced (or retreated) the integral number
of elements within the container.

The subtraction operator - when applied to two iterators, which yields the distance
between two iterators.

The subscript operator iter[n] as a synonym for *(iter + n) .

Generic algorithms requiring a random-access iterator include the sort algorithms. The
vector, deque , and string iterators are random-access iterators, as are pointers when
used to access elements of a built-in array.

5.

With the exception of output iterators, the iterator categories form a sort of hierarchy: Any
iterator of a higher category can be used where an iterator of lesser power is required. We can
call an algorithm requiring an input iterator with an input iterator or a forward, bidirectional, or
random-access iterator. Only a random-access iterator may be passed to an algorithm requiring
a random-access iterator.

The map, set , and list types provide bidirectional iterators. Iterators on string, vector , and
deque are random-access iterators, as are pointers bound to arrays. An istream_iterator is an
input iterator, and an ostream_iterator is an output iterator.



Key Concept: Associative Containers and the Algorithms

Although the map and set types provide bidirectional iterators, we can use

only a subset of the algorithms on associative containers. The problem is
that the key in an associative container is const . Hence, any algorithm that

writes to elements in the sequence cannot be used on an associative
container. We may use iterators bound to associative containers only to
supply arguments that will be read.

When dealing with the algorithms, it is best to
think of the iterators on associative containers
as if they were input iterators that also support
decrement, not as full bidirectional iterators.

The C++ standard specifies the minimum iterator category for each iterator parameter of the
generic and numeric algorithms. For example, find which implements a one-pass, read-only
traversal over a containerminimally requires an input iterator. The replace function requires a
pair of iterators that are at least forward iterators. The first two iterators to replace_copy must
be at least forward. The third, which represents a destination, must be at least an output
iterator.

For each parameter, the iterator must be at least as powerful as the stipulated minimum.
Passing an iterator of a lesser power results in an error; passing an stronger iterator type is
okay.

Errors in passing an invalid category of iterator to an algorithm are
not guaranteed to be caught at compile-time.



Exercises Section 11.3.5

Exercise
11.23:

List the five iterator categories and the operations that each supports.

Exercise
11.24:

What kind of iterator does a list have? What about a vector ?

Exercise
11.25:

What kinds of iterators do you think copy requires? What about reverse
or unique ?

Exercise
11.26:

Explain why each of the following is incorrect. Identify which errors
should be caught during compilation.

     (a) string sa[10];
         const vector<string> file_names(sa, sa+6);
         vector<string>::iterator it = file_names.begin()+2;

     (b) const vector<int> ivec;
         fill(ivec.begin(), ivec.end(), ival);

     (c) sort(ivec.begin(), ivec.rend());

     (d) sort(ivec1.begin(), ivec2.end());

 



 

11.4. Structure of Generic Algorithms

Just as there is a consistent design pattern behind the containers, there is a common design
underlying the algorithms. Understanding the design behind the library makes it easier to learn
and easier to use the algorithms. Because there are more than 100 algorithms, it is much better
to understand their structure than to memorize the whole list of algorithms.

The most fundamental property of any algorithm is the kind(s) of iterators it expects. Each
algorithm specifies for each of its iterator parameters what kind of iterator can be supplied. If a
parameter must be a random-access iterator, then we can provide an iterator for a vector or a
deque , or we can supply a pointer into an array. Iterators on the other containers cannot be
used with such algorithms.

A second way is to classify the algorithms is as we did in the beginning of this chapter. We can
categorize them by what actions they take on the elements:

Some are read-only and leave element values and ordering unchanged.

Others assign new values to specific elements.

Others move values from one element to another.

As we'll see in the remainder of this section, there are two additional patterns to the algorithms:
One pattern is defined by the parameters the algorithms take; the other is defined by two
function naming and overloading conventions.

11.4.1. Algorithm Parameter Patterns

Superimposed on any other classification of the algorithms is a set of parameter conventions.
Understanding these parameter conventions can aid in learning new algorithmsby knowing what
the parameters mean, you can concentrate on understanding the operation the algorithm
performs. Most of algorithms take one of the following four forms:

     alg (beg, end, other parms);
     alg (beg, end, dest, other parms);
     alg (beg, end, beg2, other parms);
     alg (beg, end, beg2, end2, other parms);

where alg is the name of the algorithm, and beg and end denote the range of elements on which
the algorithm operates. We typically refer to this range as the "input range" of the algorithm.
Although nearly all algorithms take an input range, the presence of the other parameters
depends on the work being performed. The common ones listed heredest, beg2 and end2 are all
iterators. When used, these iterators fill similar roles. In addition to these iterator parameters,
some algorithms take additional, noniterator parameters that are algorithm-specific.

Algorithms with a Single Destination Iterator



A dest parameter is an iterator that denotes a destination used to hold the output. Algorithms
assume that it is safe to write as many elements as needed.

When calling these algorithms, it is essential to ensure that the
output container is sufficiently large to hold the output, which is
why they are frequently called with insert iterators or
ostream_iterators . If we call these algorithms with a container
iterator, the algorithm assumes there are as many elements as
needed in that container.

If dest is an iterator on a container, then the algorithm writes its output to existing elements
within the container. More commonly, dest is bound to an insert iterator (Section 11.3.1 , p.
406 ) or an ostream_iterator . An insert iterator adds elements to the container, ensuring that
there is enough space. An ostream_iterator writes to an output stream, again presenting no
problem regardless of how many elements are written.

Algorithms with a Second Input Sequence

Algorithms that take either beg2 alone or beg2 and end2 use these iterators to denote a second
input range. These algorithms typically use the elements from the second range in combination
with the input range to perform a computation. When an algorithm takes both beg2 and end2 ,
these iterators are used to denote the entire second range. That is, the algorithm takes two
completely specified ranges: the input range denoted by beg and end , and a second input range
denoted by beg2 and end2 .

Algorithms that take beg2 but not end2 treat beg2 as the first element in the second input range.
The end of this range is not specified. Instead, these algorithms assume that the range starting
at beg2 is at least as large as the one denoted by beg, end .

As with algorithms that write to dest , algorithms that take beg2
alone assume that the sequence beginning at beg2 is as large as the
range denoted by beg and end .

11.4.2. Algorithm Naming Conventions

The library uses a set of consistent naming and overload conventions that can simplify learning
the library. There are two important patterns. The first involves algorithms that test the
elements in the input range, and the second applies to those that reorder elements within the
input range.



Distinguishing Versions that Take a Value or a Predicate

Many algorithms operate by testing elements in their input range. These algorithms typically use
one of the standard relational operators, either == or < . Most of the algorithms provide a second
version that allows the programmer to override the use of the operator and instead to supply a
comparison or test function.

Algorithms that reorder the container elements use the < operator. These algorithms define a
second, overloaded version that takes an additional parameter representing a different
operation to use to order the elements:

     sort (beg, end);         // use < operator to sort the elements

     sort (beg, end, comp);   // use function named comp to sort the elements

Algorithms that test for a specific value use the == operator by default. These algorithms provide
a second namednot overloadedversion with a parameter that is a predicate (Section 11.2.3 , p.
402 ). Algorithms that take a predicate have the suffix _if appended:

     find(beg, end, val);       // find first instance of val in the input range

     find_if(beg, end, pred);   // find first instance for which pred is true

These algorithms both find the first instance of a specific element in the input range. The find
algorithm looks for a specific value; the find_if algorithm looks for a value for which pred
returns a nonzero value.

The reason these algorithms provide a named version rather than an over-loaded one is that
both versions take the same number of parameters. In the case of the ordering algorithms, it is
easy to disambiguate a call based solely on the number of parameters. In the case of algorithms
that look for a specific element, the number of parameters is the same whether testing for a
value or testing a predicate. Overloading ambiguities (Section 7.8.2 , p. 269 ) would therefore
be possible, albeit rare, and so the library provides two named versions for these algorithms
rather than relying on overloading.

Distinguishing Versions that Copy from Those that Do Not

Independently of whether an algorithm tests its elements, the algorithm may re-arrange
elements within the input range. By default, such algorithms write the rearranged elements
back into their input range. These algorithms also provide a second, named version that writes
to a specified output destination. These algorithms append _copy to their names:

     reverse(beg, end);
     reverse_copy(beg, end, dest);

The reverse function does what its name implies: It reverses the order of the elements in the
input sequence. The first version reverses the elements in the input sequence itself. The second
version, reverse_copy , makes a copy of the elements, placing them in reverse order in the



sequence that begins at dest .

 



 

11.5. Container-Specific Algorithms

The iterators on list are bidirectional, not random access. Because the list container does not
support random access, we cannot use the algorithms that require random-access iterators.
These algorithms include the sort -related algorithms. There are other algorithms, defined
generically, such as merge, remove, reverse , and unique , that can be used on lists but at a
cost in performance. These algorithms can be implemented more efficiently if they can take
advantage of how list s are implemented.

Exercises Section 11.4.2

Exercise
11.27:

The library defines the following algorithms:

     replace(beg, end, old_val, new_val);
     replace_if(beg, end, pred, new_val);
     replace_copy(beg, end, dest, old_val, new_val);
     replace_copy_if(beg, end, dest, pred, new_val);

Based only on the names and parameters to these functions,
describe the operation that these algorithms perform.

Exercise
11.28:

Assume lst is a container that holds 100 elements. Explain the
following program fragment and fix any bugs you think are
present.

     vector<int> vec1;
     reverse_copy(lst.begin(), lst.end(), vec1.begin());

It is possible to write much faster algorithms if the internal structure of the list can be
exploited. Rather than relying solely on generic operations, the library defines a more elaborate
set of operations for list than are supported for the other sequential containers. These list -
specific operations are described in Table 11.4 on the next page. Generic algorithms not listed in
the table that take bidirectional or weaker iterators execute equally efficiently on list s as on
other containers.

Table 11.4. list -Specific Operations



lst.merge(lst2)
lst.merge(lst2, comp)

  Merges elements from lst2 onto lst . Both lists
must be sorted. Elements are removed from lst2 .
After the merge, lst2 is empty. Returns void . The
first version uses the < operator; the second version
uses the specified comparison.

lst.remove(val)
lst.remove_if(unaryPred)

  Removes, by calling lst.erase , each element that
equals a specified value or for which the specified
predicate returns a nonzero value. Returns void .

lst.reverse() Reverses the order of the elements in lst .

lst.sort Sorts the elements of the lst .

lst.splice(iter, lst2)

lst.splice(iter, lst2, iter2)

lst.splice(iter, beg, end)

  Moves element(s) from lst2 into lst just before the
element (in lst ) referred to by the iterator iter .
Removes element(s) that are moved from lst2 . The
first version moves all elements from lst2 into lst ;
after the splice, lst2 is empty. lst and lst2 may
not be the same list . The second version moves
only the element referred to by iter2 , which must
refer to an element in lst2 . In this case, lst2 and
lst could be the same list . That is, splice can be
used to move an element within a single list . The
third version moves the elements in the range
denoted by the iterators beg and end . As usual, beg
and end must refer to a valid range. The iterators
can refer to a range in any list , including lst . If
the iterators refer to lst , the operation is undefined
if iter refers to an element in the range.

lst.unique()
lst.unique(binaryPred)

 

  Deletes, by calling erase , consecutive copies of the
same value. The first version uses == to determine if
elements are equal; the second uses the specified
predicate.

The list member versions should be used in preference to
the generic algorithms when applied to a list object.



Most of the list -specific algorithms are similarbut not identicalto their counterparts that we
have already seen in their generic forms:

     l.remove(val);     // removes all instances of val from 1

     l.remove_if(pred); // removes all instances for which pred is true from 1

     l.reverse();       // reverses the order of elements in 1

     l.sort();          // use element type < operator to compare elements

     l.sort(comp);      // use comp to compare elements
     l.unique();        // uses element == to remove adjacent duplicates
     l.unique(comp);    // uses comp to remove duplicate adjacent copies

There are two crucially important differences between the list -specific operations and their
generic counterparts. One difference is that the list versions of remove and unique change the
underlying container; the indicated elements are actually removed. For example, second and
subsequent duplicate elements are removed from the list by list::unique .

Unlike the corresponding generic algorithms, the list -specific
operations do add and remove elements.

The other difference is that the list operations, merge and splice , are destructive on their
arguments. When we use the generic version of merge , the merged sequence is written to a
destination iterator, and the two input sequences are left unchanged. In the case of the merge
function that is a member of list , the argument list is destroyedelements are moved from
the argument and removed as they are merged into the list object on which merge was called.

Exercises Section 11.5

Exercise
11.29:

Reimplement the program that eliminated duplicate words that
we wrote in Section 11.2.3 (p. 400 ) to use a list instead of a
vector .

 



 

Chapter Summary

One of the more important contributions from the standardization process for C++ was the
creation and expansion of the standard library. The containers and algorithms libraries are a
cornerstone of the standard library. The library defines more than 100 algorithms. Fortunately,
the algorithms have a consistent architecture, which makes learning and using them easier.

The algorithms are type independent: They generally operate on a sequence of elements that
can be stored in a library container type, a built-in array, or even a generated sequence, such
as by reading or writing to a stream. Algorithms achieve their type independence by operating
in terms of iterators. Most algorithms take a pair of iterators denoting a range of elements as
the first two arguments. Additional iterator arguments might include an output iterator denoting
a destination, or another iterator or iterator pair denoting a second input sequence.

Iterators can be categorized by the operations that they support. There are five iterator
categories: input, output, forward, bidirectional, and random access. An iterator belongs to a
particular category if it supports the operations required for that iterator category.

Just as iterators are categorized by their operations, iterator parameters to the algorithms are
categorized by the iterator operations they require. Algorithms that only read their sequences
often require only input iterator operations. Those that write to a destination iterator often
require only the actions of an output iterator, and so on.

Algorithms that look for a value often have a second version that looks for an element for which
a predicate returns a nonzero value. For such algorithms, the name of the second version has
the suffix _if . Similarly, many algorithms provide so-called copying versions. These write the
(transformed) elements to an output sequence rather than writing back into the input range.
Such versions have names that end with _copy .

A third pattern is whether algorithms read, write, or reorder elements. Algorithms never directly
change the size of the sequences on which they operate. (If an argument is an insert iterator,
then that iterator might add elements, but the algorithm does not do so directly.) They may
copy elements from one position to another but cannot directly add or remove elements.

 



 

Defined Terms

back_inserter

Iterator adaptor that takes a reference to a container and generates an insert iterator that
uses push_back to add elements to the specified container.

bidirectional iterator

Same operations as forward iterators plus the ability to use to move backward through
the sequence.

forward iterator

Iterator that can read and write elements, but does not support -- .

front_inserter

Iterator adaptor that given a container, generates an insert iterator that uses push_front
to add elements to the beginning of that container.

generic algorithms

Type-independent algorithms.

input iterator

Iterator that can read but not write elements.

insert iterator

Iterator that uses a container operation to insert elements rather than overwrite them.
When a value is assigned to an insert iterator, the effect is to insert the element with that
value into the sequence.

inserter

Iterator adaptor that takes an iterator and a reference to a container and generates an
insert iterator that uses insert to add elements just ahead of the element referred to by
the given iterator.



istream_iterator

Stream iterator that reads an input stream.

iterator categories

Conceptual organization of iterators based on the operations that an iterator supports.
Iterator categories form a hierarchy, in which the more powerful categories offer the same
operations as the lesser categories. The algorithms use iterator categories to specify what
operations the iterator arguments must support. As long as the iterator provides at least
that level of operation, it can be used. For Example, some algorithms require only input
iterators. Such algorithms can be called on any iterator other than one that meets only
the output iterator requirements. Algorithms that require random-access iterators can be
used only on iterators that support random-access operations.

off-the-end iterator

An iterator that marks the end of a range of elements in a sequence. The off-the-end
iterator is used as a sentinel and refers to an element one past the last element in the
range. The off-the-end iterator may refer to a nonexistent element, so it must never be
dereferenced.

ostream_iterator

Iterator that writes to an output stream.

output iterator

Iterator that can write but not read elements.

predicate

Function that returns a type that can be converted to bool . Often used by the generic
algorithms to test elements. Predicates used by the library are either unary (taking one
argument) or binary (taking two).

random-access iterator

Same operations as bidirectional iterators plus the ability to use the relational operators to
compare iterator values and the ability to do arithmetic on iterators, thus supporting
random access to elements.

reverse iterator



Iterator that moves backward through a sequence. These iterators invert the meaning of
++ and -- .

stream iterator

Iterator that can be bound to a stream.

 



 

Part III: Classes and Data Abstraction
Classes are central to most C++ programs: Classes let us define our own types that are
customized for the problems we need to solve, resulting in applications that are easier to
write and understand. Well-designed class types can be as easy to use as the built-in
types.

A class defines data and function members: The data members store the state associated
with objects of the class type, and the functions perform operations that give meaning to
the data. Classes let us separate implementation and interface. The interface specifies the
operations that the class supports. Only the implementor of the class need know or care
about the details of the implementation. This separation reduces the bookkeeping aspects
that make programming tedious and error-prone.

Class types often are referred to as abstract data types . An abstract data type treats the
data (state) and operations on that state as a single unit. We can think abstractly about
what the class does, rather than always having to be aware of how the class operates.
Abstract data types are fundamental to both object-oriented and generic programming.

Chapter 12 begins our detailed coverage of how classes are defined. This chapter covers
topics fundamental to any use of classes: class scope, data hiding, and constructors. It
also introduces some new class features: friends, uses of the implicit this pointer, and the
role of static and mutable members.

Classes in C++ control what happens when objects are initialized, copied, assigned, and
destroyed. In this respect, C++ differs from many other languages, many of which do not
give class designers the ability to control these operations. Chapter 13 covers these topics.

Chapter 14 looks at operator overloading, which allows operands of class types to be used
with the built-in operators. Operator over-loading is one of the ways whereby C++ lets us
create new types that are as intuitive to use as are the built-in types. This chapter also
presents another special kind of class member function conversion functionswhich define
implicit conversions from objects of class type. The compiler applies these conversions in
the same contextsand for the same reasonsas it does with conversions among the built-in
types.
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In C++ we use classes to define our own abstract data types . By defining types that mirror
concepts in the problems we are trying to solve, we can make our programs easier to write,
debug, and modify.

This chapter continues the coverage of classes begun in Chapters 2 and 5 . We'll cover in more
detail the importance of data abstraction, which lets us hide the internal representation of an
object while still allowing public operations to be performed on the object.

We'll also explain more about class scope, constructors, and the this pointer. We also introduce
three new class-related features: friends , and mutable and static members.

Classes are the most important feature in C++. Early versions of the language were named "C
with Classes," emphasizing the central role of the class facility. As the language evolved,
support for building classes increased. A primary goal of the language design has been to
provide features that allow programmers to define their own types that are as easy and intuitive
to use as the built-in types. This chapter presents many of the basic features of classes.

 



 

12.1. Class Definitions and Declarations

Starting from Chapter 1 , our programs have used classes. The library types we've usedvector,
istream, string are all class types. We've also defined some simple classes of our own, such as
the Sales_item and TextQuery classes. To recap, let's look again at the Sales_item class:

class Sales_item {
public:

    // operations on Sales_item objects
    double avg_price() const;
    bool same_isbn(const Sales_item &rhs) const
        { return isbn == rhs.isbn; }
    // default constructor needed to initialize members of built-in type
    Sales_item(): units_sold(0), revenue(0.0) { }
private:
    std::string isbn;
    unsigned units_sold;
    double revenue;
};

double Sales_item::avg_price() const
{
    if (units_sold)
        return revenue/units_sold;
    else
        return 0;
}

12.1.1. Class Definitions: A Recap

In writing this class in Section 2.8 (p. 63 ) and Section 7.7 (p. 258 ), we already learned a fair
bit about classes.

Most fundamentally, a class defines a new type and a new scope.

Class Members

Each class defines zero or more members. Members can be either data, functions, or type
definitions.



A class may contain multiple public, private , and protected sections. We've already used the
public and private access labels: Members defined in the public section are accessible to all
code that uses the type; those defined in the private section are accessible to other class
members. We'll have more to say about protected when we discuss inheritance in Chapter 15 .

All members must be declared inside the class; there is no way to add members once the class
definition is complete.

Constructors

When we create an object of a class type, the compiler automatically uses a constructor (Section
2.3.3 , p. 49 ) to initialize the object. A constructor is a special member function that has the
same name as the class. Its purpose is to ensure that each data member is set to sensible initial
values.

A constructor generally should use a constructor initializer list (Section 7.7.3 , p. 263 ), to
initialize the data members of the object:

// default constructor needed to initialize members of built-in type
Sales_item(): units_sold(0), revenue(0.0) { }

The constructor initializer list is a list of member names and parenthesized initial values. It
follows the constructor's parameter list and begins with a colon.

Member Functions

Member functions must be declared, and optionally may be defined, inside the class; functions
defined inside the class are inline (Section 7.6 , p. 256 ) by default.

Member functions defined outside the class must indicate that they are in the scope of the class.
The definition of Sales_item::avg_price uses the scope operator (Section 1.2.2 , p. 8 ) to
indicate that the definition is for the avg_price function of the Sales_item class.

Member functions take an extra implicit argument that binds the function to the object on behalf
of which the function is calledwhen we write

trans.avg_price()

we are calling the avg_price function on the object named trans . If TRans is a Sales_item
object, then references to a member of the Sales_item class inside the avg_price function are to
the members in trans .

Member functions may be declared const by putting the const keyword following the parameter
list:

double avg_price() const;



A const member may not change the data members of the object on which it operates. The
const must appear in both the declaration and definition. It is a compile-time error for the const
to be indicated on one but not the other.

Exercises Section 12.1.1

Exercise
12.1:

Write a class named Person that represents the name and
address of a person. Use a string to hold each of these
elements.

Exercise
12.2:

Provide a constructor for Person that takes two string s.

Exercise
12.3:

Provide operations to return the name and address. Should
these functions be const ? Explain your choice.

Exercise
12.4:

Indicate which members of Person you would declare as
public and which you would declare as private . Explain your
choice.

12.1.2. Data Abstraction and Encapsulation

The fundamental ideas behind classes are data abstraction and encapsulation .

Data abstraction is a programming (and design) technique that relies on the separation of
interface and implementation. The class designer must worry about how a class is implemented,
but programmers that use the class need not know about these details. Instead, programmers
who use a type need to know only the type's interface; they can think abstractly about what the
type does rather than concretely about how the type works.

Encapsulation is a term that describes the technique of combining lower-level elements to form
a new, higher-level entity. A function is one form of encapsulation: The detailed actions
performed by the function are encapsulated in the larger entity that is the function itself.
Encapsulated elements hide the details of their implementationwe may call a function but have
no access to the statements that it executes. In the same way, a class is an encapsulated
entity: It represents an aggregation of several members, and most (well-designed) class types
hide the members that implement the type.

If we think about the library vector type, it is an example of both data abstraction and
encapsulation. It is abstract in that to use it, we think about its interfaceabout the operations
that it can perform. It is encapsulated because we have no access to the details of how the type
is representated nor to any of its implementation artifacts. An array, on the other hand, is
similar in concept to a vector but is neither abstract nor encapsulated. We manipulate an array
directly by accessing the memory in which the array is stored.

Access Labels Enforce Abstraction and Encapsulation

In C++ we use access labels (Section 2.8 , p. 65 ) to define the abstract interface to the class



and to enforce encapsulation. A class may contain zero or more access labels:

Members defined after a public label are accessible to all parts of the program. The data-
abstraction view of a type is defined by its public members .

Members defined after a private label are not accessible to code that uses the class. The
private sections encapsulate (e.g., hide) the implementation from code that uses the type.

There are no restrictions on how often an access label may appear. Each access label specifies
the access level of the succeeding member definitions. The specified access level remains in
effect until the next access label is encountered or the closing right brace of the class body is
seen.

A class may define members before any access label is seen. The access level of members
defined after the open curly of the class and before the first access label depend on how the
class is defined. If the class is defined with the struct keyword , then members defined before
the first access label are public ; if the class is defined using the class keyword , then the
members are private .

Advice: Concrete and Abstract Types

Not all types need to be abstract. The library pair class is a good example of

a useful, well-designed class that is concrete rather than abstract. A
concrete class is a class that exposes, rather than hides, its implementation.

Some classes, such as pair , really have no abstract interface. The pair type

exists to bundle two data members into a single object. There is no need or
advantage to hiding the data members. Hiding the members in a class like
pair would only complicate the use of the type.

Even so, such types often have member functions. In particular, it is a good
idea for any class that has data members of built-in or compound type to
define constructor(s) to initialize those members. The user of the class
could initialize or assign to the data members but it is less error-prone for
the class to do so.

Different Kinds of Programming Roles

Programmers tend to think about the people who will run their applications as "users."
Applications are designed for and evolve in response to feedback from those who ultimately
"use" the applications. Classes are thought of in a similar way: A class designer designs and
implements a class for "users" of that class. In this case, the "user" is a programmer, not the
ultimate user of the application.

Authors of successful applications do a good job of understanding and implementing the needs
of the application's users. Similarly, well-designed, useful classes are designed with a close
attention to the needs of the users of the class.

In another way, the division between class designer and class user reflects the division between
users of an application and the designers and implementors of the application. Users care only if
the application meets their needs in a cost-effective way. Similarly, users of a class care only
about its interface. Good class designers define a class interface that is intuitive and easy to
use. Users care about the implementation only in so far as the implementation affects their use



of the class. If the implementation is too slow or puts burdens on users of the class, then the
users must care. In well-designed classes, only the class designer worries about the
implementation.

In simple applications, the user of a class and the designer of the class might be one and the
same person. Even in such cases, it is useful to keep the roles distinct. When designing the
interface to a class, the class designer should think about how easy it will be to use the class.
When using the class, the designer shouldn't think about how the class works.

C++ programmers tend to speak of "users" interchangably as users
of the application or users of a class.

When referring to a "user," the context makes it clear which kind of user is meant. If we speak
of "user code" or the "user" of the Sales_item class, we mean a programmer who is using a
class in writing an application. If we speak of the "user" of the bookstore application, we mean
the manager of the store who is running the application.

Key Concept: Benefits of Data Abstraction and Encapsulation

Data abstraction and encapsulation provide two important advantages:

Class internals are protected from inadvertent user-level errors, which
might corrupt the state of the object.

The class implementation may evolve over time in response to
changing requirements or bug reports without requiring change in
user-level code.

By defining data members only in the private section of the class, the class

author is free to make changes in the data. If the implementation changes,
only the class code needs to be examined to see what affect the change
may have. If data are public , then any function that directly accesses the

data members of the old representation might be broken. It would be
necessary to locate and rewrite all those portions of code that relied on the
old representation before the program could be used again.

Similarly, if the internal state of the class is private , then changes to the

member data can happen in only a limited number of places. The data is
protected from mistakes that users might introduce. If there is a bug that
corrupts the object's state, the places to look for the bug are localized:
When data are private , only a member function could be responsible for the

error. The search for the mistake is limited, greatly easing the problems of
maintenance and program correctness.



If the data are private and if the interface to the member functions does not

change, then user functions that manipulate class objects require no
change.

Because changing a class definition in a header file
effectively changes the text of every source file
that includes that header, code that uses a class
must be recompiled when the class changes.

12.1.3. More on Class Definitions

The classes we've defined so far have been simple; yet they have allowed us to explore quite a
bit of the language support for classes. There remain a few more details about the basics of
writing a class that we shall cover in the remainder of this section.

Exercises Section 12.1.2

Exercise
12.5:

What are the access labels supported by C++ classes? What
kinds of members should be defined after each access label?
What, if any, are the constraints on where and how often an
access label may appear inside a class definition?

Exercise
12.6:

How do classes defined with the class keyword differ from
those defined as struct ?

Exercise
12.7:

What is encapsulation? Why it is useful?

Multiple Data Members of the Same Type

As we've seen, class data members are declared similarly to how ordinary variables are
declared. One way in which member declarations and ordinary declarations are the same is that
if a class has multiple data members with the same type, these members can be named in a
single member declaration.

For example, we might define a type named Screen to represent a window on a computer. Each
Screen would have a string member that holds the contents of the window, and three
string::size_type members: one that specifies the character on which the cursor currently
rests, and two others that specify the height and width of the window. We might define the
members of this class as:



     class Screen {
     public:
         // interface member functions
     private:
         std::string contents;
         std::string::size_type cursor;
         std::string::size_type height, width;
     };

Using Typedefs to Streamline Classes

In addition to defining data and function members, a class can also define its own local names
for types. Our Screen will be a better abstraction if we provide a typedef for
std::string::size_type:

     class Screen {
     public:
         // interface member functions
         typedef std::string::size_type index;
     private:
         std::string contents;
         index cursor;
         index height, width;
     };

Type names defined by a class obey the standard access controls of any other member. We put
the definition of index in the public part of the class because we want users to use that name.
Users of class Screen need not know that we use a string as the underlying implementation. By
defining index , we hide this detail of how Screen is implemented. By making the type public ,
we let our users use this name.

Member Functions May Be Overloaded

Another way our classes have been simple is that they have defined only a few member
functions. In particular, none of our classes have needed to define over-loaded versions of any
of their member functions. However, as with nonmember functions, a member function may be
overloaded (Section 7.8 , p. 265 ).

With the exception of overloaded operators (Section 14.9.5 , p. 547 )which have special rulesa
member function overloads only other member functions of its own class. A class member
function is unrelated to, and cannot overload, ordinary nonmember functions or functions
declared in other classes. The same rules apply to overloaded member functions as apply to
plain functions: Two overloaded members cannot have the same number and types of
parameters. The function-matching (Section 7.8.2 , p. 269 ) process used for calls of
nonmember overloaded functions also applies to calls of overloaded member functions.

Defining Overloaded Member Functions



To illustrate overloading, we might give our Screen class two overloaded members to return a
given character from the window. One version will return the character currently denoted by the
cursor and the other returns the character at a given row and column:

class Screen {
public:
    typedef std::string::size_type index;
    // return character at the cursor or at a given position
    char get() const { return contents[cursor]; }
    char get(index ht, index wd) const;
    // remaining members
private:
    std::string contents;
    index cursor;
    index height, width;
};

As with any overloaded function, we select which version to run by supplying the appropriate
number and/or types of arguments to a given call:

     Screen myscreen;

     char ch = myscreen.get();// calls Screen::get()

     ch = myscreen.get(0,0);  // calls Screen::get(index, index)

Explicitly Specifying inline Member Functions

Member functions that are defined inside the class, such as the get member that takes no
arguments, are automatically treated as inline . That is, when they are called, the compiler will
attempt to expand the function inline (Section 7.6 , p. 256 ). We can also explicitly declare a
member function as inline :

     class Screen {
     public:
         typedef std::string::size_type index;

         // implicitly inline when defined inside the class declaration
         char get() const { return contents[cursor]; }

         // explicitly declared as inline; will be defined outside the class declaration
         inline char get(index ht, index wd) const;

         // inline not specified in class declaration, but can be defined inline later
         index get_cursor() const;
         // ...
      };

     // inline declared in the class declaration; no need to repeat on the definition
     char Screen::get(index r, index c) const
     {
         index row = r * width;    // compute the row location

         return contents[row + c]; // offset by c to fetch specified character
     }

     // not declared as inline in the class declaration, but ok to make inline in definition
     inline Screen::index Screen::get_cursor() const



     {
         return cursor;
     }

We can specify that a member is inline as part of its declaration inside the class body.
Alternatively, we can specify inline on the function definition that appears outside the class
body. It is legal to specify inline both on the declaration and definition. One advantage of
defining inline functions outside the class is that it can make the class easier to read.

As with other inline s, the definition of an inline member function
must be visible in every source file that calls the function. The
definition for an inline member function that is not defined within
the class body ordinarily should be placed in the same header file in
which the class definition appears.

12.1.4. Class Declarations versus Definitions

A class is completely defined once the closing curly brace appears. Once the class is defined, all
the class members are known. The size required to store an object of the class is known as well.
A class may be defined only once in a given source file. When a class is defined in multiple files,
the definition in each file must be identical.

By putting class definitions in header files, we can ensure that a class is defined the same way
in each file that uses it. By using header guards (Section 2.9.2 , p. 69 ), we ensure that even if
the header is included more than once in the same file, the class definition will be seen only
once.

Exercises Section 12.1.3



Exercise
12.8:

Define Sales_item::avg_price as an inline function.

Exercise
12.9:

Write your own version of the Screen class presented in this section,
giving it a constructor to create a Screen from values for height,
width, and the contents of the screen.

Exercise
12.10:

Explain each member in the following class:

     class Record {
         typedef std::size_t size;
         Record(): byte_count(0) { }
         Record(size s): byte_count(s) { }
         Record(std::string s): name(s), byte_count(0) { }
         size byte_count;
         std::string name;
     public:
         size get_count() const { return byte_count; }
         std::string get_name() const { return name; }
     };

It is possible to declare a class without defining it:

     class Screen; // declaration of the Screen class

This declaration, sometimes referred to as a forward declaration , introduces the name Screen
into the program and indicates that Screen refers to a class type. After a declaration and before
a definition is seen, the type Screen is an incompete type it's known that Screen is a type but
not known what members that type contains.

An incomplete type can be used only in limited ways. Objects of the
type may not be defined. An incomplete type may be used to define
only pointers or references to the type or to declare (but not define)
functions that use the type as a paremeter or return type.

A class must be fully defined before objects of that type are created. The class must be
definedand not just declaredso that the compiler can know how much storage to reserve for an
object of that class type. Similarly, the class must be defined before a reference or pointer is
used to access a member of the type.



Using Class Declarations for Class Members

A data member can be specified to be of a class type only if the definition for the class has
already been seen. If the type is incomplete, a data member can be only a pointer or a
reference to that class type.

Because a class is not defined until its class body is complete, a class cannot have data
members of its own type. However, a class is considered declared as soon as its class name has
been seen. Therefore, a class can have data members that are pointers or references to its own
type:

     class LinkScreen {
         Screen window;
         LinkScreen *next;
         LinkScreen *prev;
     };

A common use of class forward declarations is to write classes that
are mutually dependent on one another. We'll see an example of
such usage in Section 13.4 (p. 486 ).

Exercises Section 12.1.4

Exercise
12.11:

Define a pair of classes X and Y , in which X has a pointer to Y ,
and Y has an object of type X .

Exercise
12.12:

Explain the difference between a class declaration and
definition. When would you use a class declaration? A class
definition?

12.1.5. Class Objects

When we define a class, we are defining a type. Once a class is defined, we can define objects of
that type. Storage is allocated when we define objects, but (ordinarily) not when we define
types:

     class Sales_item {
     public:

         // operations on Sales_item objects



     private:
         std::string isbn;
         unsigned units_sold;
         double revenue;
     };

defines a new type, but does not allocate any storage. When we define an object

     Sales_item item;

the compiler allocates an area of storage sufficient to contain a Sales_item object. The name
item refers to that area of storage. Each object has its own copy of the class data members.
Modifying the data members of item does not change the data members of any other
Sales_item object.

Defining Objects of Class Type

After a class type has been defined, the type can be used in two ways:

Using the class name directly as a type name

Specifying the keyword class or struct , followed by the class name:

     Sales_item item1;       // default initialized object of type Sales_item

     class Sales_item item1; // equivalent definition of item1

Both methods of referring to a class type are equivalent. The second method is inherited from C
and is also valid in C++. The first, more concise form was introduced by C++ to make class
types easier to use.

Why a Class Definition Ends in a Semicolon

We noted on page 64 that a class definition ends with a semicolon. A semicolon is required
because we can follow a class definition by a list of object definitions. As always, a definition
must end in a semicolon:

class Sales_item { /* ... */ };
class Sales_item { /* ... */ } accum, trans;



Ordinarily, it is a bad idea to define an object as part of a
class definition. Doing so obscures what's happening. It is
confusing to readers to combine definitions of two different
entitiesthe class and a variablein a single statement.

 



 

12.2. The Implicit this Pointer

As we saw in Section 7.7.1 (p. 260 ), member functions have an extra implicit parameter that is
a pointer to an object of the class type. This implicit parameter is named this , and is bound to
the object on which the member function is called. Member functions may not define the this
parameter; the compiler does so implicitly. The body of a member function may explicitly use
the this pointer, but is not required to do so. The compiler treats an unqualified reference to a
class member as if it had been made through the this pointer.

When to Use the this Pointer

Although it is usually unnecessary to refer explicitly to this inside a member function, there is
one case in which we must do so: when we need to refer to the object as a whole rather than to
a member of the object. The most common case where we must use this is in functions that
return a reference to the object on which they were invoked.

The Screen class is a good example of the kind of class that might have operations that should
return references. So far our class has only a pair of get operations. We might logically add:

A pair of set operations to set either a specified character or the character denoted by the
cursor to a given value

A move operation that, given two index values, moves the cursor to that new position

Ideally, we'd like users to be able to concatenate a sequence of these actions into a single
expression:

     // move cursor to given position, and set that character
     myScreen.move(4,0).set('#');

We'd like this statement to be equivalent to

     myScreen.move(4,0);
     myScreen.set('#');

Returning *this

To allow us to call move and set in a single expression, each of our new operations must return a
reference to the object on which it executes:

     class Screen {
     public:
          // interface member functions
          Screen& move(index r, index c);



          Screen& set(char);
          Screen& set(index, index, char);
          // other members as before
     };

Notice that the return type of these functions is Screen& , which indicates that the member
function returns a reference to an object of its own class type. Each of these functions returns
the object on which it was invoked. We'll use the this pointer to get access to the object. Here
is the implementation for two of our new members:

     Screen& Screen::set(char c)
     {
         contents[cursor] = c;
         return *this;
     }
     Screen& Screen::move(index r, index c)
     {
         index row = r * width; // row location
         cursor = row + c;
         return *this;
     }

The only interesting part in this function is the return statement. In each case, the function
returns *this . In these functions, this is a pointer to a nonconst Screen . As with any pointer,
we can access the object to which this points by dereferencing the this pointer.

Returning *this from a const Member Function

In an ordinary nonconst member function, the type of this is a const pointer (Section 4.2.5 , p.
126 ) to the class type. We may change the value to which this points but cannot change the
address that this holds. In a const member function, the type of this is a const pointer to a
const class-type object. We may change neither the object to which this points nor the address
that this holds.

We cannot return a plain reference to the class object from a const
member function. A const member function may return *this only
as a const reference.

As an example, we might add a display operation to our Screen class. This function should print
contents on a given ostream . Logically, this operation should be a const member. Printing the
contents doesn't change the object. If we make display a const member of Screen , then the
this pointer inside display will be a const Screen* const .

However, as we can with the move and set operations, we'd like to be able to use the display in
a series of actions:



     // move cursor to given position, set that character and display the screen
     myScreen.move(4,0).set('#').display(cout);

This usage implies that display should return a Screen reference and take a reference to an
ostream . If display is a const member, then its return type must be const Screen& .

Unfortunately, there is a problem with this design. If we define display as a const member, then
we could call display on a nonconst object but would not be able to embed a call to display in a
larger expression. The following code would be illegal:

     Screen myScreen;

     // this code fails if display is a const member function

     // display return a const reference; we cannot call set on a const
     myScreen.display().set('*');

The problem is that this expression runs set on the object returned from display . That object is
const because display returns its object as a const . We cannot call set on a const object.

Overloading Based on const

To solve this problem we must define two display operations: one that is const and one that
isn't. We can overload a member function based on whether it is const for the same reasons
that we can overload a function based on whether a pointer parameter points to const (Section
7.8.4 , p. 275 ). A const object will use only the const member. A nonconst object could use
either member, but the nonconst version is a better match.

While we're at it, we'll define a private member named do_display to do the actual work of
printing the Screen . Each of the display operations will call this function and then return the
object on which it is executing:

     class Screen {
     public:
         // interface member functions
         // display overloaded on whether the object is const or not
         Screen& display(std::ostream &os)
                       { do_display(os); return *this; }
         const Screen& display(std::ostream &os) const
                       { do_display(os); return *this; }
     private:
          // single function to do the work of displaying a Screen,
          // will be called by the display operations
          void do_display(std::ostream &os) const
                            { os << contents; }
          // as before
      };

Now, when we embed display in a larger expression, the nonconst version will be called. When
we display a const object, then the const version is called:



     Screen myScreen(5,3);
     const Screen blank(5, 3);

     myScreen.set('#').display(cout); // calls nonconst version

     blank.display(cout);             // calls const version

Mutable Data Members

It sometimes (but not very often) happens that a class has a data member that we want to be
able to modify, even inside a const member function. We can indicate such members by
declaring them as mutable .

A mutable data member is a member that is never const , even when it is a member of a
const object. Accordingly, a const member function may change a mutable member. To declare
a data member as mutable, the keyword mutable must precede the declaration of the member:

     class Screen {
     public:
     // interface member functions
     private:

         mutable size_t access_ctr; // may change in a const members
         // other data members as before
      };

We've given Screen a new data member named access_ctr that is mutable . We'll use access_ctr
to track how often Screen member functions are called:

     void Screen::do_display(std::ostream& os) const
     {
         ++access_ctr; // keep count of calls to any member function
         os << contents;
     }

Even though do_display is const , it can increment access_ctr . That member is a mutable
member, so any member function, including const functions, can change the value of
access_ctr .



Advice: Use Private Utility Functions for Common Code

Some readers might be surprised that we bothered to define a separate
do_display operation. After all, the calls to do_display aren't much simpler
than the action done inside do_display . Why bother? We do so for several

reasons:

A general desire to avoid writing the same code in more than one
place.

1.

The display operation can be expected to become more complicated as

our class evolves. As the actions involved become more complex, it
makes more obvious sense to write those actions in one place, not two.

2.

It is likely that we might want to add debugging information to
do_display during development that would be eliminated in the final

product version of the code. It will be easier to do so if only one
definition of do_display needs to be changed to add or remove the

debugging code.

3.

There needn't be any overhead involved in this extra function call. We
made do_display inline, so the run-time performance between calling
do_display or putting the code directly into the display operations

should be identical.

4.

In practice, well-designed C++ programs tend to have lots of small
functions such as do_display that are called to do the "real" work of some

other set of functions.

Exercises Section 12.2

Exercise
12.13:

Extend your version of the Screen class to include the move, set , and
display operations. Test your class by executing the expression:

[View full width]

     // move cursor to given position, set that character and

 display the screen
     myScreen.move(4,0).set('#').display(cout);

Exercise
12.14:

It is legal but redundant to refer to members through the this pointer.
Discuss the pros and cons of explicitly using the this pointer to access
members.



 



 

12.3. Class Scope

Every class defines its own new scope and a unique type. The declarations of the class members
within the class body introduce the member names into the scope of their class. Two different
classes have two different class scopes.

Even if two classes have exactly the same member list, they are
different types. The members of each class are distinct from the
members of any other class (or any other scope).

For example:

     class First {
     public:
         int memi;
         double memd;
     };

     class Second {
     public:
         int memi;
         double memd;
     };

     First obj1;
     Second obj2 = obj1; // error: obj1 and obj2 have different types

Using a Class Member

Outside the class scope, members may be accessed only through an object or a pointer using
member access operators dot or arrow, respectively. The left-hand operand to these operators
is a class object or a pointer to a class object, respectively. The member name that follows the
operator must be declared in the scope of the associated class:

     Class obj;     // Class is some class type
     Class *ptr = &obj;

     // member is a data member of that class

     ptr->member;   // fetches member from the object to which ptr points

     obj.member;    // fetches member from the object named obj

     // memfcn is a function member of that class



     ptr->memfcn(); // runs memfcn on the object to which ptr points

     obj.memfcn();  // runs memfcn on the object named obj

Some members are accessed using the member access operators; others are accessed directly
from the class using the scope operator, (:: ). Ordinary data or function members must be
accessed through an object. Members that define types, such as Screen::index , are accessed
using the scope operator.

Scope and Member Definitions

Member definitions behave as if they are in the scope of the class, even if the member is
defined outside the class body. Recall that member definitions that appear outside the class
body must indicate the class in which the member appears:

     double Sales_item::avg_price() const
     {
         if (units_sold)
             return revenue/units_sold;
         else
             return 0;
     }

Here we use the fully qualified name Sales_item::avg_price to indicate that the definition is for
the avg_price member in the scope of the Sales_item class. Once the fully qualified name of the
member is seen, the definition is known to be in class scope. Because the definition is in class
scope, we can refer to revenue and units_sold without having to write this->revenue or this-
>units_sold .

Parameter Lists and Function Bodies Are in Class Scope

In a member function defined outside the class, the parameter list and member-function body
both appear after the member name. These are defined inside the class scope and so may refer
to other class members without qualificationfor example, the definition of the two-parameter
version of get in class Screen :

     char Screen::get(index r, index c) const
     {
         index row = r * width;      // compute the row location

         return contents[row + c];   // offset by c to fetch specified character
     }

This function uses the type name index defined inside Screen to name the types of its
parameters. Because the parameter list is inside the scope of class Screen , there is no need to
specify that we want Screen::index . It is implicit that the one we want is the one defined in the
current class scope. Similarly, the uses of index, width , and contents all refer to names
declared inside class Screen .



Function Return Types Aren't Always in Class Scope

In contrast to the parameter types, the return type appears before the member name. If the
function is defined outside the class body, then the name used for the return type is outside the
class scope. If the return type uses a type defined by the class, it must use the fully qualified
name. For example, consider the get_cursor function:

     class Screen {
     public:
         typedef std::string::size_type index;
         index get_cursor() const;
     };
     inline Screen::index Screen::get_cursor() const
     {
         return cursor;
     }

The return type of this function is index , which is a type name defined inside the Screen class.
If we define get_cursor outside the class body, the code is not in the class scope until the
function name has been processed. When the return type is seen, its name is used outside of
the class scope. We must use the fully qualified type name, Screen::index to specify that we
want the name index that is defined inside class Screen .

Exercises Section 12.3

Exercise
12.15:

List the portions of program text that are in class scope.

Exercise
12.16:

What would happen if we defined get_cursor as follows:

     index Screen::get_cursor() const
     {
         return cursor;
     }

12.3.1. Name Lookup in Class Scope

In the programs we've written so far, name lookup (the process of finding which declaration is
matched to a given use of a name) has been relatively straightforward:

1.



First, look for a declaration of the name in the block in which the name was used. Only
names declared before the use are considered.

1.

If the name isn't found, the enclosing scope(s) are searched.2.

If no declaration is found, then the program is in error. In C++ programs, all names must be
declared before they are used.

Class scopes may seem to behave a bit differently, but in reality they obey this same rule.
Confusion can arise due to the way names are resolved inside a function defined within the class
body itself.

Class definitions are actually processed in two phases:

First, the member declarations are compiled.1.

Only after all the class members have been seen are the definitions themselves
compiled.

2.

Of course, the names used in class scope do not always have to be class member names. Name
lookup in class scope finds names declared in other scopes as well. During name lookup, if a
name used in class scope does not resolve to a class member name, the scopes surrounding the
class or member definition are searched to find a declaration for the name.

Name Lookup for Class Member Declarations

Names used in the declarations of a class member are resolved as follows:

The declarations of the class members that appear before the use of the name are
considered.

1.

If the lookup in step 1 is not successful, the declarations that appear in the scope in which
the class is defined, and that appear before the class definition itself, are considered.

2.

For example:

     typedef double Money;
     class Account {
     public:
         Money balance() { return bal; }
     private:
         Money bal;
         // ...
     };



When processing the declaration of the balance function, the compiler first looks for a
declaration of Money in the scope of the class Account . The compiler considers only declarations
that appear before the use of Money . Because no member declaration is found, the compiler
then looks for a declaration of Money in global scope. Only the declarations located before the
definition of the class Account are considered. The declaration for the global typedef Money is
found and is used for the return type of the function balance and the data member bal .

Names of types defined in a class must be seen before they are
used as the type of a data member or as the return type or
parameter type(s) of a member function.

The compiler handles member declarations in the order in which they appear in the class. As
usual, a name must be defined before it can be used. Moreover, once a name has been used as
the name of a type, that name may not be redefined:

     typedef double Money;
     class Account {
     public:

         Money balance() { return bal; } // uses global definition of Money
     private:

         // error: cannot change meaning of Money
         typedef long double Money;
         Money bal;
         // ...
     };

Name Lookup in Class Member Definitions

A name used in the body of a member function is resolved as follows:

Declarations in the member-function local scopes are considered first.1.

If the a declaration for the name is not found in the member function, the declarations for
all the class members are considered.

2.

If a declaration for the name is not found in the class, the declarations that appear in
scope before the member function definition are considered.

3.

Class Members Follow Normal Block-Scope Name Lookup



Programs that illustrate how name lookup works often have to rely
on bad practices. The next several programs contain bad style
deliberately.

The following function uses the same name for a parameter and a member, which normally
should be avoided. We do so here to show how names are resolved:

     // Note: This code is for illustration purposes only and reflects bad practice
     // It is a bad idea to use the same name for a parameter and a member
     int height;
     class Screen {
     public:
         void dummy_fcn(index height) {

             cursor = width * height; // which height? The parameter
         }
     private:
         index cursor;
         index height, width;
     };

When looking for a declaration for the name height used in the definition of dummy_fcn , the
compiler first looks in the local scope of that function. A function parameter is declared in the
local scope of its function. The name height used in the body of dummy_fcn refers to this
parameter declaration.

In this case, the height parameter hides the member named height .

Even though the class member is hidden, it is still possible to use it
by qualifying the member's name with the name of its class or by
using the this pointer explicitly.

If we wanted to override the normal lookup rules, we could do so:

     // bad practice: Names local to member functions shouldn't hide member names
     void dummy_fcn(index height) {

         cursor = width * this->height;   // member height
         // alternative way to indicate the member

         cursor = width * Screen::height; // member height
     }



After Function Scope, Look in Class Scope

If we wanted to use the member named height , a much better way to do so would be to give
the parameter a different name:

     // good practice: Don't use member name for a parameter or other local variable
     void dummy_fcn(index ht) {

         cursor = width * height; // member height
     }

Now when the compiler looks for the name height , it will not find that name in the function.
The compiler next looks in the Screen class. Because height is used inside a member function,
the compiler looks at all the member declarations. Even though the declaration of height
appears after its use inside dummy_fcn , the compiler resolves this use to the data member
named height .

After Class Scope, Look in the Surrounding Scope

If the compiler doesn't find the name in function or class scope, it looks for the name in the
surrounding scope. In our example, declarations in global scope that appear before the
definition of the Screen include a global object named height . However, that object is hidden.

Even though the global object is hidden, it is still possible to use it
by qualifying the name with the global scope resolution operator.

     // bad practice: Don't hide names that are needed from surrounding scopes
     void dummy_fcn(index height) {

         cursor = width * ::height;// which height? The global one
     }

Names Are Resolved Where They Appear within the File

When a member is defined outside the class definition, the third step of name lookup not only
considers the declarations in global scope that appear before the definition of class Screen, but
also considers the global scope declarations that appear before the member function
definitionfor example:

     class Screen {
     public:



         // ...
         void setHeight(index);
     private:
         index height;
     };

     Screen::index verify(Screen::index);

     void Screen::setHeight(index var) {
         // var: refers to the parameter
         // height: refers to the class member
         // verify: refers to the global function
         height = verify(var);
     }

Notice that the declaration of the global function verify is not visible before the definition of the
class Screen . However, the third step of name lookup considers the surrounding scope
declarations that appear before the member definition, and the declaration for the global
function verify is found.

Exercises Section 12.3.1

Exercise
12.17:

What would happen if we put the typedef in the Screen class
as the last line in the class?

Exercise
12.18:

Explain the following code. Indicate which definition of Type or
initVal is used for each use of those names. If there are any
errors, say how you would fix the program.

     typedef string Type;
     Type initVal();

     class Exercise {
     public:
         // ...
         typedef double Type;
         Type setVal(Type);
         Type initVal();
     private:
         int val;
     };

     Type Exercise::setVal(Type parm) {
         val = parm + initVal();
     }

The definition of the member function setVal is in error. Apply
the necessary changes so that the class Exercise uses the
global typedef Type and the global function initVal .



 



 

12.4. Constructors

Constructors (Section 2.3.3 , p. 49 ) are special member functions that are executed whenever
we create new objects of a class type. The job of a constructor is to ensure that the data
members of each object start out with sensible initial values. Section 7.7.3 (p. 262 ) showed
how we define a constructor:

     class Sales_item {
     public:

         // operations on Sales_itemobjects
         // default constructor needed to initialize members of built-in type
         Sales_item(): units_sold(0), revenue(0.0) { }
     private:
         std::string isbn;
         unsigned units_sold;
         double revenue;
     };

This constructor uses the constructor initializer list to initialize the units_sold and revenue
members. The isbn member is implicitly initialized by the string default constructor as an
empty string.

Constructors have the same name as the name of the class and may not specify a return type.
Like any other function, they may define zero or more parameters.

Constructors May Be Overloaded

There is no constraint on the number of constructors we may declare for a class, provided that
the parameter list of each constructor is unique. How can we know which or how many
constructors to define? Ordinarily, constructors differ in ways that allow the user to specify
differing ways to initialize the data members.

For example, we might logically extend our Sales_item class by providing two additional
constructors: one that would let users provide an initial value for the isbn and another that
would let them initialize the object by reading an istream object:

     class Sales_item;
     // other members as before
     public:

         // added constructors to initialize from a string or an istream
         Sales_item(const std::string&);
         Sales_item(std::istream&);
         Sales_item();
     };



Arguments Determine Which Constructor to Use

Our class now defines three constructors. We could use any of these constructors when defining
new objects:

     // uses the default constructor:

     // isbn is the empty string; units_soldand revenue are 0
     Sales_item empty;

     // specifies an explicit isbn; units_soldand revenue are 0
     Sales_item Primer_3rd_Ed("0-201-82470-1");

     // reads values from the standard input into isbn, units_sold, and revenue
     Sales_item Primer_4th_ed(cin);

The argument type(s) used to initialize an object determines which constructor is used. In the
definition of empty , there is no initializer, so the default constructor is run. The constructor that
takes a single string argument is used to initialize Primer_3rd_ed; the one that takes a
reference to an istream initializes Primer_4th_ed .

Constructors Are Executed Automatically

The compiler runs a constructor whenever an object of the type is created:

     // constructor that takes a string used to create and initialize variable
     Sales_item Primer_2nd_ed("0-201-54848-8");
     // default constructor used to initialize unnamed object on the heap
     Sales_item *p = new Sales_item();

In the first case, the constructor that takes a string is run to initialize the variable named
Primer_2nd_ed . In the second case, a new Sales_item object is allocated dynamically. Assuming
that the allocation succeeds, then the object is initialized by running the default constructor.

Constructors for const Objects

A constructor may not be declared as const (Section 7.7.1 , p. 260 ):

     class Sales_item {
     public:
         Sales_item() const;    // error
     };

There is no need for a const constructor. When we create a const object of a class type, an
ordinary constructor is run to initialize the const object. The job of the constructor is to initialize
an object. A constructor is used to initialize an object regardless of whether the object is const .



Exercises Section 12.4

Exercise
12.19:

Provide one or more constructors that allows the user of this
class to specify initial values for none or all of the data
elements of this class:

     class NoName {
     public:
         // constructor(s) go here ...
     private:
         std::string *pstring;
         int         ival;
         double      dval;
     };

Explain how you decided how many constructors were needed
and what parameters they should take.

Exercise
12.20:

Choose one of the following abstractions (or an abstraction of
your own choosing). Determine what data is needed in the
class. Provide an appropriate set of constructors. Explain your
decisions.

     (a) Book        (b) Date      (c) Employee
     (d) Vehicle    (e) Object    (f) Tree

12.4.1. The Constructor Initializer

Like any other function, a constructor has a name, a parameter list, and a function body. Unlike
other functions, a constructor may also contain a constructor initializer list:

     // recommended way to write constructors using a constructor initializer
     Sales_item::Sales_item(const string &book):
          isbn(book), units_sold(0), revenue(0.0) { }

The constructor initializer starts with a colon, which is followed by a comma-separated list of
data members each of which is followed by an initializer inside parentheses. This constructor
initializes the isbn member to the value of its book parameter and initializes units_sold and
revenue to 0. As with any member function, constructors can be defined inside or outside of the
class. The constructor initializer is specified only on the constructor definition, not its
declaration.



The constructor initializer is a feature that many reasonably
experienced C++ programmers have not mastered.

One reason constructor initializers are hard to understand is that it is usually legal to omit the
initializer list and assign values to the data members inside the constructor body. For example,
we could write the Sales_item constructor that takes a string as

     // legal but sloppier way to write the constructor:
     // no constructor initializer
     Sales_item::Sales_item(const string &book)
     {
         isbn = book;
         units_sold = 0;
         revenue = 0.0;
     }

This constructor assigns, but does not explicitly initialize, the members of class Sales_item .
Regardless of the lack of an explicit initializer, the isbn member is initialized before the
constructor is executed. This constructor implicitly uses the default string constructor to
initialize isbn . When the body of the constructor is executed, the isbn member already has a
value. That value is overwritten by the assignment inside the constructor body.

Conceptually, we can think of a constructor as executing in two phases: (1) the initialization
phase and (2) a general computation phase. The computation phase consists of all the
statements within the body of the constructor.

Data members of class type are always initialized in the initialization
phase, regardless of whether the member is initialized explicitly in
the constructor initializer list. Initialization happens before the
computation phase begins.

Each member that is not explicitly mentioned in the constructor initializer is initialized using the
same rules as those used to initialize variables (Section 2.3.4 , p. 50 ). Data members of class
type are initialized by running the type's default constructor. The initial value of members of
built-in or compound type depend on the scope of the object: At local scope those members are
uninitialized, at global scope they are initialized to 0.



The two versions of the Sales_item constructor that we wrote in this section have the same
effect: Whether we initialized the members in the constructor initializer list or assigned to them
inside the constructor body, the end result is the same. After the constructor completes, the
three data members hold the same values. The difference is that the version that uses the
constructor initializer initializes its data members. The version that does not define a constructor
initializer assigns values to the data members in the body of the constructor. How significant
this distinction is depends on the type of the data member.

Constructor Initializers Are Sometimes Required

If an initializer is not provided for a class member, then the compiler implicitly uses the default
constructor for the member's type. If that class does not have a default constructor, then the
attempt by the compiler to use it will fail. In such cases, an initializer must be provided in order
to initialize the data member.

Some members must be initialized in the constructor initializer. For
such members, assigning to them in the constructor body doesn't
work. Members of a class type that do not have a default
constructor and members that are const or reference types must be
initialized in the constructor initializer regardless of type .

Because members of built-in type are not implicitly initialized, it may seem that it doesn't
matter whether these members are initialized or assigned. With two exceptions, using an
initializer is equivalent to assigning to a nonclass data member both in result and in
performance.

For example, the following constructor is in error:

     class ConstRef {
     public:
         ConstRef(int ii);
     private:
         int i;
         const int ci;
         int &ri;
     };

     // no explicit constructor initializer: error ri is uninitialized
     ConstRef::ConstRef(int ii)
     {              // assignments:
          i = ii;   // ok

          ci = ii;  // error: cannot assign to a const

          ri = i;   // assigns to ri which was not bound to an object
     }

Remember that we can initialize but not assign to const objects or objects of reference type. By
the time the body of the constructor begins executing, initialization is complete. Our only chance
to initialize const or reference data members is in the constructor initializer. The correct way to



write the constructor is

     // ok: explicitly initialize reference and const members
     ConstRef::ConstRef(int ii): i(ii), ci(i), ri(ii) { }

Advice: Use Constructor Initializers

In many classes, the distinction between initialization and assignment is
strictly a matter of low-level efficiency: A data member is initialized and
assigned when it could have been initialized directly. More important than
the efficiency issue is the fact that some data members must be initialized.

We must use an initializer for any const or reference

member or for any member of a class type that
does not have a default constructor.

By routinely using constructor initializers, we can avoid being surprised by
compile-time errors when we have a class with a member that requires a
constructor initializer.

Order of Member Initialization

Not surprisingly, each member may be named only once in the constructor initializer. After all,
what might it mean to give a member two initial values? What may be more surprising is that
the constructor initializer list specifies only the values used to initialize the members, not the
order in which those initializations are performed. The order in which members are initialized is
the order in which the members are defined. The first member is initialized first, then the next,
and so on.

The order of initialization often doesn't matter. However, if one
member is initialized in terms of another, then the order in which
members are initialized is crucially important.

Consider the following class:



     class X {
         int i;
         int j;
     public:
         // run-time error: i is initialized before j
         X(int val): j(val), i(j) { }
     };

In this case, the constructor initializer is written to make it appear as if j is initialized with val
and then j is used to initialize i . However, i is initialized first. The effect of this initializer is to
initialize i with the as yet uninitialized value of j !

Some compilers are kind enough to generate a warning if the data members are listed in the
constructor initializer in a different order from the order in which the members are declared.

It is a good idea to write constructor initializers in the
same order as the members are declared. Moreover, when
possible, avoid using members to initialize other members.

It is often the case that we can avoid any problems due to order of execution for initializers by
(re)using the constructor's parameters rather than using the object's data members. For
example, it would be better to write the constructor for X as

     X(int val): i(val), j(val) { }

In this version, the order in which i and j are initialized doesn't matter.

Initializers May Be Any Expression

An initializer may be an arbitrarily complex expression. As an example, we could give our
Sales_item class a new constructor that takes a string representing the isbn , an unsigned
representing the number of books sold, and a double representing the price at which each of
these books was sold:

     Sales_item(const std::string &book, int cnt, double price):
         isbn(book), units_sold(cnt), revenue(cnt * price) { }

This initializer for revenue uses the parameters representing price and number sold to calculate
the object's revenue member.



Initializers for Data Members of Class Type

When we initialize a member of class type, we are specifying arguments to be passed to one of
the constructors of that member's type. We can use any of that type's constructors. For
example, our Sales_item class could initialize isbn using any of the string constructors (Section
9.6.1 , p. 338 ). Instead of using the empty string, we might decide that the default value for
isbn should be a value that represents an impossibly high value for an ISBN. We could initialize
isbn to a string of ten 9s:

     // alternative definition for Sales_item default constructor
     Sales_item(): isbn(10, '9'), units_sold(0), revenue(0.0) {}

This initializer uses the string constructor that takes a count and a character and generates a
string holding that character repeated that number of times.

Exercises Section 12.4.1

Exercise
12.21:

Write the default constructor using a constructor initializer for
class that contains the following members: a const string , an
int , a double* , and an ifstream& . Initialize the string to
hold the name of the class.

Exercise
12.22:

The following initializer is in error. Identify and fix the
problem.

     struct X {
         X (int i, int j): base(i), rem(base % j) { }
         int rem, base;
     };

Exercise
12.23:

Assume we have a class named NoDefault that has a
constructor that takes an int but no default constructor.
Define a class C that has a member of type NoDefault . Define
the default constructor for C .

12.4.2. Default Arguments and Constructors

Let's look again at our definitions for the default constructor and the constructor that takes a
string :

     Sales_item(const std::string &book):
               isbn(book), units_sold(0), revenue(0.0) { }



     Sales_item(): units_sold(0), revenue(0.0) { }

These constructors are almost the same: The only difference is that the constructor that takes a
string parameter uses the parameter to initialize isbn . The default constructor (implicitly) uses
the string default constructor to initialize isbn .

We can combine these constructors by supplying a default argument for the string initializer:

     class Sales_item {
     public:
         // default argument for book is the empty string
         Sales_item(const std::string &book = ""):
                   isbn(book), units_sold(0), revenue(0.0) { }
         Sales_item(std::istream &is);
         // as before
     };

Here we define only two constructors, one of which provides a default argument for its
parameter. The constructor that takes a default argument for its single string parameter will be
run for either of these definitions:

     Sales_item empty;
     Sales_item Primer_3rd_Ed("0-201-82470-1");

In the case of empty , the default argument is used, whereas Primer_3rd_ed supplies an explicit
argument.

Each version of our class provides the same interface: They both initialize a Sales_item to the
same values given a string or given no initializer.

We prefer to use a default argument because it reduces
code duplication.

12.4.3. The Default Constructor

The default constructor is used whenever we define an object but do not supply an initializer. A
constructor that supplies default arguments for all its parameters also defines the default
constructor.



The Synthesized Default Constructor

If a class defines even one constructor, then the compiler will not generate the default
constructor. The basis for this rule is that if a class requires control to initialize an object in one
case, then the class is likely to require control in all cases.

Exercises Section 12.4.2

Exercise
12.24:

Using the version of Sales_item from page 458 that defined
two constructors, one of which has a default argument for its
single string parameter, determine which constructor is used
to initialize each of the following variables and list the values
of the data members in each object:

     Sales_item first_item(cin);

     int main() {
         Sales_item next;
         Sales_item last("9-999-99999-9");
     }

Exercise
12.25:

Logically, we might want to supply cin as a default argument
to the constructor that takes an istream& . Write the
constructor declaration that uses cin as a default argument.

Exercise
12.26:

Would it be legal for both the constructor that takes a string
and the one that takes an istream& to have default
arguments? If not, why not?

The compiler generates a default constructor automatically only if a
class defines no constructors.

The synthesized default constructor initializes members using the same rules as those that
apply for how variables are initialized. Members that are of class type are initialized by running
each member's own default constructor. Members of built-in or compound type, such as
pointers and arrays, are initialized only for objects that are defined at global scope. When
objects are defined at local scope, then members of built-in or compound type are uninitialized .



If a class contains data members of built-in or compound
type, then the class should not rely on the synthesized
default constructor. It should define its own constructor to
initialize these members.

Moreover, every constructor should provide initializers for members of built-in or compound
type. A constructor that does not initialize a member of built-in or compound type leaves that
member in an undefined state. Using an undefined member in any way other than as the target
of an assignment is an error. If every constructor sets every member to an explicit, known
state, then member functions can distinguish between an empty object and one that has actual
values.

Classes Should Usually Define a Default Constructor

In certain cases, the default constructor is applied implicitly by the compiler. If the class has no
default constructor, then the class may not be used in these contexts. To illustrate the cases
where a default constructor is required, assume we have a class named NoDefault that does not
define its own default constructor but does have a constructor that takes a string argument.
Because the class defines a constructor, the compiler will not synthesize the default constructor.
The fact that NoDefault has no default constructor means:

Every constructor for every class that has a NoDefault member must explicitly initialize the
NoDefault member by passing an initial string value to the NoDefault constructor.

1.

The compiler will not synthesize the default constructor for classes that have members of
type NoDefault . If such classes want to provide a default, they must define one explicitly,
and that constructor must explicitly initialize their NoDefault member.

2.

The NoDefault type may not be used as the element type for a dynamically allocated array.3.

Statically allocated arrays of type NoDefault must provide an explicit initializer for each
element.

4.

If we have a container such as vector that holds NoDefault objects, we cannot use the
constructor that takes a size without also supplying an element initializer.

5.

In practice, it is almost always right to provide a default
constructor if other constructors are being defined.
Ordinarily the initial values given to the members in the
default constructor should indicate that the object is
"empty."



Using the Default Constructor

A common mistake among programmers new to C++ is to declare
an object initialized with the default constructor as follows:

     // oops! declares a function, not an object
     Sales_item myobj();

The declaration of myobj compiles without complaint. However, when we try to use myobj

     Sales_item myobj();   // ok: but defines a function, not an object

     if (myobj.same_isbn(Primer_3rd_ed))   // error: myobj is a function

the compiler complains that we cannot apply member access notation to a function! The
problem is that our definition of myobj is interpreted by the compiler as a declaration of a
function taking no parameters and returning an object of type Sales_item hardly what we
intended! The correct way to define an object using the default constructor is to leave off the
trailing, empty parentheses:

     // ok: defines a class object ...
     Sales_item myobj;

On the other hand, this code is fine:

     // ok: create an unnamed, empty Sales_itemand use to initialize myobj
     Sales_item myobj = Sales_item();

Here we create and value-initialize a Sales_item object and to use it to initialize myobj . The
compiler value-initializes a Sales_item by running its default constructor.



Exercises Section 12.4.3

Exercise
12.27:

Which, if any, of the following statements are untrue? Why?

A class must provide at least one constructor.a.

A default constructor is a constructor with no parameters
for its parameter list.

b.

If there are no meaningful default values for a class, the
class should not provide a default constructor.

c.

If a class does not define a default constructor, the
compiler generates one automatically, initializing each
data member to the default value of its associated type.

d.

12.4.4. Implicit Class-Type Conversions

As we saw in Section 5.12 (p. 178 ), the language defines several automatic conversions among
the built-in types. We can also define how to implicitly convert an object from another type to
our class type or to convert from our class type to another type. We'll see in Section 14.9 (p.
535 ) how to define conversions from a class type to another type. To define an implicit
conversion to a class type, we need to define an appropriate constructor.

A constructor that can be called with a single argument defines an
implicit conversion from the parameter type to the class type.

Let's look again at the version of Sales_item that defined two constructors:

     class Sales_item {
     public:
         // default argument for book is the empty string
         Sales_item(const std::string &book = ""):
                   isbn(book), units_sold(0), revenue(0.0) { }
         Sales_item(std::istream &is);
         // as before
      };



Each of these constructors defines an implicit conversion. Accordingly, we can use a string or
an istream where an object of type Sales_item is expected:

     string null_book = "9-999-99999-9";

     // ok: builds a Sales_itemwith 0 units_soldand revenue from

     // and isbn equal to null_book
     item.same_isbn(null_book);

This program uses an object of type string as the argument to the Sales_item same_isbn
function. That function expects a Sales_item object as its argument. The compiler uses the
Sales_item constructor that takes a string to generate a new Sales_item object from null_book
. That newly generated (temporary) Sales_item is passed to same_isbn .

Whether this behavior is desired depends on how we think our users will use the conversion. In
this case, it might be a good idea. The string in book probably represents a nonexistent ISBN ,
and the call to same_isbn can detect whether the Sales_item in item represents a null Sales_item
. On the other hand, our user might have mistakenly called same_isbn on null_book .

More problematic is the conversion from istream to Sales_item:

     // ok: uses the Sales_item istream constructor to build an object

      // to pass to same_isbn
     item.same_isbn(cin);

This code implicitly converts cin to a Sales_item . This conversion executes the Sales_item
constructor that takes an istream . That constructor creates a (temporary) Sales_item object by
reading the standard input. That object is then passed to same_isbn .

This Sales_item object is a temporary (Section 7.3.2 , p. 247 ). We have no access to it once
same_isbn finishes. Effectively, we have constructed an object that is discarded after the test is
complete. This behavior is almost surely a mistake.

Supressing Implicit Conversions Defined by Constructors

We can prevent the use of a constructor in a context that requries an implicit conversion by
declaring the constructor explicit :

     class Sales_item {
     public:
         // default argument for book is the empty string
         explicit Sales_item(const std::string &book = ""):
                   isbn(book), units_sold(0), revenue(0.0) { }
         explicit Sales_item(std::istream &is);
         // as before
     };

The explicit keyword is used only on the constructor declaration inside the class. It is not
repeated on a definition made outside the class body:



     // error: explicit allowed only on constructor declaration in class header
     explicit Sales_item::Sales_item(istream& is)
     {

         is >> *this; // uses Sales_iteminput operator to read the members
     }

Now, neither constructor can be used to implicitly create a Sales_item object. Neither of our
previous uses will compile:

     item.same_isbn(null_book); // error: string constructor is explicit

     item.same_isbn(cin);       // error: istream constructor is explicit

When a constructor is declared explicit , the compiler will not use
it as a conversion operator.

Explicitly Using Constructors for Conversions

An explicit constructor can be used to generate a conversion as long as we do so explicitly:

     string null_book = "9-999-99999-9";

     // ok: builds a Sales_itemwith 0 units_soldand revenue from

     // and isbn equal to null_book
     item.same_isbn(Sales_item(null_book));

In this code, we create a Sales_item from null_book . Even though the constructor is explicit ,
this usage is allowed. Making a constructor explicit turns off only the use of the constructor
implicitly. Any constructor can be used to explicitly create a temporary object.

Ordinarily, single-parameter constructors should be
explicit unless there is an obvious reason to want to
define an implicit conversion. Making constructors
explicit may avoid mistakes, and a user can explicitly
construct an object when a conversion is useful.



Exercises Section 12.4.4

Exercise
12.28:

Explain whether the Sales_item constructor that takes a
string should be explicit. What would be the benefits of
making the constructor explicit? What would be the
drawbacks?

Exercise
12.29:

Explain what operations happen during the following
definitions:

     string null_isbn = "9-999-99999-9";
     Sales_item null1(null_isbn);
     Sales_item null("9-999-99999-9");

Exercise
12.30:

Compile the following code:

     f(const vector<int>&);
     int main() {
         vector<int> v2;
         f(v2);  // should be ok
         f(42);  // should be an error
         return 0;
     }

What can we infer about the vector constructors based on the
error on the second call to f ? If the call succeeded, then what
would you conclude?

12.4.5. Explicit Initialization of Class Members

Although most objects are initialized by running an appropriate constructor, it is possible to
initialize the data members of simple nonabstract classes directly. Members of classes that
define no constructors and all of whose data members are public may be initialized in the same
way that we initialize array elements:

     struct Data {
         int ival;
         char *ptr;
     };

     // val1.ival = 0; val1.ptr = 0
     Data val1 = { 0, 0 };

     // val2.ival = 1024;



     // val2.ptr = "Anna Livia Plurabelle"
     Data val2 = { 1024, "Anna Livia Plurabelle" };

The initializers are used in the declaration order of the data members. The following, for
example, is an error because ival is declared before ptr :

     // error: can't use "Anna Livia Plurabelle" to initialize the int ival
     Data val2 = { "Anna Livia Plurabelle" , 1024 };

This form of initialization is inherited from C and is supported for compatibility with C programs.
There are three significant drawbacks to explicitly initializing the members of an object of class
type:

It requires that all the data members of the class be public .1.

It puts the burden on the programmer to initialize every member of every object. Such
initialization is tedious and error-prone because it is easy to forget an initializer or to
supply an inappropriate initializer.

2.

If a member is added or removed, all initializations have to be found and updated
correctly.

3.

It is almost always better to define and use constructors.
When we provide a default constructor for the types we
define, we allow the compiler to automatically run that
constructor, ensuring that every class object is properly
initialized prior to the first use of that object.

Exercises Section 12.4.5

Exercise
12.31:

The data members of pair are public , yet this code doesn't
compile. Why?

     pair<int, int> p2 = {0, 42}; // doesn't compile, why?



 



 

12.5. Friends

In some cases, it is convenient to let specific nonmember functions access the private members
of a class while still preventing general access. For example, over-loaded operators, such as the
input or output operators, often need access to the private data members of a class. For
reasons we'll see in Chapter 14 these operators might not be members of the class. Yet, even if
they are not members of the class, they are "part of the interface" to the class.

The friend mechanism allows a class to grant access to its nonpublic members to specified

functions or classes. A friend declaration begins with the keyword friend . It may appear only
within a class definition. Friend declarations may appear anywhere in the class: Friends are not
members of the class granting friendship, and so they are not affected by the access control of
the section in which they are declared.

Ordinarily it is a good idea to group friend declarations together
either at the beginning or end of the class definition.

Friendship: An Example

Imagine that in addition to the Screen class we had a window manager that manages a group of
Screen s on a given display. That class logically might need access to the internal data of the
Screen objects it manages. Assuming that Window_Mgr is the name of the window-management
class, Screen could let Window_Mgr access its members as follows:

     class Screen {
         // Window_Mgr members can access private parts of class Screen
         friend class Window_Mgr;

         // ...restofthe Screen class
     };

The members of Window_Mgr can refer directly to the private members of Screen . For example,
Window_Mgr might have a function to relocate a Screen :

     Window_Mgr&
     Window_Mgr::relocate(Screen::index r, Screen::index c,
                          Screen& s)
     {
          // ok to refer to height and width
          s.height += r;
          s.width += c;



          return *this;
     }

In absence of the friend declaration, this code would be in error: It would not be allowed to use
the height and width members of its parameter named s . Because Screen grants friendship to
Window_Mgr , all the members of Screen are accessible to the functions in Window_Mgr .

A friend may be an ordinary, nonmember function, a member function of another previously
defined class, or an entire class. In making a class a friend, all the member functions of the
friend class are given access to the nonpublic members of the class granting friendship.

Making Another Class' Member Function a Friend

Instead of making the entire Window_Mgr class a friend, Screen could have specified that only the
relocate member was allowed access:

     class Screen {

         // Window_Mgrmust be defined before class Screen
         friend Window_Mgr&
             Window_Mgr::relocate(Window_Mgr::index,
                                  Window_Mgr::index,
                                  Screen&);

         // ...restofthe Screen class
     };

When we declare a member function to be a friend, the name of the function must be qualified
by the name of the class of which it is a member.

Friend Declarations and Scope

Interdependencies among friend declarations and the definitions of the friends can require some
care in order to structure the classes correctly. In the previous example, class Window_Mgr must
have been defined. Otherwise, class Screen could not name a Window_Mgr function as a friend.
However, the relocate function itself can't be defined until class Screen has been definedafter
all, it was made a friend in order to access the members of class Screen .

More generally, to make a member function a friend, the class containing that member must
have been defined. On the other hand, a class or nonmember function need not have been
declared to be made a friend.

A friend declaration introduces the named class or nonmember
function into the surrounding scope. Moreover, a friend function
may be defined inside the class. The scope of the function is
exported to the scope enclosing the class definition.



Class names and functions (definitions or declarations) introduced in a friend can be used as if
they had been previously declared:

     class X {
         friend class Y;
         friend void f() { /* ok to define friend function in the class body */ }
     };
     class Z {

         Y *ymem; // ok: declaration for class Y introduced by friend in X

         void g() { return ::f(); } // ok: declaration of f introduced by X
     };

Overloaded Functions and Friendship

A class must declare as a friend each function in a set of overloaded functions that it wishes to
make a friend:

     // overloaded storeOn functions
     extern std::ostream& storeOn(std::ostream &, Screen &);
     extern BitMap& storeOn(BitMap &, Screen &);
     class Screen {

         // ostream version of storeOn may access private parts of Screen objects
         friend std::ostream& storeOn(std::ostream &, Screen &);
         // ...
     };

Class Screen makes the version of storeOn that takes an ostream& its friend. The version that
takes a BitMap& has no special access to Screen .

Exercises Section 12.5

Exercise
12.32:

What is a friend function? A friend class?

Exercise
12.33:

When are friends useful? Discuss the pros and cons of using
friends.

Exercise
12.34:

Define a nonmember function that adds two Sales_item
objects.

Exercise
12.35:

Define a nonmember function that reads an istream and stores
what it reads into a Sales_item .



 



 

12.6. static Class Members

It is sometimes necessary for all the objects of a particular class type to access a global object.
Perhaps a count is needed of how many objects of a particular class type have been created at
any one point in the program, or the global object may be a pointer to an error-handling routine
for the class, or it may be a pointer to the free-store memory for objects of this class type.

However, making the object global violates encapsulation: The object exists to support the
implementation of a particular class abstraction. If the object is global, general user code can
modify the value. Rather than defining a generally accessible global object, a class can define a
class static member .

Ordinary, nonstatic data members exist in each object of the class type. Unlike ordinary data
members, a static data member exists independently of any object of its class; each static
data member is an object associated with the class, not with the objects of that class.

Just as a class may define shared static data members, it may also define static member
functions. A static member function has no this parameter. It may directly access the static
members of its class but may not directly use the nonstatic members.

Advantages of Using Class static Members

There are three advantages to using static members rather than globals:

The name of a static member is in the scope of the class, thereby avoiding name
collisions with members of other classes or global objects.

1.

Encapsulation can be enforced. A static member can be a private member; a global object
cannot.

2.

It is easy to see by reading the program that a static member is associated with a
particular class. This visibility clarifies the programmer's intentions.

3.

Defining static Members

Amember ismade static by prefixing the member declaration with the keyword static . The
static members obey the normal public/private access rules.

As an example, consider a simple class intended to represent a bank account. Each account has
a balance and an owner. Each account earns interest monthly, but the interest rate applied to
each account is always the same. We could write this class as

     class Account {
     public:
         // interface functions here
         void applyint() { amount += amount * interestRate; }
         static double rate() { return interestRate; }
         static void rate(double); // sets a new rate



     private:
         std::string owner;
         double amount;
         static double interestRate;
         static double initRate();
     };

Each object of this class has two data members: owner and amount . Objects do not have data
members that correspond to static data members. Instead, there is a single interestRate
object that is shared by all objects of type Account .

Using a Class static Member

A static member can be invoked directly from the class using the scope operator or indirectly
through an object, reference, or pointer to an object of its class type.

     Account ac1;
     Account *ac2 = &ac1;

     // equivalent ways to call the static member rate function
     double rate;

     rate = ac1.rate();        // through an Account object or reference

     rate = ac2->rate();       // through a pointer to an Account object
     rate = Account::rate();   // directly from the class using the scope operator

As with other members, a class member function can refer to a class static member without
the use of the scope operator:

     class Account {
     public:
          // interface functions here
          void applyint() { amount += amount * interestRate; }
     };

Exercises Section 12.6

Exercise
12.36:

What is a static class member? What are the advantages of
static members? How do they differ from ordinary members?

Exercise
12.37:

Write your own version of the Account class.



12.6.1. static Member Functions

Our Account class has two static member functions named rate , one of which was defined
inside the class. When we define a static member outside the class, we do not respecify the
static keyword. The keyword appears only with the declaration inside the class body:

     void Account::rate(double newRate)
     {
         interestRate = newRate;
     }

static Functions Have No this Pointer

A static member is part of its class but not part of any object. Hence, a static member
function does not have a this pointer. Referring to this either explicitly or implicitly by using a
nonstatic member is a compile-time error.

Because a static member is not part of any object, static member functions may not be
declared as const . After all, declaring a member function as const is a promise not to modify
the object of which the function is a member. Finally, static member functions may also not be
declared as virtual. We'll learn about virtual functions in Section 15.2.4 (p. 566 ).

12.6.2. static Data Members

static data members can be declared to be of any type. They can be const s, references,
arrays, class types, and so forth.

static data members must be defined (exactly once) outside the class body. Unlike ordinary
data members, static members are not initialized through the class constructor(s) and instead
should be initialized when they are defined.

Exercises Section 12.6.1



Exercise
12.38:

Define a class named Foo that has a single data member of
type int . Give the class a constructor that takes an int value
and initializes the data member from that value. Give it a
function that returns the value of its data member.

Exercise
12.39:

Given the class Foo defined in the previous exercise, define
another class Bar with two static data elements: one of type
int and another of type Foo .

Exercise
12.40:

Using the classes from the previous two exercises, add a pair
of static member functions to class Bar . The first static ,
named FooVal , should return the value of class Bar 's static
member of type Foo . The second member, named
callsFooVal , should keep a count of how many times xval is
called.

The best way to ensure that the object is defined exactly once
is to put the definition of static data members in the same file
that contains the definitions of the class noninline member
functions.

static data members are defined in the same way that other class members and other
variables are defined. The member is defined by naming its type followed by the fully qualified
name of the member.

We might define interestRate as follows:

     // define and initialize static class member
     double Account::interestRate = initRate();

This statement defines the static object named interestRate that is a member of class Account
and has type double . Like other member definitions, the definition of a static member is in
class scope once the member name is seen. As a result, we can use the static member function
named initRate directly without qualification as the initializer for rate . Note that even though
initRate is private , we can use this function to initialize interestRate . The definition of
interestRate , like any other member definition, is in the scope of the class and hence has
access to the private members of the class.



As with any class member, when we refer to a class static member
outside the class body, we must specify the class in which the
member is defined. The static keyword, however, is used only on
the declaration inside the class body. Definitions are not labeled
static .

Integral const static Members Are Special

Ordinarily, class static members, like ordinary data members, cannot be initialized in the class
body. Instead, static data members are normally initialized when they are defined.

One exception to this rule is that a const static data member of integral type can be initialized
within the class body as long as the initializer is a constant expression:

     class Account {
     public:
         static double rate() { return interestRate; }
         static void rate(double);  // sets a new rate
     private:
         static const int period = 30; // interest posted every 30 days

         double daily_tbl[period]; // ok: period is constant expression
     };

A const static data member of integral type initialized with a constant value is a constant
expression. As such, it can be used where a constant expression is required, such as to specify
the dimension for the array member daily_tbl .

When a const static data member is initialized in the class body,
the data member must still be defined outside the class definition.

When an initializer is provided inside the class, the definition of the member must not specify an
initial value:

     // definition of static member with no initializer;
     // the initial value is specified inside the class definition
     const int Account::period;

static Members Are Not Part of Class Objects



Ordinary members are part of each object of the given class. static members exist
independently of any object and are not part of objects of the class type. Because static data
members are not part of any object, they can be used in ways that would be illegal for
nonstatic data members.

As an example, the type of a static data member can be the class type of which it is a member.
A nonstatic data member is restricted to being declared as a pointer or a reference to an object
of its class:

     class Bar {
     public:
         // ...
     private:
         static Bar mem1; // ok
         Bar *mem2;       // ok
         Bar mem3;        // error
     };

Similarly, a static data member can be used as a default argument:

     class Screen {
     public:
         // bkground refers to the static member
         // declared later in the class definition
         Screen& clear(char = bkground);
     private:
         static const char bkground = '#';
     };

A nonstatic data member may not be used as a default argument because its value cannot be
used independently of the object of which it is a part. Using a nonstatic data member as a
default argument provides no object from which to obtain the member's value and so is an
error.



Exercises Section 12.6.2

Exercise
12.41:

Given the classes Foo and Bar that you wrote for the exercises
to Section 12.6.1 (p. 470 ), initialize the static members of
Foo . Initialize the int member to 20 and the Foo member to
0.

Exercise
12.42:

Which, if any, of the following static data member
declarations and definitions are errors? Explain why.

     // example.h
     class Example {
     public:
         static double rate = 6.5;

         static const int vecSize = 20;
         static vector<double> vec(vecSize);
     };

     // example.C
     #include "example.h"
     double Example::rate;
     vector<double> Example::vec;

 



 

Chapter Summary

Classes are the most fundamental feature in C++. Classes let us define new types that are
tailored to our own applications, making our programs shorter and easier to modify.

Data abstractionthe ability to define both data and function membersand encapsulationthe
ability to protect class members from general accessare fundamental to classes. Member
functions define the interface to the class. We encapsulate the class by making the data and
functions used by the implementation of a class private .

Classes may define constructors, which are special member functions that control how objects of
the class are initialized. Constructors may be overloaded. Every constructor should initialize
every data member. Constructors should use a constructor initializer list to initialize the data
members. Initializer lists are lists of namevalue pairs where the name is a member and the
value is an initial value for that member.

Classes may grant access to their nonpublic members to other classes or functions. A class
grants access by making the class or function a friend.

Classes may also define mutable or static members. A mutable member is a data member that
is never const ; its value may be changed inside a const member function. A static member
can be either function or data; static members exist independently of the objects of the class
type.

 



 

Defined Terms

abstract data type

A data structure that uses encapsulation to hide its implementation, allowing
programmers using the type to think abstractly about what the type does rather than
concretely about how the type is represented. Classes in C++ can be used to define
abstract data types.

access label

A public or private label that defines whether the following members are accessible to
users of the class or only to the friends and members of the class. Each label sets the
access protection for the members declared up to the next label. Labels may appear
multiple times within the class.

class

C++ mechanism for defining our own abstract data types. Classes may have data,
function or type members. A class defines a new type and a new scope.

class declaration

A class may be declared before it is defined. A class declaration is the keyword class (or
struct ) followed by the class name followed by a semicolon. A class that is declared but
not defined is an incomplete type.

class keyword

In a class defined following the class keyword, the initial implicit access label is private .

class scope

Each class defines a scope. Class scopes are more complicated than other scopesmember
functions defined within the class body may use names that appear after the definition.

concrete class

A class that exposes its implementation.



const member function

A member function that may not change an object's ordinary (i.e., neither static nor
mutable ) data members. The this pointer in a const member is a pointer to const . A
member function may be overloaded based on whether the function is const .

constructor initializer list

Specifies initial values of the data members of a class. The members are initialized to the
values specified in the initializer list before the body of the constructor executes. Class
members that are not initialized in the initializer list are implicitly initialized by using their
default constructor.

conversion constructor

A nonexplicit constructor that can be called with a single argument. A conversion
constructor is used implicitly to convert from the argument's type to the class type.

data abstraction

Programming technique that focuses on the interface to a type. Data abstraction allows
programmers to ignore the details of how a type is represented and to think instead about
the operations that the type can perform. Data abstraction is fundamental to both object-
oriented and generic programming.

default constructor

The constructor that is used when no initializer is specified.

encapsulation

Separation of implementation from interface; encapsulation hides the implementation
details of a type. In C++, encapsulation is enforced by preventing general user access to
the private parts of a class.

explicit constructor

Constructor that can be called with a single argument but that may not be used to
perform an implicit conversion. A constructor is made explicit by prepending the keyword
explicit to its declaration.

forward declaration

Declaration of an as yet undefined name. Most often used to refer to the declaration of a
class that appears prior to the definition of that class. See incomplete type.



friend

Mechanism by which a class grants access to its nonpublic members. Both classes and
functions may be named as friend s. friend s have the same access rights as members.

incomplete type

A type that has been declared but not yet defined. It is not possible use an incomplete
type to define a variable or class member. It is legal to define references or pointers to
incomplete types.

member function

Class member that is a function. Ordinary member functions are bound to an object of the
class type through the implicit this pointer. Static member functions are not bound to an
object and have no this pointer. Member functions may be overloaded, provided that the
versions of the function are distinguished by number or type of their parameters.

mutable data member

Data member that is never const , even when it is a member of a const object. A mutable
member can be changed inside a const function.

name lookup

The process by which the use of a name is matched to its corresponding declaration.

private members

Members defined after a private access label; accessible only to the friends and other
class members. Data members and utility functions used by the class that are not part of
the type's interface are usually declared private .

public members

Members defined after a public access label; public members are accessible to any user
of the class. Ordinarily, only the functions that define the interface to the class should be
defined in the public sections.

static member

Data or function member that is not a part of any object but is shared by all objects of a
given class.



struct keyword

In a class defined following the struct keyword, the initial implicit access label is public .

synthesized default constructor

The default constructor created (synthesized) by the compiler for classes that do not
define any constructors. This constructor initializes members of class type by running that
class's default constructor; members of built-in type are uninitialized.
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Each type, whether a built-in or class type, defines the meaning of a (possibly empty) set of
operations on objects of that type. We can add two int values, run size on a vector , and so
on. These operations define what can be done with objects of the given type.

Each type also defines what happens when objects of the type are created. Initialization of
objects of class type is defined by constructors. Types also control what happens when objects
of the type are copied, assigned, or destroyed. Classes control these actions through special
member functions: the copy constructor, the assignment operator, and the destructor. This
chapter covers these operations.

When we define a new type, we specifyexplicitly or implicitlywhat happens when objects of that
type are copied, assigned, and destroyed. We do so by defining special members: the copy
constructor, the assignment operator, and the destructor. If we do not explicitly define the copy
constructor or the assignment operator, the compiler will (usually) define them for us.

The copy constructor is a special constructor that has a single parameter that is a (usually
const ) reference to the class type. The copy constructor is used explicitly when we define a new
object and initialize it from an object of the same type. It is used implicitly when we pass or
return objects of that type to or from functions.

The destructor is complementary to the constructors: It is applied automatically when an
object goes out of scope or when a dynamically allocated object is deleted. The destructor is
used to free resources acquired when the object was constructed or during the lifetime of the
object. Regardless of whether a class defines its own destructor, the compiler automatically
executes the destructors for the nonstatic data members of the class.

We'll learn more about operator overloading in the next chapter, but in this chapter we cover
the assignment operator . Like constructors, the assignment operator may be overloaded by
specifying different types for the right-hand operand. The version whose right-hand operand is
of the class type is special: If we do not write one, the compiler will synthesize one for us.

Collectively, the copy constructor, assignment operator, and destructor are referred to as copy
control . The compiler automatically implements these operations, but the class may define its
own versions.



Copy control is an essential part of defining any C++ class.
Programmers new to C++ are often confused by having to define
what happens when objects are copied, assigned, or destroyed.
This confusion is compounded because if we do not explicitly define
these operations, the compiler defines them for usalthough they
might not behave as we intend.

Often the compiler-synthesized copy-control functions are finethey do exactly the work that
needs to be done. But for some classes, relying on the default definitions leads to disaster.
Frequently, the most difficult part of implementing the copy-control operations is recognizing
when we need to override the default versions. One especially common case that requires the
class to define its own the copy-control members is if the class has a pointer member.

 



 

13.1. The Copy Constructor

The constructor that takes a single parameter that is a (usually const ) reference to an object of
the class type itself is called the copy constructor. Like the default constructor, the copy
constructor can be implicitly invoked by the compiler. The copy constructor is used to

Explicitly or implicitly initialize one object from another of the same type

Copy an object to pass it as an argument to a function

Copy an object to return it from a function

Initialize the elements in a sequential container

Initialize elements in an array from a list of element initializers

Forms of Object Definition

Recall that C++ supports two forms of initialization (Section 2.3.3 , p. 48 ): direct and copy.
Copy-initialization uses the = symbol, and direct-initialization places the initializer in
parentheses.

The copy and direct forms of initialization, when applied to objects of class type, are subtly
different. Direct-initialization directly invokes the constructor matched by the arguments. Copy-
initialization always involves the copy constructor. Copy-initialization first uses the indicated
constructor to create a temporary object (Section 7.3.2 , p. 247 ). It then uses the copy
constructor to copy that temporary into the one we are creating:

     string null_book = "9-999-99999-9"; // copy-initialization
     string dots(10, '.');               // direct-initialization

     string empty_copy = string();       // copy-initialization
     string empty_direct;                // direct-initialization

For objects of class type, copy-initialization can be used only when specifying a single argument
or when we explicitly build a temporary object to copy.

When dots is created, the string constructor that takes a count and a character is called and
directly initializes the members in dots . To create null_book , the compiler first creates a
temporary by invoking the string constructor that takes a C-style character string parameter.
The compiler then uses the string copy constructor to initialize null_book as a copy of that
temporary.

The initialization of empty_copy and empty_direct both call the string default constructor. In the
first case, the default constructor creates a temporary object, which is then used by the copy
constructor to initialize empty_copy . In the second case, the default constructor is run directly
on empty_direct .

The copy form of initialization is primarily supported for compatibility with C usage. When it can



do so, the compiler is permitted (but not obligated) to skip the copy constructor and create the
object directly.

Usually the difference between direct- or copy-initialization is at most a matter of low-level
optimization. However, for types that do not support copying, or when using a constructor that
is nonexplicit (Section 12.4.4 , p. 462 ) the distinction can be essential:

     ifstream file1("filename"); // ok: direct initialization

     ifstream file2 = "filename"; // error: copy constructor is private
     // This initialization is okay only if

     // the Sales_item(const string&) constructor is not explicit
     Sales_item item = string("9-999-99999-9");

The initialization of file1 is fine. The ifstream class defines a constructor that can be called with
a C-style string. That constructor is used to initialize file1 .

The seemingly equivalent initialization of file2 uses copy-initialization. That definition is not
okay. We cannot copy objects of the IO types (Section 8.1 , p. 287 ), so we cannot use copy-
initialization on objects of these types.

Whether the initialization of item is okay depends on which version of our Sales_item class we
are using. Some versions define the constructor that takes a string as explicit . If the
constructor is explicit, then the initialization fails. If the constructor is not explicit, then the
initialization is fine.

Parameters and Return Values

As we know, when a parameter is a nonreference type (Section 7.2.1 , p. 230 ), the argument is
copied. Similarly, a nonreference return value (Section 7.3.2 , p. 247 ) is returned by copying
the value in the return statement.

When the parameter or return type is a class type, the copy is done by the copy constructor. For
example, consider our make_plural function from page 248 :

     // copy constructor used to copy the return value;
     // parameters are references, so they aren't copied
     string make_plural(size_t, const string&, const string&);

This function implicitly uses the string copy constructor to return the plural version of a given
word. The parameters are const references; they are not copied.

Initializing Container Elements

The copy constructor is used to initialize the elements in a sequential container. For example,
we can initialize a container using a single parameter that represents a size (Section 3.3.1 , p.
92 ). This form of construction uses both the default constructor and the copy constructor for
the element container:

     // default string constructor and five string copy constructors invoked



     vector<string> svec(5);

The compiler initializes svec by first using the default string constructor to create a temporary
value. The copy constructor is then used to copy the temporary into each element of svec .

As a general rule (Section 9.1.1 , p. 307 ), unless you intend to
use the default initial value of the container elements, it is more
efficient to allocate an empty container and add elements as
the values for those elements become known.

Constructors and Array Elements

If we provide no element initializers for an array of class type, then the default constructor is
used to initialize each element. However, if we provide explicit element initializers using the
normal brace-enclosed array initialization list (Section 4.1.1 , p. 111 ), then each element is
initialized using copy-initialization. An element of the appropriate type is created from the
specified value, and then the copy constructor is used to copy that value to the corresponding
element:

     Sales_item primer_eds[] = { string("0-201-16487-6"),
                                 string("0-201-54848-8"),
                                 string("0-201-82470-1"),
                                 Sales_item()
                               };

A value that can be used to invoke a single-argument constructor for the element type can be
specified directly, as in the initializers for the first three elements. If we wish to specify no
arguments or multiple arguments, we need to use the full constructor syntax, as we do in the
initializer for the last element.



Exercises Section 13.1

Exercise
13.1:

What is a copy constructor? When is it used?

Exercise
13.2:

The second initialization below fails to compile. What can we
infer about the definition of vector ?

[View full width]
     vector<int> v1(42);  // ok: 42 elements, each 0
     vector<int> v2 = 42; // error: what does this error tell us

 about vector?

Exercise
13.3:

Assuming Point is a class type with a public copy constructor,
identify each use of the copy constructor in this program
fragment:

     Point global;

     Point foo_bar(Point arg)
     {
          Point local = arg;
          Point *heap = new Point(global);
          *heap = local;
          Point pa[ 4 ] = { local, *heap };
          return *heap;
     }

13.1.1. The Synthesized Copy Constructor

If we do not otherwise define the copy constructor, the compiler synthesizes one for us. Unlike
the synthesized default constructor (Section 12.4.3 , p. 458 ), a copy constructor is synthesized
even if we define other constructors. The behavior of the synthesized copy constructor is to
memberwise initialize the new object as a copy of the original object.

By memberwise, we mean that taking each nonstatic member in turn, the compiler copies the
member from the existing object into the one being created. With one exception, the type of
each member determines what it means to copy it. The synthesized copy constructor directly
copies the value of members of built-in type. Members of class type are copied by using the
copy constructor for that class. The one exception concerns array members. Even though we
ordinarily cannot copy an array, if a class has a member that is an array, then the synthesized
copy constructor will copy the array. It does so by copying each element.

The simplest conceptual model of memberwise initialization is to think of the synthesized copy
constructor as one in which each data member is initialized in the constructor initializer list. For



example, given our Sales_item class, which has three data members

     class Sales_item {
     // other members and constructors as before
     private:
         std::string isbn;
         int units_sold;
         double revenue;
     };

the synthesized Sales_item copy constructor would look something like:

     Sales_item::Sales_item(const Sales_item &orig):

         isbn(orig.isbn),              // uses string copy constructor

         units_sold(orig.units_sold),  // copies orig.units_sold

         revenue(orig.revenue)         // copy orig.revenue
         {    }                        // empty body

13.1.2. Defining Our Own Copy Constructor

The copy constructor is the constructor that takes a single parameter that is a (usually const )
reference to the class type:

     class Foo {
     public:

        Foo();           // default constructor

        Foo(const Foo&); // copy constructor
        // ...
     };

Usually the parameter is a const reference, although we can also define the copy constructor to
take a nonconst reference. Because the constructor is used (implicitly) to pass and return
objects to and from functions, it usually should not be made explicit (Section 12.4.4 , p. 462 ).
The copy constructor should copy the members from its argument into the object that is being
constructed.

For many classes, the synthesized copy constructor does exactly the work that is needed.
Classes that contain only members that are of class type or members that are of built-in (but
not pointer type) often can be copied without explicitly defining the copy constructor.

However, some classes must take control of what happens when objects are copied. Such
classes often have a data member that is a pointer or that represents another resource that is
allocated in the constructor. Other classes have bookkeeping that must be done whenever a
new object is created. In both these cases, the copy constructor must be defined.

Often the hardest part about defining a copy constructor is recognizing that a copy constructor
is needed. Defining the constructor is usually pretty easy once the need for the constructor is
recognized. The copy constructor itself is defined like any other constructor: It has the same
name as the name of the class, it has no return value, it may (should) use a constructor



initializer to initialize the members of the newly created object, and it may do any other
necessary work inside a function body.

We'll look at examples of classes that require class-defined copy constructors in later sections.
Section 13.4 (p. 486 ) looks at a pair of classes that require an explicit copy constructor to
handle bookkeeping associated with a simple message-handling application; classes with
members that are pointers are covered in Section 13.5 (p. 492 ).

Exercises Section 13.1.2

Exercise
13.4:

Given the following sketch of a class, write a copy constructor that
copies all the elements. Copy the object to which pstring points, not
the pointer.

     struct NoName {
         NoName(): pstring(new std::string), i(0), d(0) { }
     private:
         std::string *pstring;
         int    i;
         double d;
     };

Exercise
13.5:

Which class definition is likely to need a copy constructor?

A Point3w class containing four float membersa.

A Matrix class in which the actual matrix is allocated dynamically
within the constructor and is deleted within its destructor

b.

A Payroll class in which each object is provided with a unique IDc.

A Word class containing a string and a vector of line and column
location pairs

d.

Exercise
13.6:

The parameter of the copy constructor does not strictly need to be
const , but it does need to be a reference. Explain the rationale for
this restriction. For example, explain why the following definition
could not work.

     Sales_item::Sales_item(const Sales_item rhs);

13.1.3. Preventing Copies



Some classes need to prevent copies from being made at all. For example, the iostream classes
do not permit copying (Section 8.1 , p. 287 ). It might seem that if we want to forbid copies, we
could omit the copy constructor. However, if we don't define a copy constructor, the compiler
will synthesize one.

To prevent copies, a class must explicitly declare its copy
constructor as private .

If the copy constructor is private, then user code will not be allowed to copy objects of the class
type. The compiler will reject any attempt to make a copy.

However, the friends and members of the class could still make copies. If we want to prevent
copies even within the friends and members, we can do so by declaring a (private ) copy
constructor but not defining it.

It is legal to declare but not define a member function. However, any attempt to use an
undefined member results in a link-time failure. By declaring (but not defining) a private copy
constructor, we can forestall any attempt to copy an object of the class type: Attempts to make
copies in user code will be flagged as an error at compile time, and attempts to make copies in
member functions or friends will result in an error at link time.

Most Classes Should Define Copy and Default Constructors

Classes that do not define the default constructor and/or the copy constructor impose serious
limits on users of the class. Objects of classes that do not allow copies may be passed to (or
returned from) a function only as a reference. They also may not be used as elements in a
container.

It is usually best to defineeither implicitly or explicitlythe
default and copy constructors. The default constructor is
synthesized only if there are no other constructors. If the
copy constructor is defined, then the default constructor
must be defined as well.

 



 

13.2. The Assignment Operator

Just as classes control how objects are initialized, they also define what happens when objects
of their type are assigned:

     Sales_item trans, accum;
     trans = accum;

As with the copy constructor, the compiler synthesizes an assignment operator if the class does
not define its own.

Introducing Overloaded Assignment

Before we look at the synthesized assignment operator, we need to know a bit about
overloaded operators , which we cover in detail in Chapter 14 .

Overloaded operators are functions that have the name operator followed by the symbol for the
operator being defined. Hence, we define assignment by defining a function named operator= .
Like any other function, an operator function has a return type and a parameter list. The
parameter list must have the same number of parameters (including the implicit this parameter
if the operator is a member) as the operator has operands. Assignment is binary, so the
operator function has two parameters: The first parameter corresponds to the left-hand
operand, and the second to the right-hand operand.

Most operators may be defined as member or nonmember functions. When an operator is a
member function, its first operand is implicitly bound to the this pointer. Some operators,
assignment among them, must be members of the class for which the operator is defined.
Because assignment must be a member of its class, this is bound to a pointer to the left-hand
operand. The assignment operator, therefore, takes a single parameter that is an object of the
same class type. Usually, the right-hand operand is passed as a const reference.

The return type from the assignment operator should be the same as the return from
assignment for the built-in types (Section 5.4.1 , p. 160 ). Assignment to a built-in type returns
a reference to its left-hand operand. Therefore, the assignment operator also returns a
reference to the same type as its class.

For example, the assignment operator for Sales_item might be declared as

     class Sales_item {
     public:
         // other members as before
         // equivalent to the synthesized assignment operator
         Sales_item& operator=(const Sales_item &);
     };



The Synthesized Assignment Operator

The synthesized assignment operator operates similarly to the synthesized copy constructor.
It performs memberwise assignment : Each member of the right-hand object is assigned to
the corresponding member of the left-hand object. Except for arrays, each member is assigned
in the usual way for its type. For arrays, each array element is assigned.

As an example, the synthesized Sales_item assignment operator would look something like:

     // equivalent to the synthesized assignment operator
     Sales_item&
     Sales_item::operator=(const Sales_item &rhs)
     {
         isbn = rhs.isbn;              // calls string::operator=
         units_sold = rhs.units_sold;  // uses built-in int assignment
         revenue = rhs.revenue;        // uses built-in double assignment
         return *this;
     }

The synthesized assignment operator assigns each member in turn, using the built-in or class-
defined assignment operator as appropriate to the type of the member. The operator returns
*this , which is a reference to the left-hand object.

Copy and Assign Usually Go Together

Classes that can use the synthesized copy constructor usually can use the synthesized
assignment operator as well. Our Sales_item class has no need to define either the copy
constructor or the assignment operator: The synthesized versions of these operators work fine.

However, a class may define its own assignment operator. In general, if a class needs a copy
constructor, it will also need an assignment operator.

In fact, these operations should be thought of as a unit. If we
require one, we almost surely require the other.

We'll see examples of classes that need to define their own assignment operators in Section
13.4 (p. 486 ) and Section 13.5 (p. 492 ).



Exercises Section 13.2

Exercise
13.7:

When does a class need to define an assignment operator?

Exercise
13.8:

For each type listed in the first exercise in Section 13.1.2 (p.
481 ) indicate whether the class would need an assignment
operator.

Exercise
13.9:

The first exercise in Section 13.1.2 (p. 481 ) included a
skeletal definition for class NoName . Determine whether that
class needs an assignment operator. If so, implement it.

Exercise
13.10:

Define an Employee class that contains the employee's name
and a unique employee identifier. Give the class a default
constructor and a constructor that takes a string representing
the employee's name. If the class needs a copy constructor or
assignment operator, implement those functions as well.

 



 

13.3. The Destructor

One purpose of a constructor is to provide for the automatic acquisition of a resource. For
example, a constructor might allocate a buffer or open a file. Having allocated the resource in
the constructor, we need a corresponding operation that automatically deallocates or otherwise
releases the resource. The destructor is a special member function that can be used to do
whatever resource deallocation is needed. It serves as the complement to the constructors of
the class.

When a Destructor Is Called

The destructor is called automatically whenever an object of its class is destroyed:

     // p points to default constructed object
     Sales_item *p = new Sales_item;
     {
                               // new scope

         Sales_item item(*p);  // copy constructor copies *p into item

         delete p;             // destructor called on object pointed to by p

     }                         // exit local scope; destructor called on item

Variables such as item are destroyed automatically when they go out of scope. Hence, the
destructor on item is run when the close curly is encountered.

An object that is dynamically allocated is destroyed only when a pointer pointing to the object is
delete d. If we do not delete a pointer to a dynamically allocated object, then the destructor is
never run on that object. The object will persist forever, leading to a memory leak. Moreover,
any resources used inside the object will also not be released.

The destructor is not run when a reference or a pointer to an object
goes out of scope. The destructor is run only when a pointer to a
dynamically allocated object is delete d or when an actual object
(not a reference to the object) goes out of scope.

Destructors are also run on the elements of class type in a containerwhether a library container
or built-in arraywhen the container is destroyed:

     {
         Sales_item *p = new Sales_item[10]; // dynamically allocated
         vector<Sales_item> vec(p, p + 10);  // local object



         // ...
         delete [] p; // array is freed; destructor run on each element
      }   // vec goes out of scope; destructor run on each element

The elements in the container are always destroyed in reverse order: The element indexed by
size() - 1 is destroyed first, followed by the one indexed by size() - 2 and so on until
element [0] , which is destroyed last.

When to Write an Explicit Destructor

Many classes do not require an explicit destructor. In particular, a class that has a constructor
does not necessarily need to define its own destructor. Destructors are needed only if there is
work for them to do. Ordinarily they are used to relinquish resources acquired in the constructor
or during the lifetime of the object.

A useful rule of thumb is that if a class needs a destructor, it
will also need the assignment operator and a copy constructor.
This rule is often referred to as the Rule of Three , indicating
that if you need a destructor, then you need all three copy-
control members.

A destructor is not limited only to relinquishing resources. A destructor, in general, can perform
any operation that the class designer wishes to have executed subsequent to the last use of an
object of that class.

The Synthesized Destructor

Unlike the copy constructor or assignment operator, the compiler always synthesizes a
destructor for us. The synthesized destructor destroys each nonstatic member in the reverse
order from that in which the object was created. In consequence, it destroys the members in
reverse order from which they are declared in the class. For each member that is of class type,
the synthesized destructor invokes that member's destructor to destroy the object.

Destroying a member of built-in or compound type has no effect. In
particular, the synthesized destructor does not delete the object
pointed to by a pointer member.

How to Write a Destructor



Our Sales_item class is an example of a class that allocates no resources and so does not need
its own destructor. Classes that do allocate resources usually need to define a destructor to free
those resources. The destructor is a member function with the name of the class prefixed by a
tilde (~ ). It has no return value and takes no parameters. Because it cannot specify any
parameters, it cannot be overloaded. Although we can define multiple class constructors, we can
provide only a single destructor to be applied to all objects of our class.

An important difference between the destructor and the copy constructor or assignment
operator is that even if we write our own destructor, the synthesized destructor is still run. For
example, we might write the following empty destructor for class Sales_item:

     class Sales_item {
     public:
        // empty; no work to do other than destroying the members,
        // which happens automatically
         ~Sales_item() { }
        // other members as before
     };

When objects of type Sales_item are destroyed, this destructor, which does nothing, would be
run. After it completes, the synthesized destructor would also be run to destroy the members of
the class. The synthesized destructor destroys the string member by calling the string
destructor, which frees the memory used to hold the isbn . The units_sold and revenue
members are of built-in type, so the synthesized destructor does nothing to destroy them.

 



 

13.4. A Message-Handling Example

As an example of a class that needs to control copies in order to do some bookkeeping, we'll
sketch out two classes that might be used in a mail-handling application. These classes, Message
and Folder , represent, respectively, email (or other) messages and directories in which a
message might appear. A given Message might appear in more than one Folder . We'll have save
and remove operations on Message that save or remove that message in the specified Folder .

Rather than putting a copy of each Message into each Folder , we'll have each Message hold a set of
pointers to the Folder s in which this Message appears. Each Folder will also store pointers to the
Message s it contains. Figure 13.1 (p. 488 ) illustrates the data structure we'll implement.

Figure 13.1. Message and Folder Class Design

When we create a new Message , we will specify the contents of the message but no Folder .
Calling save will put a Message in a Folder .

Exercises Section 13.3



Exercise
13.11:

What is a destructor? What does the synthesized destructor do? When is a
destructor synthesized? When must a class define its own destructor?

Exercise
13.12:

Determine whether the NoName class skteched in the exercises on page 481
, is likely to need a destructor. If so, implement it.

Exercise
13.13:

Determine whether the Employee class, defined in the exercises on page
484 , needs a destructor. If so, implement it.

Exercise
13.14:

A good way to understand copy-control members and constructors is to
define a simple class with these members in which each member prints its
name:

     struct Exmpl {
         Exmpl() { std::cout << "Exmpl()" << std::endl; }
         Exmpl(const Exmpl&)
           { std::cout << "Exmpl(const Exmpl&)" << std::endl; }
     // ...
     };

Write a class like Exmpl , giving it the copy-control members and other
constructors. Now write a program using objects of type Exmpl in various
ways: pass them as non-reference and reference parameters; dynamically
allocate them; put them in containers, and so forth. Studying which
constructors and copy-control members are executed and when can be
helpful in cementing your understanding of these concepts.

Exercise
13.15:

How many destructor calls occur in the following code fragment?

     void fcn(const Sales_item *trans, Sales_item accum)
     {
         Sales_item item1(*trans), item2(accum);
         if (!item1.same_isbn(item2)) return;
         if (item1.avg_price() <= 99) return;
         else if (item2.avg_price() <= 99) return;
         // ...
     }

When we copy a Message , we'll copy both the contents of the original message and the set of
Folder pointers. We must also add a pointer to this Message to each of the Folder s that points to
the original Message .

Assigning one Message to another behaves similarly to copying a Message : After the assignment,
the contents and set of Folder s will be the same. We'll start by removing the existing left-hand
message from the Folder s it was in prior to the assignment. Once the old Message is gone, we'll
copy the contents and set of Folders from the right-hand operand into the left. We'll also have to
add a pointer to the left-hand Message to each Folder in this set.



When we destroy a Message , we must update each Folder that points to the Message . Once the
Message goes away, those pointers will be no good, so we must remove the pointer to this Message
from each Folder in the Message 's own set of Folder pointers.

Looking at this list of operations, we can see that the destructor and the assignment operator
share the work of removing messages from the list of Folder s that had held a given Message .
Similarly, the copy constructor and the assignment operator share the work of adding a Message to
a given list of Folder s. We'll define a pair of private utility functions to do these tasks.

The Message Class

Given this design, we can write a fair bit of our Message class:

     class Message {
     public:

         // folders is initialized to the empty set automatically
         Message(const std::string &str = ""):
                       contents (str) { }

         // copy control: we must manage pointers to this Message

         // from the Folders pointed to by folders
         Message(const Message&);
         Message& operator=(const Message&);
         ~Message();

         // add/remove this Message from specified Folder's set of messages
         void save (Folder&);
         void remove(Folder&);
     private:
         std::string contents;      // actual message text

         std::set<Folder*> folders; // Folders that have this Message

         // Utility functions used by copy constructor, assignment, and destructor:
         // Add this Message to the Folders that point to the parameter
         void put_Msg_in_Folders(const std::set<Folder*>&);

         // remove this Message from every Folder in folders
         void remove_Msg_from_Folders();
     };

The class defines two data members: contents , which is a string that holds the actual message,
and folders , which is a set of pointers to the Folder s in which this Message appears.

The constructor takes a single string parameter representing the contents of the message. The
constructor stores a copy of the message in contents and (implicitly) initializes the set of Folder s
to the empty set. This constructor provides a default argument, which is the empty string, so it
also serves as the Message default constructor.

The utility functions provide the actions shared among the copy-control members. The
put_Msg_in_Folders function adds a copy of its own Message to the Folder s that point to the given
Message . After this function completes, each Folder that points to the parameter will also point to
this Message . This function will be used by both the copy constructor and the assignment operator.

The remove_Msg_from_Folders function is used by the assignment operator and destructor. It
removes the pointer to this Message from each of the Folder s in the folders member.

Copy Control for the Message Class



When we copy a Message , we have to add the newly created Message to each Folder that holds the
Message from which we're copying. This work is beyond what the synthesized constructor would do
for us, so we must define our own copy constructor:

     Message::Message(const Message &m):
         contents(m.contents), folders(m.folders)
     {

         // add this Message to each Folder that points to m
         put_Msg_in_Folders(folders);
     }

The copy constructor initializes the data members of the new object as copies of the members
from the old. In addition to these initializationswhich the synthesized copy constructor would have
done for uswe must also iterate through folders , adding this Message to each Folder in that set.
The copy constructor uses the put_Msg_in_Folder function to do this work.

When we write our own copy constructor, we must explicitly copy any
members that we want copied. An explicitly defined copy constructor
copies nothing automatically.

As with any other constructor, if we do not initialize a class member, then that member is
initialized using the member's default constructor. Default initialization in a copy constructor does
not use the member's copy constructor.

The put_Msg_in_Folders Member

put_Msg_in_Folders iterates through the pointers in the folders member of the parameter rhs .
These pointers denote each Folder that points to rhs . We need to add a pointer to this Message to
each of those Folder s.

The function does this work by looping through rhs.folders , calling the Folder member named
addMsg . That function will do whatever it takes to add a pointer to this Message to that Folder :

     // add this Message to Folders that point to rhs
     void Message::put_Msg_in_Folders(const set<Folder*> &rhs)
     {
         for(std::set<Folder*>::const_iterator beg = rhs.begin();
                                          beg != rhs.end(); ++beg)

             (*beg)->addMsg(this);     // *beg points to a Folder
     }

The only tricky part in this function is the call to addMsg :

     (*beg)->addMsg(this); // *beg points to a Folder



That call starts with (*beg) , which dereferences the iterator. Dereferencing the iterator yields a
pointer to a Folder . The expression then applies the arrow operator to the Folder pointer in order
to run the addMsg operation. We pass this , which points to the Message we want to add to the
Folder .

Message Assignment Operator

Assignment is more complicated than the copy constructor. Like the copy constructor, assignment
must assign the contents and update folders to match that of the right-hand operand. It must
also add this Message to each of the Folder s that points to the rhs . We can use our
put_Msg_in_Folders function to do this part of the assignment.

Before copying from the rhs , we must first remove this Message from each of the Folder s that
currently point to it. We'll need to iterate through folders , removing the pointer to this Message
from each Folder in folders . The function named remove_Msg_from_Folders will do this work.

Given remove_Msg_from_Folders and put_Msg_in_Folders , which do the real work, the assignment
operator itself is fairly simple:

     Message& Message::operator=(const Message &rhs)
     {
         if (&rhs != this) {

             remove_Msg_from_Folders(); // update existing Folders

             contents = rhs.contents;   // copy contents from rhs

             folders = rhs.folders;     // copy Folder pointers from rhs

             // add this Message to each Folder in rhs
             put_Msg_in_Folders(rhs.folders);
         }
         return *this;
     }

The assignment operator starts by checking that the left- and right-hand operands are not the
same. We do this check for reasons that will become apparent as we walk through the rest of the
function. Assuming that the operands are different objects, we call remove_Msg_from_Folders to
remove this Message from each of the Folder s in the folders member. Once that work is done, we
have to assign the contents and folders members from the right-hand operand to this object.
Finally, we call put_Msg_in_Folders to add a pointer to this Message in each of the Folder s that
also point to rhs .

Now that we've seen work that remove_Msg_from_Folders does, we can see why we start the
assignment operator by checking that the objects are different. Assignment involves obliterating
the left-hand operand. Once the members of the left-hand operand are destroyed, those in the
right-hand operand are assigned to the corresponding left-hand members. If the objects were the
same, then destroying the left-hand members would also destroy the right-hand members!



It is crucially important for assignment operators to work correctly,
even when an object is assigned to iself. A common way to ensure
this behavior is by checking explicitly for self-assignment.

The remove_Msg_from_Folders Member

The implementation of the remove_Msg_from_Folders function is similar to that of
put_Msg_in_Folders , except that this time we'll call remMsg to remove this Message from each
Folder pointed to by folders :

     // remove this Message from corresponding Folders
     void Message::remove_Msg_from_Folders()
     {
         // remove this message from corresponding folders
         for(std::set<Folder*>::const_iterator beg =
               folders.begin (); beg != folders.end (); ++beg)

            (*beg)->remMsg(this); // *beg points to a Folder
     }

The Message Destructor

The remaining copy-control function that we must implement is the destructor:

     Message::~Message()
     {
         remove_Msg_from_Folders();
     }

Given the remove_Msg_from_Folders function, writing the destructor is trivial. We call that function
to clean up folders . The system automatically invokes the string destructor to free contents and
the set destructor to clean up the memory used to hold the folders member. Thus, the only work
for the Message destructor is to call remove_Msg_from_Folders .

The assignment operator often does the same work as is
needed in the copy constructor and destructor. In such
cases, the common work should be put in private utility
functions.



Exercises Section 13.4

Exercise
13.16:

Write the Message class as described in this section.

Exercise
13.17:

Add functions to the Message class that are analogous to the
Folder operations addMsg and remMsg . These functions, which
could be named addFldr and remFldr , should take a pointer to a
Folder and insert that pointer into folders . These functions can
be private because they will be used only in the implementation
of the Folder class.

Exercise
13.18:

Write the corresponding Folder class. That class should hold a
set<Message*> that contains elements that point to Message s.

Exercise
13.19:

Add a save and remove operation to the Message and Folder
classes. These operations should take a Folder and add (or
remove) that Folder to (from) the set of Folder s that point to
this Message . The operation must also update the Folder to
know that it points to this Message , which can be done by calling
addMsg or remMsg .

 



 

13.5. Managing Pointer Members

This book generally advocates the use of the standard library. One reason we do so is that using
the standard library greatly reduces the need for pointers in modern C++ programs. However,
many applications still require the use of pointers, particularly in the implementation of classes.
Classes that contain pointers require careful attention to copy control. The reason they must do
so is that copying a pointer copies only the address in the pointer. Copying a pointer does not
copy the object to which the pointer points.

When designing a class with a pointer member, the first decision a class author must make is
what behavior that pointer should provide. When we copy one pointer to another, the two
pointers point to the same object. When two pointers point to the same object, it is possible to
use either pointer to change the underlying object. Similarly, it is possible for one pointer to
delete the object even though the user of the other pointer still thinks the underlying object
exists.

By default, a pointer member has the same behavior as a pointer object. However, through
different copy-control strategies we can implement different behavior for pointer members. Most
C++ classes take one of three approaches to managing pointer members:

The pointer member can be given normal pointerlike behavior. Such classes will have all
the pitfalls of pointers but will require no special copy control.

1.

The class can implement so-called "smart pointer" behavior. The object to which the
pointer points is shared, but the class prevents dangling pointers.

2.

The class can be given valuelike behavior. The object to which the pointer points will be
unique to and managed separately by each class object.

3.

In this section we look at three classes that implement each of these different approaches to
managing their pointer members.

A Simple Class with a Pointer Member

To illustrate the issues involved, we'll implement a simple class that contains an int and a
pointer:

     // class that has a pointer member that behaves like a plain pointer
     class HasPtr {
     public:
         // copy of the values we're given
         HasPtr(int *p, int i): ptr(p), val(i) { }

         // const members to return the value of the indicated data member
         int *get_ptr() const { return ptr; }
         int get_int() const { return val; }

         // non const members to change the indicated data member
         void set_ptr(int *p) { ptr = p; }



         void set_int(int i) { val = i; }

         // return or change the value pointed to, so ok for const objects
         int get_ptr_val() const { return *ptr; }
         void set_ptr_val(int val) const { *ptr = val; }

     private:
         int *ptr;
         int val;
     };

The HasPtr constructor takes two parameters, which it copies into HasPtr 's data members. The
class provides simple accessor functions: The const functions get_int and get_ptr return the
value of the int and pointer members, respectively; the set_int and set_ptr members let us
change these members, giving a new value to the int or making the pointer point to a different
object. We also define the get_ptr_val and set_ptr_val members. These members get and set
the underlying value to which the pointer points.

Default Copy/Assignment and Pointer Members

Because the class does not define a copy constructor, copying one HasPtr object to another
copies both members:

     int obj = 0;

     HasPtr ptr1(&obj, 42); // int* member points to obj, val is 42

     HasPtr ptr2(ptr1);     // int* member points to obj, val is 42

After the copy, the pointers in ptr1 and ptr1 both address the same object and the int values in
each object are the same. However, the behavior of these two members appears quite different,
because the value of a pointer is distinct from the value of the object to which it points. After
the copy, the int values are distinct and independent, whereas the pointers are intertwined.

Classes that have pointer members and use default synthesized
copy control have all the pitfalls of ordinary pointers. In particular,
the class itself has no way to avoid dangling pointers.

Pointers Share the Same Object

When we copy an arithmetic value, the copy is independent from the original. We can change
one copy without changing the other:



     ptr1.set_int(0); // changes val member only in ptr1

     ptr2.get_int();  // returns 42

     ptr1.get_int();  // returns 0

When we copy a pointer, the address values are distinct, but the pointers point to the same
underlying object. If we call set_ptr_val on either object, the underlying object is changed for
both:

     ptr1.set_ptr_val(42); // sets object to which both ptr1 and ptr2 point

     ptr2.get_ptr_val();   // returns 42

When two pointers point to the same object, either one can change the value of the shared
object.

Dangling Pointers Are Possible

Because our class copies the pointers directly, it presents our users with a potential problem:
HasPtr stores the pointer it was given. It is up to the user to guarantee that the object to which
that pointer points stays around as long as the HasPtr object does:

     int *ip = new int(42); // dynamically allocated int initialized to 42

     HasPtr ptr(ip, 10);    // Has Ptr points to same object as ip does

     delete ip;             // object pointed to by ip is freed

     ptr.set_ptr_val(0); // disaster: The object to which Has Ptr points was freed!

The problem here is that ip and the pointer inside ptr both point to the same object. When that
object is deleted, the pointer inside HasPtr no longer points to a valid object. However, there is
no way to know that the object is gone.



Exercises Section 13.5

Exercise
13.20:

Given the original version of the HasPtr class that relies on the
default definitions for copy-control, describe what happens in
the following code:

     int i = 42;
     HasPtr p1(&i, 42);
     HasPtr p2 = p1;
     cout << p2.get_ptr_val() << endl;
     p1.set_ptr_val(0);
     cout << p2.get_ptr_val() << endl;

Exercise
13.21:

What would happen if we gave our HasPtr class a destructor
that delete d its pointer member?

13.5.1. Defining Smart Pointer Classes

In the previous section we defined a simple class that held a pointer and an int . The pointer
member behaved in all ways like any other pointer. Any changes made to the object to which
the pointer pointed were made to a single, shared object. If the user deleted that object, then
our class had a dangling pointer. Its pointer member pointed at an object that no longer
existed.

An alternative to having a pointer member behave exactly like a pointer is to define what is
sometimes referred to as a smart pointer class. A smart pointer behaves like an ordinary
pointer except that it adds functionality. In this case, we'll give our smart pointer the
responsibility for deleting the shared object. Users will dynamically allocate an object and pass
the address of that object to our new HasPtr class. The user may still access the object through
a plain pointer but must not delete the pointer. The HasPtr class will ensure that the object is
deleted when the last HasPtr that points to it is destroyed.

In other ways, our HasPtr will behave like a plain pointer. In particular, when we copy a HasPtr
object, the copy and the original will point to the same underlying object. If we change that
object through one copy, the value will be changed when accessed through the other.

Our new HasPtr class will need a destructor to delete the pointer. However, the destructor
cannot delete the pointer unconditionally. If two HasPtr objects point to the same underlying
object, we don't want to delete the object until both objects are destroyed. To write the
destructor, we need to know whether this HasPtr is the last one pointing to a given object.

Introducing Use Counts

A common technique used in defining smart pointers is to use a use count . The pointerlike
class associates a counter with the object to which the class points. The use count keeps track
of how many objects of the class share the same pointer. When the use count goes to zero, then



the object is deleted. A use count is sometimes also referred to as a reference count .

Each time a new object of the class is created, the pointer is initialized and the use count is set
to 1. When an object is created as a copy of another, the copy constructor copies the pointer
and increments the associated use count. When an object is assigned to, the assignment
operator decrements the use count of the object to which the left-hand operand points (and
deletes that object if the use count goes to zero) and increments the use count of the object
pointed to by the right-hand operand. Finally, when the destructor is called, it decrements the
use count and deletes the underlying object if the count goes to zero.

The only wrinkle is deciding where to put the use count. The counter cannot go directly into our
HasPtr object. To see why, consider what happens in the following case:

     int obj;
     HasPtr p1(&obj, 42);

     HasPtr p2(p1);  // p1 and p2 both point to same int object

     HasPtr p3(p1);  // p1, p2, and p3 all point to same int object

If the use count is stored in a HasPtr object, how can we update it correctly when p3 is created?
We could increment the count in p1 and copy that count into p3 , but how would we update the
counter in p2?

The Use-Count Class

There are two classic strategies for implementing a use count, one of which we will use here;
the other approach is described in Section 15.8.1 (p. 599 ). In the approach we use here, we'll
define a separate concrete class to encapsulate the use count and the associated pointer:

     // private class for use by HasPtr only
     class U_Ptr {
         friend class HasPtr;
         int *ip;
         size_t use;
         U_Ptr(int *p): ip(p), use(1) { }
         ~U_Ptr() { delete ip; }
     };

All the members of this class are private . We don't intend ordinary users to use the U_Ptr
class, so we do not give it any public members. The HasPtr class is made a friend so that its
members will have access to the members of U_Ptr .

The class is pretty simple, although the concept of how it works can be slippery. The U_Ptr class
holds the pointer and the use count. Each HasPtr will point to a U_Ptr . The use count will keep
track of how many HasPtr objects point to each U_Ptr object. The only functions U_Ptr defines
are its constructor and destructor. The constructor copies the pointer, which the destructor
deletes. The constructor also sets the use count to 1, indicating that a HasPtr object points to
this U_Ptr .

Assuming we just created a HasPtr object from a pointer that pointed to an int value of 42, we
might picture the objects as follows:



If we copy this object, then the objects will be as shown on the next page.

Using the Use-Counted Class

Our new HasPtr class holds a pointer to a U_Ptr , which in turn points to the actual underlying
int object. Each member must be changed to reflect the fact that the class points to a U_Ptr
rather than an int* .

We'll look first at the constructors and copy-control members:

     /* smart pointer class: takes ownership of the dynamically allocated
      *          object to which it is bound

      * User code must dynamically allocate an object to initialize a HasPtr

      * and must not delete that object; the HasPtr class will delete it
      */
     class HasPtr {
     public:

         // HasPtr owns the pointer; pmust have been dynamically allocated
         HasPtr(int *p, int i): ptr(new U_Ptr(p)), val(i) { }

         // copy members and increment the use count
         HasPtr(const HasPtr &orig):
            ptr(orig.ptr), val(orig.val) { ++ptr->use; }
         HasPtr& operator=(const HasPtr&);

         // if use count goes to zero, delete the U_Ptr object
         ~HasPtr() { if (--ptr->use == 0) delete ptr; }
     private:

         U_Ptr *ptr;        // points to use-counted U_Ptr class
         int val;
     };



The HasPtr constructor that takes a pointer and an int uses its pointer parameter to create a
new U_Ptr object. After the HasPtr constructor completes, the HasPtr object points to a newly
allocated U_Ptr object. That U_Ptr object stores the pointer we were given. The use count in that
new U_Ptr is 1, indicating that only one HasPtr object points to it.

The copy constructor copies the members from its parameter and increments the use count.
After the constructor completes, the newly created object points to the same U_Ptr object as the
original and the use count of that U_Ptr object is incremented by one.

The destructor checks the use count in the underlying U_Ptr object. If the use count goes to 0,
then this is the last HasPtr object that points to this U_Ptr . In this case, the HasPtr destructor
deletes its U_Ptr pointer. Deleting that pointer has the effect of calling the U_Ptr destructor,
which in turn deletes the underlying int object.

Assignment and Use Counts

The assignment operator is a bit more complicated than the copy constructor:

     HasPtr& HasPtr::operator=(const HasPtr &rhs)
     {
         ++rhs.ptr->use;     // increment use count on rhs first
         if (--ptr->use == 0)
              delete ptr;    // if use count goes to 0 on this object, delete it

         ptr = rhs.ptr;      // copy the U_Ptr object

         val = rhs.val;      // copy the int member
         return *this;
     }

Here we start by incrementing the use count in the right-hand operand. Then we decrement and
check the use count on this object. As with the destructor, if this is the last object pointing to
the U_Ptr , we delete the object, which in turn destroys the underlying int . Having
decremented (and possibly destroyed) the existing value in the left-hand operand, we then copy
the pointer from rhs into this object. As usual, assignment returns a reference to this object.

This assignment operator guards against self-assignment by
incrementing the use count of rhs before decrementing the use
count of the left-hand operand.

If the left and right operands are the same, the effect of this assignment operator will be to
increment and then immediately decrement the use count in the underlying U_Ptr object.

Changing Other Members

The other members that access the int* now need to change to get to the int indirectly
through the U_Ptr pointer:



     class HasPtr {
     public:
         // copy control and constructors as before

         // accessors must change to fetch value from U_Ptr object
         int *get_ptr() const { return ptr->ip; }
         int get_int() const { return val; }

         // change the appropriate data member
         void set_ptr(int *p) { ptr->ip = p; }
         void set_int(int i) { val = i; }

         // return or change the value pointed to, so ok for const objects

         // Note: *ptr->ip is equivalent to *(ptr->ip)
         int get_ptr_val() const { return *ptr->ip; }
         void set_ptr_val(int i) { *ptr->ip = i; }
     private:

         U_Ptr *ptr;        // points to use-counted U_Ptr class
         int val;
     };

The functions that get and set the int member are unchanged. Those that operate on the
pointer have to dereference the U_Ptr to get to the underlying int* .

When we copy HasPtr objects, the int member behaves the same as in our first class. Its value
is copied; the members are independent. The pointer members in the copy and the original still
point to the same underlying object. A change made to that object will affect the value as seen
by either HasPtr object. However, users of HasPtr do not need to worry about dangling pointers.
As long as they let the HasPtr class take care of freeing the object, the class will ensure that the
object stays around as long as there are HasPtr objects that point to it.

Advice: Managing Pointer Members

Objects with pointer members often need to define the copy-control
members. If we rely on the synthesized versions, then the class puts a
burden on its users. Users must ensure that the object to which the
member points stays around for at least as long as the object that points to
it does.

To manage a class with pointer members, we must define all three copy-
control members: the copy constructor, assignment operator, and the
destructor. These members can define either pointerlike or valuelike
behavior for the pointer member.

Valuelike classes give each object its own copy of the underlying values
pointed to by pointer members. The copy constructor allocates a new
element and copies the value from the object it is copying. The assignment
operator destroys the existing object it holds and copies the value from its
right-hand operand into its left-hand operand. The destructor destroys the
object.

As an alternative to defining either valuelike behavior or pointerlike
behavior some classes are so-called "smart pointers." These classes share



the same underlying value between objects, thus providing pointerlike
behavior. But they use copy-control techniques to avoid some of the pitfalls
of regular pointers. To implement smart pointer behavior, a class needs to
ensure that the underlying object stays around until the last copy goes
away. Use counting (Section 13.5.1 , p. 495 ), is a common technique for
managing smart pointer classes. Each copy of the same underlying value is
given a use count. The copy constructor copies the pointer from the old
object into the new one and increments the use count. The assignment
operator decrements the use count of the left-hand operand and
increments the count of the right-hand operand. If the use count of the left-
hand operand goes to zero, the assignment operator must delete the object
to which it points. Finally, the assignment operator copies the pointer from
the right-hand operand into its left-hand operand. The destructor
decrements the use count and deletes the underlying object if the count
goes to zero.

These approaches to managing pointers occur so
frequently that programmers who use classes with
pointer members must be thoroughly familiar with
these programming techniques.

13.5.2. Defining Valuelike Classes

A completely different approach to the problem of managing pointer members is to give them
value semantics . Simply put, classes with value semantics define objects that behave like the
arithmetic types: When we copy a valuelike object, we get a new, distinct copy. Changes made
to the copy are not reflected in the original, and vice versa. The string class is an example of a
valuelike class.

Exercises Section 13.5.1

Exercise
13.22:

What is a use count?

Exercise
13.23:

What is a smart pointer? How does a smart pointer class differ
from one that implements plain pointer behavior?

Exercise
13.24:

Implement your own version of the use-counted HasPtr class.



To make our pointer member behave like a value, we must copy the object to which the pointer
points whenever we copy the HasPtr object:

     /*

      * Valuelike behavior even though HasPtr has a pointer member:

      * Each time we copy a HasPtr object, we make a new copy of the

      * underlying int object to which ptr points.
      */
     class HasPtr {
     public:
         // no point to passing a pointer if we're going to copy it anyway
         // store pointer to a copy of the object we're given
         HasPtr(const int &p, int i): ptr(new int(p)), val(i) {}

         // copy members and increment the use count
         HasPtr(const HasPtr &orig):
            ptr(new int (*orig.ptr)), val(orig.val) { }

         HasPtr& operator=(const HasPtr&);
         ~HasPtr() { delete ptr; }
         // accessors must change to fetch value from Ptr object
         int get_ptr_val() const { return *ptr; }
         int get_int() const { return val; }

         // change the appropriate data member
         void set_ptr(int *p) { ptr = p; }
         void set_int(int i) { val = i; }

         // return or change the value pointed to, so ok for const objects
         int *get_ptr() const { return ptr; }
         void set_ptr_val(int p) const { *ptr = p; }
     private:

         int *ptr;        // points to an int
         int val;
     };

The copy constructor no longer copies the pointer. It now allocates a new int object and
initializes that object to hold the same value as the object of which it is a copy. Each object
always holds its own, distinct copy of its int value. Because each object holds its own copy, the
destructor unconditionally deletes the pointer.

The assignment operator doesn't need to allocate a new object. It just has to remember to
assign a new value to the object to which its int pointer points rather than assigning to the
pointer itself:

     HasPtr& HasPtr::operator=(const HasPtr &rhs)
     {

         // Note: Every HasPtr is guaranteed to point at an actual int;

         //    We know that ptr cannot be a zero pointer
         *ptr = *rhs.ptr;       // copy the value pointed to

         val = rhs.val;         // copy the int
         return *this;
     }



In other words, we change the value pointed to but not the pointer.

As always, the assignment operator must be correct even if we're
assigning an object to itself. In this case, the operations are
inherently safe even if the left- and right-hand objects are the
same. Thus, there is no need to explicitly check for self-assignment.

Exercises Section 13.5.2

Exercise
13.25:

What is a valuelike class?

Exercise
13.26:

Implement your own version of a valuelike HasPtr class.

Exercise
13.27:

The valuelike HasPtr class defines each of the copy-control members.
Describe what would happen if the class defined

The copy constructor and destructor but no assignment operator.a.

The copy constructor and assignment operator but no destructor.b.

The destructor but neither the copy constructor nor assignment
operator.

c.

Exercise
13.28:

Given the following classes, implement a default constructor and the
necessary copy-control members.

     (a) class TreeNode {        (b) class BinStrTree {
         public:                         public:
             // ...                         //...
         private:                        private:
             std::string value;               TreeNode *root;
             int         count;          };
             TreeNode    *left;
             TreeNode    *right;
         };



 



 

Chapter Summary

In addition to defining the operations on objects of its type, a class also defines what it means
to copy, assign, or destroy objects of the type. Special member functionsthe copy constructor,
the assignment operator, and the destructor define these operations. Collectively these
operations are referred to as the "copy control" functions.

If a class does not define one or more of these operations, the compiler will define them
automatically. The synthesized operations perform memberwise initialization, assignment, or
destruction: Taking each member in turn, the synthesized operation does whatever is
appropriate to the member's type to copy, assign, or destroy that member. If the member is a
class type, the synthesized operation calls the corresponding operation for that class (e.g., the
copy constructor calls the member's copy constructor, the destructor calls its destructor, etc.).
If the member is a built-in type or a pointer, the member is copied or assigned directly; the
destructor does nothing to destroy members of built-in or pointer type. If the member is an
array, the elements in the array are copied, assigned, or destroyed in a manner appropriate to
the element type.

Unlike the copy constructor and assignment operator, the synthesized destructor is created and
run, regardless of whether the class defines its own destructor. The synthesized destructor is
run after the class-defined destructor, if there is one, completes.

The hardest part of defining the copy-control functions is often
simply recognizing that they are necessary.

Classes that allocate memory or other resources almost always require that the class define the
copy-control members to manage the allocated resource. If a class needs a destructor, then it
almost surely needs to define the copy constructor and assignment operator as well.

 



 

Defined Terms

assignment operator

The assignment operator can be overloaded to define what it means to assign one object
of a class type to another of the same type. The assignment operator must be a member
of its class and should return a reference to its object. The compiler synthesizes the
assignment operator if the class does not explicitly define one.

copy constructor

Constructor that initializes a new object as a copy of another object of the same type. The
copy constructor is applied implicitly to pass objects to or from a function by value. If we
do not define the copy constructor, the compiler synthesizes one for us.

copy control

Special members that control what happens when object of class type are copied,
assigned, and destroyed. The compiler synthesizes appropriate definitions for these
operations if the class does not otherwise define them.

destructor

Special member function that cleans up an object when the object goes out of scope or is
deleted. The compiler automatically destroys each member. Members of class type are
destroyed by invoking their destructor; no explicit work is done to destroy members of
built-in or compound type. In particular, the object pointed to by a pointer member is not
deleted by the automatic work done by the destructor.

memberwise assignment

Term used to describe how the synthesized assignment operator works. The assignment
operator assigns, member by member, from the old object to the new. Members of built-
in or compound type are assigned directly. Those that are of class type are assigned by
using the member's assignment operator.

memberwise initialization

Term used to described how the synthesized copy constructor works. The constructor
copies, member by member, from the old object to the new. Members of built-in or
compound type are copied directly. Those that are of class type are copied by using the
member's copy constructor.



overloaded operator

Function that redefines one of the C++ operators to operate on object(s) of class type.
This chapter showed how to define the assignment operator; Chapter 14 covers
overloaded operators in more detail.

reference count

Synonym for use count.

Rule of Three

Shorthand for the rule of thumb that if a class needs a nontrivial destructor then it almost
surely also needs to define its own copy constructor and an assignment operator.

smart pointer

A class that behaves like a pointer but provides other functionality as well. One common
form of smart pointer takes a pointer to a dynamically allocated object and assumes
responsibility for deleting that object. The user allocates the object, but the smart pointer
class deletes it. Smart pointer classes require that the class implement the copy-control
members to manage a pointer to the shared object. That object is deleted only when the
last smart pointer pointing to it is destroyed. Use counting is the most popular way to
implement smart pointer classes.

synthesized assignment operator

A version of the assignment operator created (synthesized) by the compiler for classes
that do not explicitly define one. The synthesized assignment operator memberwise
assigns the right-hand operand to the left.

synthesized copy constructor

The copy constructor created (synthesized) by the compiler for classes that do not
explicitly define the copy constructor. The synthesized copy constructor memberwise
initializes the new object from the existing one.

use count

Programming technique used in copy-control members. A use count is stored along with a
shared object. A separate class is created that points to the shared object and manages
the use count. The constructors, other than the copy constructor, set the state of the
shared object and set the use count to one. Each time a new copy is madeeither in the
copy constructor or the assignment operatorthe use count is incremented. When an object
is destroyed either in the destructor or as the left-hand side of the assignment
operatorthe use count is decremented. The assignment operator and the destructor check
whether the decremented use count has gone to zero and, if so, they destroy the object.



value semantics

Description of the copy-control behavior of classes that mimic the way arithmetic types
are copied. Copies of valuelike objects are independent: Changes made to a copy have no
effect on the original object. A valuelike class that has a pointer member must define its
own copy-control members. The copy-control operations copy the object to which the
pointer points. Valuelike classes that contain only other valuelike classes or built-in types
often can rely on the synthesized copy-control members.
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In Chapter 5 we saw that C++ defines a large number of operators and automatic conversions
among the built-in types. These facilities allow programmers to write a rich set of mixed-type
expressions.

C++ lets us redefine the meaning of the operators when applied to objects of class type. It also
lets us define conversion operations for class types. Class-type conversions are used like the
built-in conversions to implicitly convert an object of one type to another type when needed.

Operator overloading allows the programmer to define versions of the operators for operands of
class type. Chapter 13 covered the importance of the assignment operator and showed how to
define the assignment operator. We first used overloaded operators in Chapter 1 , when our
programs used the shift operators (>> and << ) for input and output and the addition operator (+
) to add two Sales_items . We'll finally see in this chapter how to define these overloaded
operators.

Through operator overloading, we can redefine most of the operators from Chapter 5 to work on
objects of class type. Judicious use of operator overloading can make class types as intuitive to
use as the built-in types. For example, the standard library defines several overloaded operators
for the container classes. These classes define the subscript operator to access data elements
and * and -> to dereference container iterators. The fact that these library types have the same
operators makes using them similar to using built-in arrays and pointers. Allowing programs to
use expressions rather than named functions can make the programs much easier to write and
read. As an example, compare

     cout << "The sum of " << v1 << " and " << v2
               << " is " << v1 + v2 << endl;



to the more verbose code that would be necessary if IO used named functions:

     // hypothetical expression if IO used named functions
     cout.print("The sum of ").print(v1).
            print(" and ").print(v2).print(" is ").
            print(v1 + v2).print("\n").flush();

 



 

14.1. Defining an Overloaded Operator

Overloaded operators are functions with special names: the keyword operator followed by the
symbol for the operator being defined. Like any other function, an overloaded operator has a
return type and a parameter list.

     Sales_item operator+(const Sales_item&, const Sales_item&);

declares the addition operator that can be used to "add" two Sales_item objects and yields a
copy of a Sales_item object.

With the exception of the function-call operator, an overloaded operator has the same number
of parameters (including the implicit this pointer for member functions) as the operator has
operands. The function-call operator takes any number of operands.

Overloaded Operator Names

Table 14.1 on the next page lists the operators that may be overloaded. Those that may not be
overloaded are listed in Table 14.2 .

Table 14.1. Overloadable Operators

+ - * / % ^

& | ~ ! , =

< > <= >= ++ --

<< >> == != && ||

+= -= /= %= ^= &=

|= *= <<= >>= [] ()

-> ->* new new [] delete delete []

Table 14.2. Operators That Cannot Be Overloaded

:: .* . ?:

New operators may not be created by concatenating other legal symbols. For example, it would
be illegal to attempt to define an operator** to provide exponentiation. Overloading new and
delete is described in Chapter 18 (p. 753 ).



Overloaded Operators Must Have an Operand of Class Type

The meaning of an operator for the built-in types may not be changed. For example, the built-in
integer addition operation cannot be redefined:

     // error: cannot redefine built-in operator for ints
     int operator+(int, int);

Nor may additional operators be defined for the built-in data types. For example, an operator+
taking two operands of array types cannot be defined.

An overloaded operator must have at least one operand of class or
enumeration (Section 2.7 , p. 62 ) type. This rule enforces the
requirement that an overloaded operator may not redefine the
meaning of the operators when applied to objects of built-in type.

Precedence and Associativity Are Fixed

The precedence (Section 5.10.1 , p. 168 ), associativity, or number of operands of an operator
cannot be changed. Regardless of the type of the operands and regardless of the definition of
what the operations do, this expression

     x == y +z;

always binds the arguments y and z to operator+ and uses that result as the right-hand operand
to operator== .

Four symbols (+, -, * , and &) serve as both unary and binary operators. Either or both of
these operators can be overloaded. Which operator is being defined is controlled by the number
of operands. Default arguments for overloaded operators are illegal, except for operator() , the
function-call operator.

Short-Ciruit Evaluation Is Not Preserved

Overloaded operators make no guarantees about the order in which operands are evaluated. In
particular, the operand-evaluation guarantees of the built-in logical AND, logical OR (Section 5.2
, p. 152 ), and comma (Section 5.9 , p. 168 ) operators are not preserved. Both operands to an
overloaded version of && or || are always evaluated. The order in which those operands are
evaluated is not stipulated. The order in which the operands to the comma are evaluated is also
not defined. For this reason, it is usually a bad idea to overload &&, || , or the comma operator.



Class Member versus Nonmember

Most overloaded operators may be defined as ordinary nonmember functions or as class
member functions.

Overloaded functions that are members of a class may appear to
have one less parameter than the number of operands. Operators
that are member functions have an implicit this parameter that is
bound to the first operand.

An overloaded unary operator has no (explicit) parameter if it is a member function and one
parameter if it is a nonmember function. Similarly, an overloaded binary operator would have
one parameter when defined as a member and two parameters when defined as a nonmember
function.

The Sales_item class offers a good example of member and nonmember binary operators. We
know that the class has an addition operator. Because it has an addition operator, we ought to
define a compound-assignment (+= ) operator as well. This operator will add the value of one
Sales_item object into another.

Ordinarily we define the arithmetic and relational operators as nonmember functions and we
define assignment operators as members:

     // member binary operator: left-hand operand bound to implicit this pointer
     Sales_item& Sales_item::operator+=(const Sales_item&);
     // nonmember binary operator: must declare a parameter for each operand
     Sales_item operator+(const Sales_item&, const Sales_item&);

Both addition and compound assignment are binary operators, yet these functions define a
different number of parameters. The reason for the discrepancy is the this pointer.

When an operator is a member function, this points to the left-hand operand. Thus, the
nonmember operator+ defines two parameters, both references to const Sales_item objects.
Even though compound assignment is a binary operator, the member compound-assignment
operator takes only one (explicit) parameter. When the operator is used, a pointer to the left-
hand operand is automatically bound to this and the right-hand operand is bound to the
function's sole parameter.

It is also worth noting that compound assignment returns a reference and the addition operator
returns a Sales_item object. This difference matches the return types of these operators when
applied to arithmetic types: Addition yields an rvalue and compound assignment returns a
reference to the left-hand operand.

Operator Overloading and Friendship



When operators are defined as nonmember functions, they often must be made friends (Section
12.5 , p. 465 ) of the class(es) on which they operate. We'll see later in this chapter two reasons
why operators might be defined as nonmembers. In such cases, the operator often needs access
to the private parts of the class.

Our Sales_item class is again a good example of why some operators need to be friends. It
defines one member operator and has three nonmember operators. Those nonmember
operators, which need access to the private data members, are declared as friends:

     class Sales_item {
         friend std::istream& operator>>
                       (std::istream&, Sales_item&);
         friend std::ostream& operator<<
                       (std::ostream&, const Sales_item&);
     public:
         Sales_item& operator+=(const Sales_item&);
     };
         Sales_item operator+(const Sales_item&, const Sales_item&);

That the input and output operators need access to the private data should not be surprising.
After all, they read and write those members. On the other hand, there is no need to make the
addition operator a friend. It can be implemented using the public member operator+= .

Using Overloaded Operators

We can use an overloaded operator in the same way that we'd use the operator on operands of
built-in type. Assuming item1 and item2 are Sales_item objects, we might print their sum in the
same way that we'd print the sum of two int s:

     cout << item1 + item2 << endl;

This expression implicitly calls the operator+ that we defined for Sales_items .

We also can call an overloaded operator function in the same way that we call an ordinary
function: We name the function and pass an appropriate number of arguments of the
appropriate type:

     // equivalent direct call to nonmember operator function
     cout << operator+(item1, item2) << endl;

This call has the same effect as the expression that added item1 and item2 .

We call a member operator function the same way we call any other member function: We
name an object on which to run the function and then use the dot or arrow operator to fetch the
function we wish to call passing the required number and type of arguments. In the case of a
binary member operator function, we must pass a single operand:



     item1 += item2;            // expression based "call"

     item1.operator+=(item2);   // equivalent call to member operator function

Each of these statements adds the value of item2 into item1 . In the first case, we implicitly call
the overloaded operator function using expression syntax. In the second, we call the member
operator function on the object item1 .

Exercises Section 14.1

Exercise
14.1:

In what ways does an overloaded operator differ from a built-
in operator? In what ways are overloaded operators the same
as the built-in operators?

Exercise
14.2:

Write declarations for the overloaded input, output, addition
and compound-assignment operators for Sales_item .

Exercise
14.3:

Explain the following program, assuming that the Sales_item
constructor that takes a string is not explicit . Explain what
happens if that constructor is explicit .

     string null_book = "9-999-99999-9";
     Sales_item item(cin);
     item += null_book;

Exercise
14.4:

Both the string and vector types define an overloaded == that
can be used to compare objects of those types. Identify which
version of == is applied in each of the following expressions:

     string s; vector<string> svec1, svec2;
     "cobble" == "stone"
     svec1[0] == svec2[0];
     svec1 == svec2

14.1.1. Overloaded Operator Design

When designing a class there are some useful rules of thumb to keep in mind when deciding
which, if any, overloaded operators to provide.

Don't Overload Operators with Built-in Meanings



The assignment, address of, and comma operators have default meanings for operands of class
types. If there is no overloaded version specified, the compiler defines its own version of these
operators:

The synthesized assignment operator (Section 13.2 , p. 482 ) does memberwise
assignment: It uses each member's own assignment operator to assign each member in
turn.

By default the address of (& ) and comma (, ) operators execute on class type objects the
same way they do on objects of built-in type. The address of operator returns the address
in memory of the object to which it is applied. The comma operator evaluates each
expression from left to right and returns the value of its rightmost operand.

The built-in logical AND (&& ) and OR(||) operators apply short-circuit evaluation (Section
5.2 , p. 152 ). If the operator is redefined, the short-circuit nature of the operators is lost.

The meaning of these operators can be changed by redefining them for operands of a given
class type.

It is usually not a good idea to overload the comma,
address-of, logical AND, or logical OR operators. These
operators have built-in meanings that are useful and
become inaccessible if we define our own versions.

We sometimes must define our own version of assignment. When we do so, it should behave
analogously to the synthesized operators: After an assignment, the values in the left-hand and
right-hand operands should be the same and the operator should return a reference to its left-
hand operand. Overloaded assignment should customize the built-in meaning of assignment,
not circumvent it.

Most Operators Have No Meaning for Class Objects

Operators other than assignment, address-of, and comma have no meaning when applied to an
operand of class type unless an overloaded definition is provided. When designing a class, we
decide which, if any, operators to support.

The best way to design operators for a class is first to design the class' public interface. Once
the interface is defined, it is possible to think about which operations should be defined as
overloaded operators. Those operations with a logical mapping to an operator are good
candidates. For example,

An operation to test for equality should use operator== .

Input and output are normally done by overloading the shift operators.

An operation to test whether the object is empty could be represented by the logical NOT
operator, operator! .



Compound Assignment Operators

If a class has an arithmetic (Section 5.1 , p. 149 ) or bitwise (Section 5.3 , p. 154 ) operator,
then it is usually a good idea to provide the corresponding compound-assignment operator as
well. For example, our Sales_item class defined the + operator. Logically, it also should define +=
. Needless to say, the += operator should be defined to behave the same way the built-in
operators do: Compound assignment should behave as + followed by = .

Equality and Relational Operators

Classes that will be used as the key type of an associative container should define the <
operator. The associative containers by default use the < operator of the key type. Even if the
type will be stored only in a sequential container, the class ordinarily should define the equality
(== ) and less-than (< ) operators. The reason is that many algorithms assume that these
operators exist. As an example, the sort algorithm uses < and find uses == .

Caution: Use Operator Overloading Judiciously

Each operator has an associated meaning from its use on the built-in types.
Binary + , for example, is strongly identified with addition. Mapping binary +

to an analogous operation for a class type can provide a convenient
notational shorthand. For example, the library string type, following a
convention common to many programming languages, uses + to represent

concatenation"adding" one string to the other.

Operator overloading is most useful when there is a logical mapping of a
built-in operator to an operation on our type. Using overloaded operators
rather than inventing named operations can make our programs more
natural and intuitive. Overuse or outright abuse of operator overloading can
make our classes incomprehensible.

Obvious abuses of operator overloading rarely happen in practice. As an
example, no responsible programmer would define operator+ to perform

subtraction. More common, but still inadvisable, are uses that contort an
operator's "normal" meaning to force a fit to a given type. Operators should
be used only for operations that are likely to be unambiguous to users. An
operator with ambiguous meaning, in this sense, is one that supports
equally well a number of different interpretations.

When the meaning of an overloaded
operator is not obvious, it is better to give
the operation a name. It is also usually
better to use a named function rather than
an operator for operations that are rarely
done. If the operation is unusual, the
brevity of using an operator is
unnecessary.



If the class defines the equality operator, it should also define != . Users of the class will assume
that if they can compare for equality, they can also compare for inequality. The same argument
applies to the other relational operators as well. If the class defines < , then it probably should
define all four relational operators (>, >=, < , and <=) .

Choosing Member or Nonmember Implementation

When designing the overloaded operators for a class, we must choose whether to make each
operator a class member or an ordinary nonmember function. In some cases, the programmer
has no choice; the operator must be a member. In other cases, there are some rules of thumb
that can help guide the decision. The following guidelines can be of help when deciding whether
to make an operator a member or an ordinary nonmember function:

The assignment (= ), subscript ([] ), call (() ), and member access arrow (-> ) operators
must be defined as members. Defining any of these operators as a nonmember function is
flagged at compile time as an error.

Like assignment, the compound-assignment operators ordinarily ought to be members of
the class. Unlike assignment, they are not required to be so and the compiler will not
complain if a nonmember compound-assignment operator is defined.

Other operators that change the state of their object or that are closely tied to their given
typesuch as increment, decrement, and dereferenceusually should be members of the
class.

Symmetric operators, such as the arithmetic, equality, relational, and bitwise operators,
are best defined as ordinary nonmember functions.

Exercises Section 14.1.1

Exercise
14.5:

List the operators that must be members of a class.

Exercise
14.6:

Explain why and whether each of the following operators should be
class members:

     (a) + (b) += (c) ++ (d) -> (e) << (f) && (g) == (h) ()

 



 

14.2. Input and Output Operators

Classes that support I/O ordinarily should do so by using the same interface as defined by the
iostream library for the built-in types. Thus, many classes provide overloaded instances of the
input and output operators.

14.2.1. Overloading the Output Operator <<

To be consistent with the IO library, the operator should take an
ostream& as its first parameter and a reference to a const object of
the class type as its second. The operator should return a reference
to its ostream parameter.

The general skeleton of an overloaded output operator is

     // general skeleton of the overloaded output operator
     ostream&
     operator <<(ostream& os, const ClassType &object)
     {
         // any special logic to prepare object

         // actual output of members
         os << // ...

         // return ostream object
         return os;
     }

The first parameter is a reference to an ostream object on which the output will be generated.
The ostream is nonconst because writing to the stream changes its state. The parameter is a
reference because we cannot copy an ostream object.

The second parameter ordinarily should be a const reference to the class type we want to print.
The parameter is a reference to avoid copying the argument. It can be const because
(ordinarily) printing an object should not change it. By making the parameter a const reference,
we can use a single definition to print const and nonconst objects.

The return type is an ostream reference. Its value is usually the ostream object against which the
output operator is applied.



The Sales_item Output Operator

We can now write the Sales_item output operator:

     ostream&
     operator<<(ostream& out, const Sales_item& s)
     {
         out << s.isbn << "\t" << s.units_sold << "\t"
             << s.revenue << "\t" << s.avg_price();
         return out;
     }

Printing a Sales_item entails printing its three data elements and the computed average sales
price. Each element is separated by a tab. After printing the values, the operator returns a
reference to the ostream it just wrote.

Output Operators Usually Do Minimal Formatting

Class designers face one significant decision about output: whether and how much formatting to
perform.

Generally, output operators should print the contents of
the object, with minimal formatting. They should not print
a newline.

The output operators for the built-in types do little if any formatting and do not print newlines.
Given this treatment for the built-in types, users expect class output operators to behave
similarly. By limiting the output operator to printing just the contents of the object, we let the
users determine what if any additional formatting to perform. In particular, an output operator
should not print a newline. If the operator does print a newline, then users would be unable to
print descriptive text along with the object on the same line. By having the output operator
perform minimal formatting, we let users control the details of their output.

IO Operators Must Be Nonmember Functions

When we define an input or output operator that conforms to the conventions of the iostream
library, we must make it a nonmember operator. Why?

We cannot make the operator a member of our own class. If we did, then the left-hand operand
would have to be an object of our class type:

     // if operator<< is a member of Sales_item



     Sales_item item;
     item << cout;

This usage is the opposite of the normal way we use output operators defined for other types.

If we want to support normal usage, then the left-hand operand must be of type ostream . That
means that if the operator is to be a member of any class, it must be a member of class ostream
. However, that class is part of the standard library. Weand anyone else who wants to define IO
operatorscan't go adding members to a class in the library.

Instead, if we want to use the overloaded operators to do IO for our types, we must define them
as a nonmember functions. IO operators usually read or write the nonpublic data members. As
a consequence, classes often make the IO operators friends.

Exercises Section 14.2.1

Exercise
14.7:

Define an output operator for the following CheckoutRecord
class:

     class CheckoutRecord {
     public:
         // ...
     private:
         double book_id;
         string title;
         Date date_borrowed;
         Date date_due;
         pair<string,string> borrower;
         vector< pair<string,string>* > wait_list;
     };

Exercise
14.8:

In the exercises to Section 12.4 (p. 451 ) you wrote a sketch
of one of the following classes:

     (a) Book     (b) Date     (c) Employee
     (d) Vehicle  (e) Object   (f) Tree

Write the output operator for the class you chose.

14.2.2. Overloading the Input Operator >>

Similar to the output operator, the input operator takes a first parameter that is a reference to



the stream from which it is to read, and returns a reference to that same stream. Its second
parameter is a nonconst reference to the object into which to read. The second parameter must
be nonconst because the purpose of an input operator is to read data into this object.

A more important, and less obvious, difference between input and
output operators is that input operators must deal with the
possibility of errors and end-of-file.

The Sales_item Input Operator

The Sales_item input operator looks like:

     istream&
     operator>>(istream& in, Sales_item& s)
     {
         double price;
         in >> s.isbn >> s.units_sold >> price;
         // check that the inputs succeeded
         if (in)
            s.revenue = s.units_sold * price;
         else
            s = Sales_item(); // input failed: reset object to default state
         return in;
     }

This operator reads three values from its istream parameter: a string value, which it stores in
the isbn member of its Sales_item parameter; an unsigned , which it stores in the units_sold
member; and a double , which it stores in a local named price . Assuming the reads succeed,
the operator uses price and units_sold to set the object's revenue member.

Errors During Input

Our Sales_item input operator reads the expected values and checks whether an error occurred.
The kinds of errors that might happen include:

Any of the read operations could fail because an incorrect value was provided. For
example, after reading isbn , the input operator assumes that the next two items will be
numeric data. If nonnumeric data is input, that read and any subsequent use of the stream
will fail.

1.

Any of the reads could hit end-of-file or some other error on the input stream.2.

Rather than checking each read, we check once before using the data we read:



     // check that the inputs succeeded
     if (in)
         s.revenue = s.units_sold * price;
     else
         s = Sales_item(); // input failed: reset object to default state

If one of the reads failed, then price would be uninitialized. Hence, before using price , we
check that the input stream is still valid. If it is, we do the calculation and store it in revenue . If
there was an error, we do not worry about which input failed. Instead, we reset the entire object
as if it were an empty Sales_item . We do so by creating a new, unnamed Sales_item
constructed using the default constructor and assigning that value to s . After this assignment, s
will have an empty string for its isbn member, and its revenue and units_sold members will be
zero.

Handling Input Errors

If an input operator detects that the input failed, it is often a good idea to make sure that the
object is in a usable and consistent state. Doing so is particularly important if the object might
have been partially written before the error occurred.

For example, in the Sales_item input operator, we might successfully read a new isbn , and
then encounter an error on the stream. An error after reading isbn would mean that the
units_sold and revenue members of the old object were unchanged. The effect would be to
associate a different isbn with that data.

In this operator, we avoid giving the parameter an invalid state by resetting it to the empty
Sales_item if an error occurs. A user who needs to know whether the input succeeded can test
the stream. If the user ignores the possibility of an input error, the object is in a usable stateits
members are all all defined. Similarly, the object won't generate misleading resultsits data are
internally consistent.

When designing an input operator, it is important to decide
what to do about error-recovery, if anything.

Indicating Errors

In addition to handling any errors that might occur, an input operator might need to set the
condition state (Section 8.2 , p. 287 ) of its input istream parameter. Our input operator is quite
simplethe only errors we care about are those that could happen during the reads. If the reads
succeed, then our input operator is correct and has no need to do additional checking.

Some input operators do need to do additional checking. For example, our input operator might
check that the isbn we read is in an appropriate format. We might have read data successfully,
but these data might not be suitable when interpreted as an ISBN. In such cases, the input
operator might need to set the condition state to indicate failure, even though technically



speaking the actual IO was successful. Usually an input operator needs to set only the failbit .
Setting eofbit would imply that the file was exhausted, and setting badbit would indicate that
the stream was corrupted. These errors are best left to the IO library itself to indicate.

 



 

14.3. Arithmetic and Relational Operators

Ordinarily, we define the arithmetic and relational operators as nonmember functions, as we do
here with our Sales_item addition operator:

     // assumes that both objects refer to the same isbn
     Sales_item
     operator+(const Sales_item& lhs, const Sales_item& rhs)
     {

         Sales_item ret(lhs);  // copy lhs into a local object that we'll return

         ret += rhs;           // add in the contents of rhs

         return ret; // return ret by value
     }

Exercises Section 14.2.2

Exercise
14.9:

Describe the behavior of the Sales_item input operator if given
the following input:

     (a) 0-201-99999-9 10 24.95
     (b) 10 24.95 0-210-99999-9

Exercise
14.10:

What is wrong with the following Sales_item input operator?

     istream& operator>>(istream& in, Sales_item& s)
     {
         double price;
         in >> s.isbn >> s.units_sold >> price;
         s.revenue = s.units_sold * price;
         return in;
     }

What would happen if we gave this operator the data in the
previous exercise?

Exercise
14.11:

Define an input operator for the CheckoutRecord class defined
in the exercises for Section 14.2.1 (p. 515 ). Be sure the
operator handles input errors.



The addition operator doesn't change the state of either operand; the operands are references
to const objects. Instead, it generates and returns a new Sales_item object, which is initialized
as a copy of lhs . We use the Sales_item compound-assignment operator to add in the value of
rhs .

Note that to be consistent with the built-in operator,
addition returns an rvalue, not a reference.

An arithmetic operator usually generates a new value that is the result of a computation on its
two operands. That value is distinct from either operand and is calculated in a local variable. It
would be a run-time error to return a reference to that variable.

Classes that define both an arithmetic operator and the
related compound assignment ordinarily ought to
implement the arithmetic operator by using the compound
assignment.

It is simpler and more efficient to implement the arithmetic operator (e.g., + ) in terms of the
compound-assignment operator (e.g., += ) rather than the other way around. As an example,
consider our Sales_item operators. If we implemented += by calling + , then += would needlessly
create and destroy a temporary to hold the result from + .

14.3.1. Equality Operators

Ordinarily, classes in C++ use the equality operator to mean that the objects are equivalent.
That is, they usually compare every data member and treat two objects as equal if and only if
all corresponding members are the same. In line with this design philosophy, our Sales_item
equality operator should compare the isbn as well as the sales figures:



Exercises Section 14.3

Exercise
14.12:

Write the Sales_item operators so that + does the actual
addition and += calls + . Discuss the disadvantages of this
approach compared to the way the operators were
implemented in this section.

Exercise
14.13:

Which other arithmetic operators, if any, do you think
Sales_item ought to support? Define those that you think the
class should include.

     inline bool
     operator==(const Sales_item &lhs, const Sales_item &rhs)
     {
         // must be made a friend of Sales_item
         return lhs.units_sold == rhs.units_sold &&
                lhs.revenue == rhs.revenue &&
            lhs.same_isbn(rhs);
     }
     inline bool
     operator!=(const Sales_item &lhs, const Sales_item &rhs)
     {
         return !(lhs == rhs); // != defined in terms of operator==
     }

The definition of these functions is trivial. More important are the design principles that these
functions embody:

If a class defines the == operator, it defines it to mean that two objects contain the same
data.

If a class has an operation to determine whether two objects of the type are equal, it is
usually right to define that function as operator== rather than inventing a named
operation. Users will expect to be able to compare objects using == , and doing so is easier
than remembering a new name.

If a class defines operator== , it should also define operator!= . Users will expect that if
they can use one operator, then the other will also exist.

The equality and inequality operators should almost always be defined in terms of each
other. One operator should do the real work to compare objects. The other should call the
one that does the real work.



Classes that define operator== are easier to use with the standard
library. Some algorithms, such as find , use the == operator by
default. If a class defines == , then these algorithms can be used on
that class type without any specialization.

14.3.2. Relational Operators

Classes for which the equality operator is defined also often have relational operators. In
particular, because the associative containers and some of the algorithms use the less-than
operator, it can be quite useful to define an operator< .

Although we might think our Sales_item class should support the relational operators, it turns
out that it probably should not. The reasons are somewhat subtle and deserve understanding.

As we'll see in Chapter 15 , we might want to use an associative container to hold Sales_item
transactions. When we put objects into the container, we'd want them ordered by ISBN, and
wouldn't care whether the sales data in two records were different.

However, if we were to define operator< as comparison on isbn , that definition would be
incompatible with the obvious definition of == . If we had two transactions for the same ISBN,
neither record would be less than the other. Yet, if the sales figures in those objects were
different, then these objects would be != . Ordinarily, if we have two objects, neither of which is
less than the other, then we expect that those objects are equal.

Because the logical definition of < is inconsistent with the logical definition of == , it is better not
to define < at all. We'll see in Chapter 15 how to use a separate named function to compare
Sales_items when we want to store them in an associative container.

The associative containers, as well as some of the algorithms, use
the < operator by default. Ordinarily, the relational operators, like
the equality operators, should be defined as nonmember functions.

 



 

14.4. Assignment Operators

We covered the assignment of one object of class type to another object of its type in Section
13.2 (p. 482 ). The class assignment operator takes a parameter that is the class type. Usually
the parameter is a const reference to the class type. However, the parameter could be the class
type or a nonconst reference to the class type. This operator will be synthesized by the compiler
if we do not define it ourselves. The class assignment operator must be a member of the class
so the compiler can know whether it needs to synthesize one.

Additional assignment operators that differ by the type of the right-hand operand can be defined
for a class type. For example, the library string class defines three assignment operators: In
addition to the class assignment operator, which takes a const string& as its right-hand
operand, the string class defines versions of assignment that take a C-style character string or
a char as the right-hand operand. These might be used as follows:

     string car ("Volks");

     car = "Studebaker"; // string = const char*
     string model;

     model = 'T'; // string = char

To support these operations, the string class contains members that look like

     // illustration of assignment operators for class string
     class string {
     public:

         string& operator=(const string &);      // s1 = s2;

         string& operator=(const char *);        // s1 = "str";

         string& operator=(char);                // s1 = 'c';
         // ....
      };

Assignment operators can be overloaded. Unlike the compound-
assignment operators, every assignment operator, regardless of
parameter type, must be defined as a member function.

Assignment Should Return a Reference to *this

The string assignment operators return a reference to string , which is consistent with
assignment for the built-in types. Moreover, because assignment returns a reference there is no



need to create and destroy a temporary copy of the result. The return value is usually a
reference to the left-hand operand. For example, here is the definition of the Sales_item
compound-assignment operator:

     // assumes that both objects refer to the same isbn
     Sales_item& Sales_item::operator+=(const Sales_item& rhs)
     {
        units_sold += rhs.units_sold;
        revenue += rhs.revenue;
        return *this;
     }

Ordinarily, assignment operators and compound-
assignment operators ought to return a reference to the
left-hand operand.

Exercises Section 14.4

Exercise
14.14:

Define a version of the assignment operator that can assign an
isbn to a Sales_item .

Exercise
14.15:

Define the class assignment operator for the CheckoutRecord
introduced in the exercises to Section 14.2.1 (p. 515 ).

Exercise
14.16:

Should CheckoutRecord define any other assignment
operators? If so, explain which types should be used as
operands and why. Implement the assignment operators for
those types.

 



 

14.5. Subscript Operator

Classes that represent containers from which individual elements can be retrieved usually define
the subscript operator, operator[] . The library classes, string and vector , are examples of
classes that define the subscript operator.

The subscript operator must be defined as a class member function.

Providing Read and Write Access

One complication in defining the subscript operator is that we want it to do the right thing when
used as either the left- or right-hand operand of an assignment. To appear on the left-hand
side, it must yield an lvalue, which we can achieve by specifying the return type as a reference.
As long as subscript returns a reference, it can be used on either side of an assignment.

It is also a good idea to be able to subscript const and nonconst objects. When applied to a
const object, the return should be a const reference so that it is not usable as the target of an
assignment.

Ordinarily, a class that defines subscript needs to define
two versions: one that is a nonconst member and returns
a reference and one that is a const member and returns a
const reference.

Prototypical Subscript Operator

The following class defines the subscript operator. For simplicity, we assume the data Foo holds
are stored in a vector<int>:

     class Foo {
     public:
         int &operator[] (const size_t);
         const int &operator[] (const size_t) const;



         // other interface members
     private:
         vector<int> data;

         // other member data and private utility functions
      };

The subscript operators themselves would look something like:

     int& Foo::operator[] (const size_t index)
     {

         return data[index];  // no range checking on index
     }
     const int& Foo::operator[] (const size_t index) const
     {

         return data[index];  // no range checking on index
     }

Exercises Section 14.5

Exercise
14.17:

Define a subscript operator that returns a name from the
waiting list for the CheckoutRecord class from the exercises to
Section 14.2.1 (p. 515 ).

Exercise
14.18:

Discuss the pros and cons of implementing this operation
using the subscript operator.

Exercise
14.19:

Suggest alternative ways to define this operation.

 



 

14.6. Member Access Operators

To support pointerlike classes, such as iterators, the language allows the dereference (* ) and
arrow (->) operators to be overloaded.

Operator arrow must be defined as a class member function. The
dereference operator is not required to be a member, but it is
usually right to make it a member as well.

Building a Safer Pointer

The dereference and arrow operators are often used in classes that implement smart pointers
(Section 13.5.1 , p. 495 ). As an example, let's assume that we want to define a class type to
represent a pointer to an object of the Screen type that we wrote in Chapter 12 . We'll name this
class ScreenPtr .

Our ScreenPtr class will be similar to our second HasPtr class. Users of ScreenPtr will be
expected to pass a pointer to a dynamically allocated Screen . The ScreenPtr class will own that
pointer and arrange to delete the underlying object when the last ScreenPtr referring to it goes
away. In addition, we will not give our ScreenPtr class a default constructor. This way we'll
know that a ScreenPtr object will always refer to a Screen . Unlike a built-in pointer, there will
be no unbound ScreenPtr s. Applications can use ScreenPtr objects without first testing whether
they refer to a Screen object.

As does the HasPtr class, the ScreenPtr class will use-count its pointer. We'll define a companion
class to hold the pointer and its associated use count:

     // private class for use by ScreenPtr only
     class ScrPtr {
         friend class ScreenPtr;
         Screen *sp;
         size_t use;
         ScrPtr(Screen *p): sp(p), use(1) { }
         ~ScrPtr() { delete sp; }
     };

This class looks a lot like the U_Ptr class and has the same role. ScrPtr holds the pointer and
associated use count. We make ScreenPtr a friend so that it can access the use count. The
ScreenPtr class manages the use count:

     /*



      * smart pointer: Users pass to a pointer to a dynamically allocated Screen, which
      *                   is automatically destroyed when the last ScreenPtr goes away
      */
     class ScreenPtr {
     public:
         //  no default constructor: ScreenPtrs must be bound to an object
         ScreenPtr(Screen *p): ptr(new ScrPtr(p)) { }
         //  copy members and increment the use count
         ScreenPtr(const ScreenPtr &orig):
            ptr(orig.ptr) { ++ptr->use; }
         ScreenPtr& operator=(const ScreenPtr&);
         //  if use count goes to zero, delete the ScrPtr object
         ~ScreenPtr() { if (--ptr->use == 0) delete ptr; }
     private:
         ScrPtr *ptr;    // points to use-counted ScrPtr class
     };

Because there is no default constructor, every object of type ScreenPtr must provide an
initializer. The initializer must be another ScreenPtr or a pointer to a dynamically allocated
Screen . The constructor allocates a new ScrPtr object to hold that pointer and an associated
use count.

An attempt to define a ScreenPtr with no initializer is in error:

     ScreenPtr p1; // error: ScreenPtr has no default constructor

     ScreenPtr ps(new Screen(4,4));     // ok: ps points to a copy of myScreen

Supporting Pointer Operations

Among the fundamental operations a pointer supports are dereference and arrow. We can give
our class these operations as follows:

     class ScreenPtr {
     public:
         // constructor and copy control members as before
         Screen &operator*() { return *ptr->sp; }
         Screen *operator->() { return ptr->sp; }
         const Screen &operator*() const { return *ptr->sp; }
         const Screen *operator->() const { return ptr->sp; }
     private:

         ScrPtr *ptr; // points to use-counted ScrPtr class
     };

Overloading the Dereference Operator

The dereference operator is a unary operator. In this class, it is defined as a member so it has
no explicit parameters. The operator returns a reference to the Screen to which this ScreenPtr
points.



As with the subscript operator, we need both const and nonconst versions of the dereference
operator. These differ in their return types: The const member returns a reference to const to
prevent users from changing the underlying object.

Overloading the Arrow Operator

Operator arrow is unusual. It may appear to be a binary operator that takes an object and a
member name, dereferencing the object in order to fetch the member. Despite appearances,
the arrow operator takes no explicit parameter.

There is no second parameter because the right-hand operand of -> is not an expression.
Rather, the right-hand operand is an identifier that corresponds to a member of a class. There is
no obvious, useful way to pass an identifier as a parameter to a function. Instead, the compiler
handles the work of fetching the member.

When we write

     point->action();

precedence rules make it equivalent to writing

     (point->action)();

In other words, we want to call the result of evaluating point->action . The compiler evaluates
this code as follows:

If point is a pointer to a class object that has a member named action , then the compiler
writes code to call the action member of that object.

1.

Otherwise, if point is an object of a class that defines operator-> , then point->action is
the same as point.operator->()->action . That is, we execute operator->() on point and
then repeat these three steps, using the result of executing operator-> on point .

2.

Otherwise, the code is in error.3.

Using Overloaded Arrow

We can use a ScreenPtr object to access members of a Screen as follows:

ScreenPtr p(&myScreen);     // copies the underlying Screen
p->display(cout);

Because p is a ScreenPtr , the meaning of p->display isthe same as evaluating (p.operator-
>())->display . Evaluating p.operator->() calls the operator-> from class ScreenPtr , which
returns a pointer to a Screen object. That pointer is used to fetch and run the display member



of the object to which the ScreenPtr points.

Constraints on the Return from Overloaded Arrow

The overloaded arrow operator must return either a pointer to a
class type or an object of a class type that defines its own operator
arrow.

If the return type is a pointer, then the built-in arrow operator is applied to that pointer. The
compiler dereferences the pointer and fetches the indicated member from the resulting object.
If the type pointed to does not define that member, then the compiler generates an error.

If the return value is another object of class type (or reference to such an object), then the
operator is applied recursively. The compiler checks whether the type of the object returned has
a member arrow and if so, applies that operator. Otherwise, the compiler generates an error.
This process continues until either a pointer to an object with the indicated member is returned
or some other value is returned, in which case the code is in error.

Exercises Section 14.6

Exercise
14.20:

In our sketch for the ScreenPtr class, we declared but did not
define the assignment operator. Implement the ScreenPtr
assignment operator.

Exercise
14.21:

Define a class that holds a pointer to a ScreenPtr . Define the
overloaded arrow operator for that class.

Exercise
14.22:

A smart pointer probably should define the equality and
inequality operators to test whether two pointers are equal or
unequal. Add these operations to the ScreenPtr class.

 



 

14.7. Increment and Decrement Operators

The increment (++ ) and decrement (-- ) operators are most often implemented for classes,
such as iterators, that provide pointer like behavior on the elements of a sequence. As an
example, we might define a class that points to an array and provides checked access to
elements in that array. Ideally, our checked-pointer class could be used on arrays of any type,
which we'll learn how to do in Chapter 16 when we cover class templates. For now, our class will
handle arrays of int s:

     /*
      * smart pointer: Checks access to elements throws an out_of_range
      *                exception if attempt to access a nonexistent element
      * users allocate and free the array
      */
     class CheckedPtr {
     public:

         // no default constructor; CheckedPtrs must be bound to an object
         CheckedPtr(int *b, int *e): beg(b), end(e), curr(b) { }
         // dereference and increment operations
     private:
         int* beg;   // pointer to beginning of the array
         int* end;   // one past the end of the array
         int* curr;  // current position within the array
     };

Like ScreenPtr , this class has no default constructor. We must supply pointers to an array when
we create a CheckedPtr . A CheckedPtr has three data members: beg , which points to the first
element in the array; end , which points one past the end of the array; and curr , which points
to the array element to which this CheckedPtr object currently refers.

The constructor takes two pointers: one pointing to the beginning of the array and the other one
past the end of the array. The constructor initializes beg and end from these pointers and
initializes curr to point to the first element.

Defining the Increment/Decrement Operators

There is no language requirement that the increment or
decrement operators be made members of the class.
However, because these operators change the state of the
object on which they operate, our preference is to make
them members.



Before we can define the overloaded increment and decrement operators for CheckedPtr , we
must think about one more thing. For the built-in types, there are both prefix and postfix
versions of the increment and decrement operators. Not surprisingly, we can define both the
prefix and postfix instances of these operators for our own classes as well. We'll look at the
prefix versions first and then implement the postfix ones.

Defining Prefix Increment/Decrement Operators

The declarations for the prefix operators look as one might expect:

     class CheckedPtr {
     public:
         CheckedPtr& operator++();        // prefix operators
         CheckedPtr& operator--();
         // other members as before
      };

For consistency with the built-in operators, the prefix
operations should return a reference to the incremented or
decremented object.

This increment operator ensures that the user can't increment past the end of the array by
checking curr against end . We throw an out_of_range exception if the increment would move
curr past end ; otherwise, we increment curr and return a reference to the object:

     // prefix: return reference to incremented/decremented object
     CheckedPtr& CheckedPtr::operator++()
     {
         if (curr == end)
             throw out_of_range
                   ("increment past the end of CheckedPtr");
         ++curr;                // advance current state
         return *this;
     }

The decrement operator behaves similarly, except that it decrements curr and checks whether
the decrement would move curr past beg :

     CheckedPtr& CheckedPtr::operator--()
     {
         if (curr == beg)
             throw out_of_range



               ("decrement past the beginning of CheckedPtr");
         --curr;              // move current state back one element
         return *this;
     }

Differentiating Prefix and Postfix Operators

There is one problem with defining both the prefix and postfix operators: They each take the
same number and type of parameters. Normal overloading cannot distinguish between whether
the operator we're defining is the prefix version or the postfix.

To solve this problem, the postfix operator functions take an extra (unused) parameter of type
int . When we use the postfix operator, the compiler supplies 0 as the argument for this
parameter. Although our postfix function could use this extra parameter, it usually should not.
That parameter is not needed for the work normally performed by a postfix operator. Its sole
purpose is to distinguish the definition of the postfix function from the prefix version.

Defining the Postfix Operators

We can now add the postfix operators to CheckedPtr :

     class CheckedPtr {
     public:
         // increment and decrement
         CheckedPtr operator++(int);       // postfix operators
         CheckedPtr operator--(int);
         // other members as before
     };

For consistency with the built-in operators, the postfix
operators should return the old (unincremented or
undecremented) value. That value is returned as a value,
not a reference.

The postfix operators might be implemented as follows:

     // postfix: increment/decrement object but return unchanged value
     CheckedPtr CheckedPtr::operator++(int)
     {

         // no check needed here, the call to prefix increment will do the check
         CheckedPtr ret(*this);        // save current value
         ++*this;                      // advance one element, checking the increment



         return ret;                   // return saved state
     }
     CheckedPtr CheckedPtr::operator--(int)
     {
         // no check needed here, the call to prefix decrement will do the check
         CheckedPtr ret(*this);  // save current value
         --*this;                // move backward one element and check
         return ret;             // return saved state
      }

The postfix versions are a bit more involved than the prefix operators. They have to remember
the current state of the object before incrementing the object. These operators define a local
CheckedPtr , which is initialized as a copy of *this that is, ret is a copy of the current state of
this object.

Having kept a copy of the current state, the operator calls its own prefix operator to do the
increment or decrement, respectively:

     ++*this

calls the CheckedPtr prefix increment operator on this object. That operator checks that the
increment is safe and either increments curr or throws an exception. Assuming no exception
was thrown, the postfix function completes by returning the stored copy in ret . Thus, after the
return, the object itself has been advanced, but the value returned reflects the original,
unincremented value.

Because these operators are implemented by calling the prefix versions, there is no need to
check that the curr is in range. That check, and the tHRow if necessary, is done inside the
corresponding prefix operator.

The int parameter is not used, so we do not give it a name.

Calling the Postfix Operators Explicitly

As we saw on page 509 , we can explicitly call an overloaded operator rather than using it as an
operator in an expression. If we want to call the postfix version using a function call, then we
must pass a value for the integer argument:

     CheckedPtr parr(ia, ia + size);        // iapoints to an array of ints

     parr.operator++(0);                    // call postfix operator++

     parr.operator++();                     // call prefix operator++



The value passed usually is ignored but is necessary to alert the compiler that the postfix
version is desired.

Ordinarily it is best to define both the prefix and postfix
versions. Classes that define only the prefix version or only
the postfix version will surprise users who are accustomed
to being able to use either form.

Exercises Section 14.7

Exercise
14.23:

The class CheckedPtr represents a pointer that points to an
array of int s. Define an overloaded subscript and dereference
for this class. Have the operator ensure that the CheckedPtr is
valid: It should not be possible to dereference or index one
past the end of the array.

Exercise
14.24:

Should the dereference or subscript operators defined in the
previous exercise also check whether an attempt is being
made to dereference or index one before the beginning of the
array? If not, why not? If so, why?

Exercise
14.25:

To behave like a pointer to an array, our CheckedPtr class
should implement the equality and relational operators to
determine whether two CheckedPtr s are equal, or whether one
is less-than another, and so on. Add these operations to the
CheckedPtr class.

Exercise
14.26:

Define addition and subtraction for ScreenPtr so that these
operators implement pointer arithmetic (Section 4.2.4 , p. 123
).

Exercise
14.27:

Discuss the pros and cons of allowing an empty array
argument to the CheckedPtr constructor.

Exercise
14.28:

We did not define a const version of the increment and
decrement operators. Why?

Exercise
14.29:

We also didn't implement arrow. Why?

Exercise
14.30:

Define a version of CheckedPtr that holds an array of Screen s.
Implement the overloaded increment, decrement,
dereference, and arrow operators for this class.



 



 

14.8. Call Operator and Function Objects

The function-call operator can be overloaded for objects of class type. Typically, the call
operator is overloaded for classes that represent an operation. For example, we could define a
struct named absInt that encapsulates the operation of converting a value of type int to its
absolute value:

     struct absInt {
         int operator() (int val) {
             return val < 0 ? -val : val;
         }
     };

This class is simple. It defines a single operation: the function-call operator. That operator takes
a single parameter and returns the absolute value of its parameter.

We use the call operator by applying an argument list to an object of the class type, in a way
that looks like a function call:

     int i = -42;
     absInt absObj;  // object that defines function call operator
     unsigned int ui = absObj(i);     // calls absInt::operator(int)

Even though absObj is an object and not a function, we can make a "call" on that object. The
effect is to run the overloaded call operator defined by the object absObj . That operator takes
an int value and returns its absolute value.

The function-call operator must be declared as a member function.
A class may define multiple versions of the call operator, each of
which differs as to the number or types of their parameters.

Objects of class types that define the call operator are often referred to as function objects
that is, they are objects that act like functions.



Exercises Section 14.8

Exercise
14.31:

Define a function object to perform an if-then-else operation:
The function object should take three parameters. It should
test its first parameter and if that test succeeds, it should
return its second parameter, otherwise, it should return its
third parameter.

Exercise
14.32:

How many operands may an overloaded function-call operator
take?

14.8.1. Using Function Objects with Library Algorithms

Function objects are most often used as arguments to the generic algorithms. As an example,
recall the problem we solved in Section 11.2.3 (p. 400 ). That program analyzed words in a set
of stories, counting how many of them were of size six or greater. One part of that solution
involved defining a function to determine whether a given string was longer than six characters
in length:

     // determine whether a length of a given word is 6 or more
     bool GT6(const string &s)
     {
         return s.size() >= 6;
     }

We used GT6 as an argument to the count_if algorithm to count the number of words for which
GT6 returned true:

     vector<string>::size_type wc =
                     count_if(words.begin(), words.end(), GT6);

Function Objects Can Be More Flexible than Functions

There was a serious problem with our implementation: It hardwired the number six into the
definition of the GT6 function. The count_if algorithm runs a function that takes a single
parameter and returns a bool . Ideally, we'd pass both the string and the size we wanted to
test. In that way, we could use the same code to count strings of differing sizes.

We could gain the flexibility we want by defining GT6 as a class with a function-call member.
We'll name this class GT_cls to distinguish it from the function:

     // determine whether a length of a given word is longer than a stored bound
     class GT_cls {



     public:
         GT_cls(size_t val = 0): bound(val) { }
         bool operator()(const string &s)
                            { return s.size() >= bound; }
     private:
         std::string::size_type bound;
     };

This class has a constructor that takes an integral value and remembers that value in its
member named bound . If no value is provided, the constructor sets bound to zero. The class
also defines the call operator, which takes a string and returns a bool . That operator compares
the length of its string argument to the value stored in its data member bound .

Using a GT_cls Function Object

We can do the same count as before but this time we'll use an object of type GT_cls rather than
the GT6 function:

     cout << count_if(words.begin(), words.end(), GT_cls(6))
          << " words 6 characters or longer" << endl;

This call to count_if passes a temporary object of type GT_cls rather than the function named
GT6 . We initialize that temporary using the value 6 , which the GT_cls constructor stores in its
bound member. Now, each time count_if calls its function parameter, it uses the call operator
from GT_cls . That call operator tests the size of its string argument against the value in bound .

Using the function object, we can easily revise our program to test against another value. We
need to change only the argument to the constructor for the object we pass to count_if . For
example, we could count the number of words of length five or greater by revising our program
as follows:

     cout << count_if(words.begin(), words.end(), GT_cls(5))
          << " words 5 characters or longer" << endl;

More usefully, we could count the number of words with lengths greater than one through ten:

     for (size_t i = 0; i != 11; ++i)
         cout << count_if(words.begin(), words.end(), GT(i))
              << " words " << i
              << " characters or longer" << endl;

To write this program using a functioninstead of a function objectwould require that we write ten
different functions, each of which would test against a different value.



Exercises Section 14.8.1

Exercise
14.33:

Using the library algorithms and the GT_cls class, write a
program to find the first element in a sequence that is larger
than a specified value.

Exercise
14.34:

Write a function-object class similar to GT_cls but that tests
whether two values are equal. Use that object and the library
algorithms to write a program to replace all instances of a
given value in a sequence.

Exercise
14.35:

Write a class similar to GT_cls , but that tests whether the
length of a given string matches its bound. Use that object to
rewrite the program in Section 11.2.3 (p. 400 ) to report how
many words in the input are of sizes 1 through 10 inclusive.

Exercise
14.36:

Revise the previous program to report the count of words that
are sizes 1 through 9 and 10 or more.

14.8.2. Library-Defined Function Objects

The standard library defines a set of arithmetic, relational, and logical function-object classes,
which are listed in Table 14.3 on the following page. The library also defines a set of function
adaptors that allow us to specialize or extend the function-object classes defined by the library
or those that we define ourselves. The library function-object types are defined in the
functional header.

Table 14.3. Library Arithmetic Function Objects



Arithmetic Function Objects
Types

 

plus<Type>

minus<Type>

multiplies<Type>

divides<Type>

modulus<Type>

negate<Type>

applies +

applies --

applies *

applies /

applies %

applies --

Relational Function Objects Types  

equal_to<Type>

not_equal_to<Type>

greater<Type>

greater_equal<Type>

less<Type>

less_equal<Type>

applies ==

applies !=

applies >

applies >=

applies <

applies <=

Logical Function Object Types  

logical_and<Type>

logical_or<Type>

logical_not<Type>

applies &&

applies |

applies !

Each Class Represents a Given Operator

Each of the library function-object classes represents an operatorthat is, each class defines the
call operator that applies the named operation. For example, plus is a template type that
represents the addition operator. The call operator in the plus template applies + to a pair of
operands.

Different function-object classes define call operators that perform different operations. Just as
plus defines a call operator that executes the + operator; the modulus class defines a call
operator that applies the binary % operator; the equal_to class applies == ; and so on.

There are two unary function-object classes: unary minus (negate<Type>) and logical NOT
(logical_not<Type>) . The remaining library function objects are binary function-object
classes representing the binary operators. The call operators defined for the binary operators
expect two parameters of the given type; the unary function-object types define a call operator
that takes a single argument.



The Template Type Represents the Operand(s) Type

Each of the function-object classes is a class template to which we supply a single type. As we
know from the sequential containers such as vector , a class template is a class that can be
used on a variety of types. The template type for the function-object classes specifies the
parameter type for the call operator.

For example, plus<string> applies the string addition operator to string objects; for plus<int>
the operands are int s; plus<Sales_item> applies + to Sales_items; and so on:

     plus<int> intAdd;         // function object that can add two int values
     negate<int> intNegate;   //  function object that can negate an int value

     // uses intAdd::operator(int, int) to add 10 and 20
     int sum = intAdd(10, 20);          // sum = 30

     // uses intNegate::operator(int) to generate -10 as second parameter

     // to intAdd::operator(int, int)
     sum = intAdd(10, intNegate(10));    // sum = 0

Using a Library Function Object with the Algorithms

Function objects are often used to override the default operator used by an algorithm. For
example, by default, sort uses operator< to sort a container in ascending order. To sort the
container in descending order, we could pass the function object greater . That class generates
a call operator that invokes the greater-than operator of the underlying element type. If svec is
a vector<string>

     // passes temporary function object that applies > operator to two strings
     sort(svec.begin(), svec.end(), greater<string>());

sorts the vector in descending order. As usual, we pass a pair of iterators to denote the
sequence that should be sorted. The third argument is used to pass a predicate (Section 11.2.3
, p. 402 ) function to use to compare elements. That argument is a temporary of type
greater<string> , which is a function object that applies the > operator to two string operands.

14.8.3. Function Adaptors for Function Objects

The standard library provides a set of function adaptors with which to specialize and extend
both unary and binary function objects. The function adaptors are divided into the following two
categories.

Binders: A binder is a function adaptor that converts a binary function object into a unary
function object by binding one of the operands to a given value.

1.

Negators: A negator is a function adaptor that reverses the truth value of a predicate
function object.

2.

The library defines two binder adaptors: bind1st and bind2nd . Each binder takes a function
object and a value. As you might expect, bind1st binds the given value to the first argument of



the binary function object, and bind2nd binds the value to the second. For example, to count all
the elements within a container that are less than or equal to 10 , we would pass count_if the
following:

     count_if(vec.begin(), vec.end(),
              bind2nd(less_equal<int>(), 10));

The third argument to count_if uses the bind2nd function adaptor. That adaptor returns a
function object that applies the <= operator using 10 as the right-hand operand. This call to
count_if counts the number of elements in the input range that are less than or equal to 10.

The library also provides two negators: not1 and not2 . Again, as you might expect, not1
reverses the truth value of a unary predicate function object, and not2 reverses the truth value
of a binary predicate function object.

To negate our binding of the less_equal function object, we would write

     count_if(vec.begin(), vec.end(),
             not1(bind2nd(less_equal<int>(), 10)));

Here we first bind the second operand of the less_equal object to 10 , effectively transforming
that binary operation into a unary operation. We then negate the return from the operation
using not1 . The effect is that each element will be tested to see if it is <= to 10. Then, the truth
value of that result will be negated. In effect, this call counts those elements that are not <= to
10.

 



 

14.9. Conversions and Class Types

In Section 12.4.4 (p. 461 ) we saw that a nonexplicit constructor that can be called with one
argument defines an implicit conversion. The compiler will use that conversion when an object of
the argument type is supplied and an object of the class type is needed. Such constructors define
conversions to the class type.

Exercises Section 14.8.3

Exercise
14.37:

Using the library function objects and adaptors, define an object
to:

Find all values that are greater than 1024.1.

Find all strings that are not equal to pooh .2.

Multiply all values by 2.3.

Exercise
14.38:

In the last call to count_if we used not1 to negate the result
from bind2nd of (less_equal<int>(), 10) . Why did we use not1
rather than not2 .

Exercise
14.39:

Use library function objects in place of GT_cls to find the words
of a specified length.

In addition to defining conversions to a class type, we can also define conversions from the class
type. That is, we can define a conversion operator that, given an object of the class type, will
generate an object of another type. As with other conversions, the compiler will apply this
conversion automatically. Before showing how to define such conversions, we'll look at why they
might be useful.

14.9.1. Why Conversions Are Useful

Assume that we want to define a class, which we'll name SmallInt , to implement safe small
integers. Our class will allow us to define objects that could hold the same range of values as an
8-bit unsigned char that is, 0 to 255. This class would catch under- and overflow errors and so
would be safer to use than a built-in unsigned char .

We'd want our class to define all the same operations as are supported by an unsigned char . In
particular, we'd want to define the five arithmetic operators (+, -, *, / , and %) and the
corresponding compound-assignment operators; the four relational operators (<, <=, > , and >=);
and the equality operators (== and != ). Evidently, we'd need to define 16 operators.

Supporting Mixed-Type Expressions



Moreover, we'd like to be able to use these operators in mixed-mode expressions. For example, it
should be possible to add two SmallInt objects and also possible to add any of the arithmetic
types to a SmallInt . We could come close by defining three instances for each operator:

     int operator+(int, const SmallInt&);
     int operator+(const SmallInt&, int);
     SmallInt operator+(const SmallInt&, const SmallInt&);

Because there is a conversion to int from any of the arithmetic types, these three functions would
cover our desire to support mixed mode use of SmallInt objects. However, this design only
approximates the behavior of built-in integer arithmetic. It wouldn't properly handle mixed-mode
operations for the floating-point types, nor would it properly support addition of long, unsigned
int , or unsigned long . The problem is that this design converts all arithmetic types even those
bigger than int to int and does an int addition.

Conversions Reduce the Number of Needed Operators

Even ignoring the issue of floating-point or large integral operands, if we implemented this design,
we'd have to define 48 operators! Fortunately, C++ provides a mechanism by which a class can
define its own conversions that can be applied to objects of its class type. For SmallInt , we could
define a conversion from SmallInt to type int . If we define the conversion, then we won't need to
define any of the arithmetic, relational, or equality operators. Given a conversion to int , a
SmallInt object could be used anywhere an int could be used.

If there were a conversion to int , then

     SmallInt si(3);

     si + 3.14159;         // convert si to int, then convert to double

would be resolved by

Converting si to an int .1.

Converting the resulting int to double and adding it to the double literal constant 3.14159 ,
yielding a double value.

2.

14.9.2. Conversion Operators

A conversion operator is a special kind of class member function. It defines a conversion that
converts a value of a class type to a value of some other type. A conversion operator is declared in
the class body by specifying the keyword operator followed by the type that is the target type of
the conversion:

     class SmallInt {
     public:
         SmallInt(int i = 0): val(i)
         { if (i < 0 || i > 255)
            throw std::out_of_range("Bad SmallInt initializer");



         }
         operator int() const { return val; }
     private:
         std::size_t val;
     };

A conversion function takes the general form

     operator type();

where type represents the name of a built-in type, a class type, or a name defined by a typedef.
Conversion functions can be defined for any type (other than void ) that could be a function return
type. In particular, conversions to an array or function type are not permitted. Conversions to
pointer typesboth data and function pointersand to reference types are allowed.

A conversion function must be a member function. The function may
not specify a return type, and the parameter list must be empty.

All of the following declarations are errors:

     operator int(SmallInt &);            // error: nonmember

     class SmallInt {
     public:
         int operator int();              // error: return type
         operator int(int = 0);           // error: parameter list
         // ...
     };

Although a conversion function does not specify a return type, each conversion function must
explicitly return a value of the named type. For example, operator int returns an int ; if we
defined an operator Sales_item , it would return a Sales_item; and so on.

Conversion operations ordinarily should not change the
object they are converting. As a result, conversion operators
usually should be defined as const members.



Using a Class-Type Conversion

Once a conversion exists, the compiler will call it automatically (Section 5.12.1 , p. 179 ) in the
same places that a built-in conversion would be used:

In expressions:

     SmallInt si;
     double dval;

     si >= dval          // si converted to int and then convert to double

In conditions:

     if (si)                // si converted to int and then convert to bool

When passing arguments to or returning values from a function:

     int calc(int);
     SmallInt si;

     int i = calc(si);      // convert si to int and call calc

As operands to overloaded operators:

     // convert si to int then call opeator<< on the int value
     cout << si << endl;

In an explicit cast:

     int ival;
     SmallInt si = 3.541; //
     instruct compiler to cast si to int
     ival = static_cast<int>(si) + 3;

Class-Type Conversions and Standard Conversions

When using a conversion function, the converted type need not exactly match the needed type. A
class-type conversion can be followed by a standard conversion (Section 5.12.3 , p. 181 ) if
needed to obtain the desired type. For example, in the comparison between a SmallInt and a
double

     SmallInt si;
     double dval;

     si >= dval // si converted to int and then convert to double



si is first converted from a SmallInt to an int , and then the int value is converted to double .

Only One Class-Type Conversion May Be Applied

A class-type conversion may not be followed by another class-type
conversion. If more than one class-type conversion is needed then the
code is in error.

For example, assume we had another class, Integral , that could be converted to SmallInt but
that had no conversion to int :

     // class to hold unsigned integral values
     class Integral {
     public:
         Integral(int i = 0): val(i) { }
         operator SmallInt() const { return val % 256; }
     private:
         std::size_t val;
     };

We could use an Integral where a SmallInt is needed, but not where an int is required:

     int calc(int);
     Integral intVal;

     SmallInt si(intVal);  // ok: convert intVal to SmallInt and copy to si

     int i = calc(si);     // ok: convert si to int and call calc

     int j = calc(intVal); // error: no conversion to int from Integral

When we create si , we use the SmallInt copy constructor. First int_val is converted to a
SmallInt by invoking the Integral conversion operator to generate a temporary value of type
SmallInt . The (synthesized) SmallInt copy constructor then uses that value to initialize si .

The first call to calc is also okay: The argument si is automatically converted to int , and the int
value is passed to the function.

The second call is an error: There is no direct conversion from Integral to int . To get an int
from an Integral would require two class-type conversions: first from Integral to SmallInt and
then from SmallInt to int . However, the language allows only one class-type conversion, so the
call is in error.

Standard Conversions Can Precede a Class-Type Conversion



When using a constructor to perform an implicit conversion (Section 12.4.4 , p. 462 ), the
parameter type of the constructor need not exactly match the type supplied. For example, the
following code invokes the constructor SmallInt(int) defined in class SmallInt to convert sobj to
the type SmallInt :

     void calc(SmallInt);
     short sobj;

     // sobj promoted from short to int

     // that int converted to SmallInt through the SmallInt(int) constructor
     calc(sobj);

If needed, a standard conversion sequence can be applied to an argument before a constructor is
called to perform a class-type conversion. To call the function calc() , a standard conversion is
applied to convert dobj from type double to type int . The SmallInt(int) constructor is then
invoked to convert the result of the conversion to the type SmallInt .

Exercises Section 14.9.2

Exercise
14.40:

Write operators that could convert a Sales_item to string and to
double . What values do you think these operators should
return? Do you think these conversions are a good idea? Explain
why or why not.

Exercise
14.41:

Explain the difference between these two conversion operators:

     class Integral {
     public:
         const int();
         int() const;
     };

Are either of these conversions too restricted? If so, how might
you make the conversion more general?

Exercise
14.42:

Define a conversion operator to bool for the CheckoutRecord
class from the exercises in Section 14.2.1 (p. 515 ).

Exercise
14.43:

Explain what the bool conversion operator does. Is that the only
possible meaning for this conversion for the CheckoutRecord
type? Explain whether you think this conversion is a good use of
a conversion operation.

14.9.3. Argument Matching and Conversions



The rest of this chapter covers a somewhat advanced topic. It can be
safely skipped on first reading.

Class-type conversions can be a boon to implementing and using classes. By defining a conversion
to int for SmallInt s, we made the class easier to implement and easier to use. The int
conversion lets users of SmallInt use all the arithmetic and relational operators on SmallInt
objects. Moreover, users can safely write expressions that intermix SmallInt s and other
arithmetic types. The class implementor's job is made much easier by defining a single conversion
operator instead of having to define 48 (or more) overloaded operators.

Class-type conversions can also be a great source of compile-time errors. Problems arise when
there are multiple ways to convert from one type to another. If there are several class-type
conversions that could be used, the compiler must figure out which one to use for a given
expression. In this section, we look at how class-type conversions are used to match an argument
to its corresponding parameter. We look first at how parameters are matched for functions that
are not overloaded and then look at overloaded functions.

Used carefully, class-type conversions can greatly simplify both class
and user code. Used too freely, they can lead to mysterious compile-
time errors that can be hard to understand and hard to avoid.

Argument Matching and Multiple Conversion Operators

To illustrate how conversions on values of class type interact with function matching, we'll add two
additional conversions to our SmallInt class. We'll add a second constructor that takes a double
and also define a second conversion operator to convert SmallInt to double :

     // unwise class definition:
     // multiple constructors and conversion operators to and from the built-in types
     // can lead to ambiguity problems
     class SmallInt {
     public:

         // conversions to SmallInt from int and double
         SmallInt(int = 0);
         SmallInt(double);

         // Conversions to int or double from SmallInt

         // Usually it is unwise to define conversions to multiple arithmetic types
         operator int() const { return val; }



         operator double() const { return val; }
         // ...
     private:
         std::size_t val;
     };

Ordinarily it is a bad idea to give a class conversions to or from two
built-in types. We do so here to illustrate the pitfalls involved.

Consider the simple case where we call a function that is not overloaded:

     void compute(int);
     void fp_compute(double);
     void extended_compute(long double);
     SmallInt si;

     compute(si);          // SmallInt::operator int() const

     fp_compute(si);       // SmallInt::operator double() const
     extended_compute(si); // error: ambiguous

Either conversion operator could be used in the call to compute :

operator int generates an exact match to the parameter type.1.

operator double followed by the standard conversion from double to int matches the
parameter type.

2.

An exact match is a better conversion than one that requires a standard conversion. Hence, the
first conversion sequence is better. The conversion function SmallInt::operator int() is chosen to
convert the argument.

Similarly, in the second call, fp_compute could be called using either conversion. However, the
conversion to double is an exact match; it requires no additional standard conversion.

The final call to extended_compute is ambiguous. Either conversion function could be used, but
each would have to be followed by a standard conversion to get to long double . Hence, neither
conversion is better than the other, so the call is ambiguous.



If two conversion operators could be used in a call, then the rank of
the standard conversion (Section 7.8.4 , p. 272 ), if any, following the
conversion function is used to select the best match.

Argument Matching and Conversions by Constructors

Just as there might be two conversion operators, there can also be two constructors that might be
applied to convert a value to the target type of a conversion.

Consider the manip function, which takes an argument of type SmallInt :

     void manip(const SmallInt &);
     double d; int i; long l;

     manip(d);     // ok: use SmallInt(double) to convert the argument

     manip(i);     // ok: use SmallInt(int) to convert the argument
     manip(l);     // error: ambiguous

In the first call, we could use either of the SmallInt constructors to convert d to a value of type
SmallInt . The int constructor requires a standard conversion on d , whereas the double
constructor is an exact match. Because an exact match is better than a standard conversion, the
constructor SmallInt(double) is used for the conversion.

In the second call, the reverse is true. The SmallInt(int) constructor provides an exact matchno
additional conversion is needed. To call the SmallInt constructor that takes a double would require
that i first be converted to double . For this call, the int constructor would be used to convert the
argument.

The third call is ambiguous. Neither constructor is an exact match for long . Each would require
that the argument be converted before using the constructor:

standard conversion (long to double ) followed by SmallInt(double)1.

standard conversion (long to int ) followed by SmallInt(int)2.

These conversion sequences are indistinguishable, so the call is ambiguous.

When two constructor-defined conversions could be used, the rank of
the standard conversion, if any, required on the constructor argument
is used to select the best match.

Ambiguities When Two Classes Define Conversions



When two classes define conversions to each other, ambiguities are likely:

     class Integral;
     class SmallInt {
     public:

         SmallInt(Integral); // convert from Integral to SmallInt
         // ...
      };
     class Integral {
     public:

         operator SmallInt() const; // convert from SmallInt to Integral
         // ...
      };
     void compute(SmallInt);
     Integral int_val;
     compute(int_val);  // error: ambiguous

The argument int_val can be converted to a SmallInt in two different ways. The compiler could
use the SmallInt constructor that takes an Integral object or it could use the Integral conversion
operation that converts an Integral to a SmallInt . Because these two functions are equally good,
the call is in error.

In this case, we cannot use a cast to resolve the ambiguitythe cast itself could use either the
conversion operation or the constructor. Instead, we would need to explicitly call the conversion
operator or the constructor:

     compute(int_val.operator SmallInt());   // ok: use conversion operator

     compute(SmallInt(int_val));             // ok: use SmallInt constructor

Moreover, conversions that we might think would be ambiguous can be legal for what seem like
trivial reasons. For example, our SmallInt class constructor copies its Integral argument. If we
change the constructor so that it takes a reference to const Integral

     class SmallInt {
     public:
     SmallInt(const Integral&);
     };

our call to compute(int_val) is no longer ambiguous! The reason is that using the SmallInt
constructor requires binding a reference to int_val , whereas using class Integral 's conversion
operator avoids this extra step. This small difference is enough to tip the balance in favor of using
the conversion operator.

The best way to avoid ambiguities or surprises is to avoid
writing pairs of classes where each offers an implicit
conversion to the other.



Caution: Avoid Overuse of Conversion Functions

As with using overloaded operators, judicious use of conversion operators
can greatly simplify the job of a class designer and make using a class easier.
However, there are two potential pitfalls: Defining too many conversion
operators can lead to ambiguous code, and some conversions can be
confusing rather than helpful.

The best way to avoid ambiguities is to ensure that there is at most one way
to convert one type to another. The best way to do that is to limit the number
of conversion operators. In particular there should be only one conversion to
a built-in type.

Conversion operators can be misleading when they are used where there is
no obvious single mapping between the class type and the conversion type.
In such cases, providing a conversion function may be confusing to the user
of the class.

As an example, if we had a class that represented a Date , we might think it
would be a good idea to provide a conversion from Date to int . However,

what value should the conversion function return? The function might return
the julian date, which is the sequence number of the current date starting
from 0 as January 1. But should the year precede the day or follow it? That is,
would January 31, 1986 be represented as 1986031 or 311986?
Alternatively, the conversion operator might return an int representing the

day count since some epoch point. The counter might count days since
January 1, 1971 or some other starting point.

The problem is that whatever choice is made, the use of Date objects will be

ambiguous because there is no single one-to-one mapping between an object
of type Date and a value of type int . In such cases, it is better not to define

the conversion operator. Instead, the class ought to define one or more
ordinary members to extract the information in these various forms.

14.9.4. Overload Resolution and Class Arguments

As we have just seen, the compiler automatically applies a class conversion operator or
constructor when needed to convert an argument to a function. Class conversion operators,
therefore, are considered during function resolution. Function overload resolution (Section 7.8.2 ,
p. 269 ) consists of three steps:



1. Determine the set of candidate functions: These are the functions with the same name as the
function being called.

2. Select the viable functions: These are the candidate functions for which the number and type
of the function's parameters match the arguments in the call. When selecting the viable
functions, the compiler also determines which conversion operations, if any, are needed to
match each parameter.

3. The best match function is selected. To determine the best match, the type conversions
needed to convert argument(s) to the type of the corresponding parameter(s) are ranked.
For arguments and parameters of class type, the set of possible conversions includes class-
type conversions.

Standard Conversions Following Conversion Operator

Which function is the best match can depend on whether one or more class-type conversions are
involved in matching different functions.

If two functions in the overload set can be matched using the same
conversion function , then the rank of the standard conversion
sequence that follows or precedes the conversion is used to determine
which function has the best match.

Otherwise, if different conversion operations could be used, then the conversions are
considered equally good matches, regardless of the rank of any standard conversions
that might or might not be required.

On page 541 we looked at the effect of class-type conversions on calls to functions that are not
overloaded. Now, we'll look at similar calls but assume that the functions are overloaded:

     void compute(int);
     void compute(double);
     void compute(long double);

Assuming we use our original SmallInt class that only defines one conversion operatorthe
conversion to int then if we pass a SmallInt to compute , the call is matched to the version of
compute that takes an int .

All three compute functions are viable:

compute(int) is viable because SmallInt has a conversion to int . That conversion is an
exact match for the parameter.

compute(double) and compute(long double) are also viable, by using the conversion to int
followed by the appropriate standard conversion to either double or long double .

Because all three functions would be matched using the same class-type conversion, the rank of



the standard conversion, if any, is used to determine the best match. Because an exact match is
better than a standard conversion, the function compute(int) is chosen as the best viable function.

The standard conversion sequence following a class-type conversion is
used as a selection criterion only if the two conversion sequences use
the same conversion operation.

Multiple Conversions and Overload Resolution

We can now see one reason why adding a conversion to double is a bad idea. If we use the revised
SmallInt class that defines conversions to both int and double , then calling compute on a
SmallInt value is ambiguous:

     class SmallInt {
     public:

         // Conversions to int or double from SmallInt
         // Usually it is unwise to define conversions to multiple arithmetic types
         operator int() const { return val; }
         operator double() const { return val; }
         // ...
     private:
         std::size_t val;
     };
     void compute(int);
     void compute(double);
     void compute(long double);
     SmallInt si;
     compute(si);    // error: ambiguous

In this case we could use the operator int to convert si and call the version of compute that takes
an int . Or we could use operator double to convert si and call compute(double) .

The compiler will not attempt to distinguish between two different class-type conversions. In
particular, even if one of the calls required a standard conversion following the class-type
conversion and the other were an exact match, the compiler would still flag the call as an error.

Explicit Constructor Call to Disambiguate

A programmer who is faced with an ambiguous conversion can use a cast to indicate explicitly
which conversion operation to apply:

     void compute(int);
     void compute(double);
     SmallInt si;

     compute(static_cast<int>(si)); // ok: convert and call compute(int)



This call is now legal because it explicitly says which conversion operation to apply to the
argument. The type of the argument is forced to int by the cast. That type exactly matches the
parameter of the first version of compute that takes an int .

Standard Conversions and Constructors

Let's look at overload resolution when multiple conversion constructors exist:

     class SmallInt {
     public:
         SmallInt(int = 0);
     };
     class Integral {
     public:
         Integral(int = 0);
     };
     void manip(const Integral&);
     void manip(const SmallInt&);
     manip(10); // error: ambiguous

The problem is that both classes, Integral and SmallInt , provide constructors that take an int .
Either constructor could be used to match a version of manip . Hence, the call is ambiguous: It
could mean convert the int to Integral and call the first version of manip , or it could mean
convert the int to a SmallInt and call the second version.

This call would be ambiguous even if one of the classes defined a constructor that required a
standard conversion for the argument. For example, if SmallInt defined a constructor that took a
short instead of an int , the call manip(10) would require a standard conversion from int to short
before using that constructor. The fact that one call requires a standard conversion and the other
does not is immaterial when selecting among overloaded versions of a call. The compiler will not
prefer the direct constructor; the call would still be ambiguous.

Explicit Constructor Call to Disambiguate

The caller can disambiguate by explicitly constructing a value of the desired type:

     manip(SmallInt(10));    // ok: call manip(SmallInt)
     manip(Integral(10));    // ok: call manip(Integral)

Needing to use a constructor or a cast to convert an argument in a
call to an overloaded function is a sign of bad design.



14.9.5. Overloading, Conversions, and Operators

Overloaded operators are overloaded functions. The same process that is used to resolve a call to
an overloaded function is used to determine which operator built-in or class-typeto apply to a
given expression. Given code such as

     ClassX sc;
     int iobj = sc + 3;

Exercises Section 14.9.4

Exercise
14.44:

Show the possible class-type conversion sequences for each of
the following initializations. What is the outcome of each
initialization?

     class LongDouble {
         operator double();
         operator float();
     };
     LongDouble ldObj;
     (a) int ex1 = ldObj;    (b) float ex2 = ldObj;

Exercise
14.45:

Which calc() function, if any, is selected as the best viable
function for the following call? Show the conversion sequences
needed to call each function and explain why the best viable
function is selected.

     class LongDouble {
     public
         LongDouble(double);
         // ...
     };
     void calc(int);
     void calc(LongDouble);
     double dval;

     calc(dval); // which function?

there are four possibilities:

There is an overloaded addition operator that matches ClassX and int .



There are conversions to convert sc and/or to convert an int to types for which + is defined.
If so, this expression will use the conversion(s) followed by applying the appropriate addition
operator.

The expression is ambiguous because both a conversion operator and an overloaded version
of + are defined.

The expression is invalid because there is neither a conversion nor an over-loaded + to use.

Overload Resolution and Operators

The fact that member and nonmember functions are possible changes
how the set of candidate functions is selected.

Overload resolution (Section 7.8.2 , p. 269 ) for operators follows the usual three-step process:

1. Select the candidate functions.

2. Select the viable functions including identifying potential conversions sequences for each
argument.

3. Select the best match function.

Candidate Functions for Operators

As usual, the set of candidate functions consists of all functions that have the name of the function
being used, and that are visible from the place of the call. In the case of an operator used in an
expression, the candidate functions include the built-in versions of the operator along with all the
ordinary nonmember versions of that operator. In addition, if the left-hand operand has class
type, then the candidate set will contain the overloaded versions of the operator, if any, defined by
that class.

Ordinarily, the candidate set for a call includes only member functions
or nonmember functions but not both. When resolving the use of an
operator, it is possible for both nonmember and member versions of
the operator to be candidates.

When resolving a call to a named function (as opposed to the use of an operator), the call itself
determines the scope of names that will be considered. If the call is through an object of a class
type (or through a reference or pointer to such an object), then only the member functions of that



class are considered. Member and nonmember functions with the same name do not overload one
another. When we use an overloaded operator, the call does not tell us anything about the scope
of the operator function that is being used. Therefore, both member and nonmember versions
must be considered.

Caution: Conversions and Operators

Correctly designing the overloaded operators, conversion constructors, and
conversion functions for a class requires some care. In particular,
ambiguities are easy to generate if a class defines both conversion operators
and overloaded operators. A few rules of thumb can be helpful:

Never define mutually converting classesthat is, if class Foo has a
constructor that takes an object of class Bar , do not give class Bar a
conversion operator to type Foo .

1.

Avoid conversions to the built-in arithmetic types. In particular, if you do
define a conversion to an arithmetic type, then

Do not define overloaded versions of the operators that take
arithmetic types. If users need to use these operators, the
conversion operation will convert objects of your type, and then the
built-in operators can be used.

Do not define a conversion to more than one arithmetic type. Let
the standard conversions provide conversions to the other
arithmetic types.

2.

The easiest rule of all: Avoid defining conversion functions and limit
nonexplicit constructors to those that are "obviously right."

Conversions Can Cause Ambiguity with Built-In Operators

Let's extend our SmallInt class once more. This time, in addition to a conversion operator to int
and a constructor from int , we'll give our class an overloaded addition operator:

     class SmallInt {
     public:

         SmallInt(int = 0); // convert from int to SmallInt

         // conversion to int from SmallInt
         operator int() const { return val; }
         // arithmetic operators
         friend SmallInt
         operator+(const SmallInt&, const SmallInt&);
     private:
          std::size_t val;
     };



Now we could use this class to add two SmallInts , but we will run into ambiguity problems if we
attempt to perform mixed-mode arithmetic:

     SmallInt s1, s2;

     SmallInt s3 = s1 + s2;         // ok: uses overloaded operator+
     int i = s3 + 0;                // error: ambiguous

The first addition uses the overloaded version of + that takes two SmallInt values. The second
addition is ambiguous. The problem is that we could convert 0 to a SmallInt and use the SmallInt
version of + , or we could convert s3 to int and use the built-in addition operator on int s.

Providing both conversion functions to an arithmetic type and over-
loaded operators for the same class type may lead to ambiguities
between the overloaded operators and the built-in operators.

Viable Operator Functions and Conversions

We can understand the behavior of these two calls by listing the viable functions for each call. In
the first call, there are two viable addition operators:

operator+(const SmallInt&, const SmallInt&)

The built-in operator+(int, int)

The first addition requires no conversions on either argument s1 and s2 match exactly the types of
the parameters. Using the built-in addition operator for this addition would require conversions on
both arguments. Hence, the overloaded operator is a better match for both arguments and is the
one that is called. For the second addition

     int i = s3 + 0;          // error: ambiguous

the same two functions are viable. In this case, the overloaded version of + matches the first
argument exactly, but the built-in version is an exact match for the second argument. The first
viable function is better for the left operand, whereas the second viable function is better for the
right operand. The call is flagged as ambiguous because no best viable function can be found.



Exercises Section 14.9.5

Exercise
14.46:

Which operator+ , if any, is selected as the best viable function
for the addition operation in main ? List the candidate functions,
the viable functions, and the type conversions on the arguments
for each viable function.

     class Complex {
         Complex(double);
         // ...
     };
     class LongDouble {
         friend LongDouble operator+(LongDouble&, int);
     public:
         LongDouble(int);
         operator double();
         LongDouble operator+(const complex &);
         // ...
      };
     LongDouble operator+(const LongDouble &, double);
     LongDouble ld(16.08);
     double res = ld + 15.05; // which operator+ ?

 



 

Chapter Summary

Chapter 5 described the rich set of operators that C++ defines for the built-in types. That
chapter also covered the standard conversions, which automatically convert operands from one
type to another.

We can define a similarly rich set of expressions for objects of our own types (i.e., class or
enumeration types) by defining overloaded versions of the built-in operators. An overloaded
operator must have at least one operand of class or enumeration type. An overloaded operator
has the same number of operands, associativity, and precedence as the corresponding operator
when applied to the built-in types.

Most overloaded operators can be defined as class members or as ordinary non-member
functions. The assignment, subscript, call, and arrow operators must be class members. When
an operator is defined as a member, it is a normal member function. In particular, member
operators have an implicit this pointer, which is bound to the first (only operand for unary
operators, left-hand operand for binary operators) operand.

Objects of classes that overload operator() , the function call operator, are known as "function
objects." Such objects are often used to define predicate functions to be used in combination
with the standard algorithms.

Classes can define conversions that will be applied automatically when an object of one type is
used where an object of a different type is needed. Constructors that take a single parameter
and are not designated as explicit (Section 12.4.4 , p. 462 ) define conversions from the class
type to other types. Overloaded operator conversion functions define conversions from other
types to the class type. Conversion operators must be members of the class that they convert.
They have no parameters and define no return value. Conversion operators return a value of the
type of the operatorfor example, operator int returns an int .

Both overloaded operators and class-type conversions can make types easier and more natural
to use. However, care should be taken to avoid designing operators or conversions that are not
obvious to users of the type and to avoid defining multiple conversions between one type and
another.

 



 

Defined Terms

binary function object

A class that has a function-call operator and represents one of the binary operators, such
as one of the arithmetic or relational operators.

binder

An adaptor that binds an operand of a specified function object. For example,
bind2nd(minus<int>(), 2) generates a unary function object that subtracts two from its
operand.

class-type conversion

Conversions to or from class types. Non-explicit constructors that take a single parameter
define a conversion from the parameter type to the class type. Conversion operators
define conversions from the class type to the type specified by the operator.

conversion operators

Conversion operators are member functions that define conversions from the class type to
another type. Conversion operators must be a member of their class. They do not specify
a return type and take no parameters. They return a value of the type of the conversion
operator. That is, operator int returns an int, operator Sales_item returns a Sales_item
, and so on.

function adaptor

Library type that provides a new interface for a function object.

function object

Object of a class that defines an overloaded call operator. Function objects can be used
where functions are normally expected.

negator

An adaptor that negates the value returned by the specified function object. For example,
not2(equal_to<int>()) generates a function object that is equivalent to
not_equal_to<int> .



smart pointer

A class that defines pointer-like behavior and other functionality, such as reference
counting, memory management, or more thorough checking. Such classes typically define
overloaded versions of dereference (operator* ) and member access (operator-> ).

unary function object

A class that has a function-call operator and represents one of the unary operators, unary
minus or logical NOT.

 



 

Part IV: Object-Oriented and Generic
Programming

Part IV extends the discussion of Part III by covering how C++ supports object-oriented
and generic programming.

Chapter 15 covers inheritance and dynamic binding. Along with data abstraction,
inheritance and dynamic binding are fundamental to object-oriented programming .

Chapter 16 covers function and class templates. Templates let us write generic classes and
functions that are independent of type.

Writing our own object-oriented or generic types requires a fairly good understanding of
C++. Fortunately, we can use OO and generic types without understanding the details of
how to build them. In fact, the standard library uses the facilities we'll study in Chapters
15 and 16 extensively, and we've used the library types and algorithms without needing to
know how they are implemented. Readers, therefore, should understand that Part IV
covers advanced topics. Writing templates or object-oriented classes requires a good
understanding of the basics of C++ and a good grasp of how to define more basic classes.
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  Chapter 16 Templates and Generic Programming
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Object-oriented programming is based on three fundamental concepts: data abstraction,
inheritance, and dynamic binding. In C++ we use classes for data abstraction and class
derivation to inherit one class from another: A derived class inherits the members of its base
class(es). Dynamic binding lets the compiler determine at run time whether to use a function
defined in the base or derived class.

Inheritance and dynamic binding streamline our programs in two ways: They make it easier to
define new classes that are similar, but not identical, to other classes, and they make it easier
for us to write programs that can ignore the details of how those similar types differ.

Many applications are characterized by concepts that are related but slightly different. For
example, our bookstore might offer different pricing strategies for different books. Some books
might be sold only at a given price. Others might be sold subject to some kind of discount
strategy. We might give a discount to purchasers who buy a specified number of copies of the
book. Or we might give a discount for only the first few copies purchased but charge full price
for any bought beyond a given limit.

Object-oriented programming (OOP) is a good match to this kind of application. Through
inheritance we can define types that model the different kinds of books. Through dynamic
binding we can write applications that use these types but that can ignore the type-dependent
differences.

The ideas of inheritance and dynamic binding are conceptually simple but have profound
implications for how we build our applications and for the features that programming languages
must support. Before covering how C++ supports OOP, we'll look at the concepts that are
fundamental to this style of programming.



 



 

15.1. OOP: An Overview

The key idea behind OOP is polymorphism . Polymorphism is derived from a Greek word
meaning "many forms." We speak of types related by inheritance as polymorphic types, because
in many cases we can use the "many forms" of a derived or base type interchangeably. As we'll
see, in C++, polymorphism applies only to references or pointers to types related by
inheritance.

Inheritance

Inheritance lets us define classes that model relationships among types, sharing what is
common and specializing only that which is inherently different. Members defined by the base
class are inherited by its derived classes . The derived class can use, without change, those
operations that do not depend on the specifics of the derived type. It can redefine those
member functions that do depend on its type, specializing the function to take into account the
peculiarities of the derived type. Finally, a derived class may define additional members beyond
those it inherits from its base class.

Classes related by inheritance are often described as forming an inheritance hierarchy . There
is one class, referred to as the root, from which all the other classes inherit, directly or
indirectly. In our bookstore example, we will define a base class, which we'll name Item_base ,
to represent undiscounted books. From Item_base we will inherit a second class, which we'll
name Bulk_item , to represent books sold with a quantity discount.

At a minimum, these classes will define the following operations:

an operation named book that will return the ISBN

an operation named net_price that returns the price for purchasing a specified number of
copies of a book

Classes derived from Item_base will inherit the book function without change: The derived
classes have no need to redefine what it means to fetch the ISBN. On the other hand, each
derived class will need to define its own version of the net_price function to implement an
appropriate discount pricing strategy.

In C++, a base class must indicate which of its functions it intends for its derived classes to
redefine. Functions defined as virtual are ones that the base expects its derived classes to

redefine. Functions that the base class intends its children to inherit are not defined as virtual.

Given this discussion, we can see that our classes will define three (const ) member functions:

A nonvirtual function, std::string book() , that returns the ISBN. It will be defined by
Item_base and inherited by Bulk_item .

Two versions of the virtual function, double net_price(size_t) , to return the total price
for a given number of copies of a specific book. Both Item_base and Bulk_item will define
their own versions of this function.



Dynamic Binding

Dynamic binding lets us write programs that use objects of any type in an inheritance
hierarchy without caring about the objects' specific types. Programs that use these classes need
not distinguish between functions defined in the base or in a derived class.

For example, our bookstore application would let a customer select several books in a single
sale. When the customer was done shopping, the application would calculate the total due. One
part of figuring the final bill would be to print for each book purchased a line reporting the total
quantity and sales price for that portion of the purchase.

We might define a function named print_total to manage this part of the application. The
print_total function, given an item and a count, should print the ISBN and the total price for
purchasing the given number of copies of that particular book. The output of this function should
look like:

     ISBN: 0-201-54848-8 number sold: 3 total price: 98
     ISBN: 0-201-82470-1 number sold: 5 total price: 202.5

Our print_total function might look something like the following:

     // calculate and print price for given number of copies, applying any discounts
     void print_total(ostream &os,
                      const Item_base &item, size_t n)
     {

          os << "ISBN: " << item.book() // calls Item_base::book
             << "\tnumber sold: " << n << "\ttotal price: "

             // virtual call: which version of net_price to call is resolved at run time
             << item.net_price(n) << endl;
     }

The function's work is trivial: It prints the results of calling book and net_price on its item
parameter. There are two interesting things about this function.

First, even though its second parameter is a reference to Item_base , we can pass either an
Item_base object or a Bulk_item object to this function.

Second, because the parameter is a reference and the net_price function is virtual, the call to
net_price will be resolved at run time. The version of net_price that is called will depend on the
type of the argument passed to print_total . When the argument to print_total is a Bulk_item
, the version of net_price that is run will be the one defined in Bulk_item that applies a
discount. If the argument is an Item_base object, then the call will be to the version defined by
Item_base .



In C++, dynamic binding happens when a virtual function is called
through a reference (or a pointer) to a base class. The fact that a
reference (or pointer) might refer to either a base- or a derived-
class object is the key to dynamic binding. Calls to virtual functions
made through a reference (or pointer) are resolved at run time: The
function that is called is the one defined by the actual type of the
object to which the reference (or pointer) refers.

 



 

15.2. Defining Base and Derived Classes

In many ways, base and derived classes are defined like other classes we have already seen. However,
there are some additional features that are required when defining classes in an inheritance hierarchy.
This section will present those features. Subsequent sections will see how use of these features impacts
classes and the programs we write using inherited classes.

15.2.1. Defining a Base Class

Like any other class, a base class has data and function members that define its interface and
implementation. In the case of our (very simplified) bookstore pricing application, our Item_base class
defines the book and net_price functions and needs to store an ISBN and the standard price for the
book:

     // Item sold at an undiscounted price
     // derived classes will define various discount strategies
     class Item_base {
     public:
         Item_base(const std::string &book = "",
                   double sales_price = 0.0):
                          isbn(book), price(sales_price) { }
         std::string book() const { return isbn; }
         // returns total sales price for a specified number of items
         // derived classes will override and apply different discount algorithms
         virtual double net_price(std::size_t n) const
                    { return n * price; }
         virtual ~Item_base() { }
     private:
         std::string isbn;     // identifier for the item
     protected:
         double price;         // normal, undiscounted price
     };

For the most part, this class looks like others we have seen. It defines a constructor along with the
functions we have already described. That constructor uses default arguments (Section 7.4.1 , p. 253 ),
which allows it to be called with zero, one, or two arguments. It initializes the data members from these
arguments.

The new parts are the protected access label and the use of the virtual keyword on the destructor and
the net_price function. We'll explain virtual destructors in Section 15.4.4 (p. 587 ), but for now it is
worth noting that classes used as the root class of an inheritance hierarchy generally define a virtual
destructor.

Base-Class Member Functions

The Item_base class defines two functions, one of which is preceded by the keyword virtual . The
purpose of the virtual keyword is to enable dynamic binding. By default, member functions are
nonvirtual. Calls to nonvirtual functions are resolved at compile time. To specify that a function is
virtual, we precede its return type by the keyword virtual . Any nonstatic member function, other than



a constructor, may be virtual. The virtual keyword appears only on the member-function declaration
inside the class. The virtual keyword may not be used on a function definition that appears outside the
class body.

We'll have more to say about virtual functions in Section 15.2.4 (p. 566 ).

A base class usually should define as virtual any function that a
derived class will need to redefine.

Access Control and Inheritance

In a base class, the public and private labels have their ordinary meanings: User code may access the
public members and may not access the private members of the class. The private members are
accessible only to the members and friends of the base class. A derived class has the same access as
any other part of the program to the public and private members of its base class: It may access the
public members and has no access to the private members.

Sometimes a class used as a base class has members that it wants to allow its derived classes to access,
while still prohibiting access to those same members by other users. The protected access label is used

for such members. A protected member may be accessed by a derived object but may not be accessed
by general users of the type.

Our Item_base class expects its derived classes to redefine the net_price function. To do so, those
classes will need access to the price member. Derived classes are expected to access isbn in the same
way as ordinary users: through the book access function. Hence, the isbn member is private and is
inaccessible to classes that inherit from Item_base .

Exercises Section 15.2.1



Exercise
15.1:

What is a virtual member?

Exercise
15.2:

Define the protected access label. How does it differ from private?

Exercise
15.3:

Define your own version of the Item_base class.

Exercise
15.4:

A library has different kinds of materials that it lends outbooks, CDs,
DVDs, and so forth. Each of the different kinds of lending material has
different check-in, check-out, and overdue rules. The following class
defines a base class that we might use for this application. Identify
which functions are likely to be defined as virtual and which, if any,
are likely to be common among all lending materials. (Note: we
assume that LibMember is a class representing a customer of the
library, and Date is a class representing a calendar day of a particular
year.)

     class Library {
     public:
         bool check_out(const LibMember&);
         bool check_in (const LibMember&);
         bool is_late(const Date& today);
         double apply_fine();
         ostream& print(ostream& = cout);
         Date due_date() const;
         Date date_borrowed() const;
         string title() const;
         const LibMember& member() const;
     };

15.2.2. protected Members

The protected access label can be thought of as a blend of private and public :

Like private members, protected members are inaccessible to users of the class.

Like public members, the protected members are accessible to classes derived from this class.

In addition, protected has another important property:

A derived object may access the protected members of its base class only through a derived
object. The derived class has no special access to the protected members of base type objects.

As an example, let's assume that Bulk_item defines a member function that takes a reference to a
Bulk_item object and a reference to an Item_base object. This function may access the protected
members of its own object as well as those of its Bulk_item parameter. However, it has no special
access to the protected members in its Item_base parameter:



     void Bulk_item::memfcn(const Bulk_item &d, const Item_base &b)
     {

         // attempt to use protected member

         double ret = price;   // ok: uses this->price

         ret = d.price; // ok: uses price from a Bulk_item object

         ret = b.price; // error: no access to price from an Item_base
     }

The use of d.price is okay, because the reference to price is through an object of type Bulk_item . The
use of b.price is illegal because Bulk_item has no special access to objects of type Item_base .

Key Concept: Class Design and Protected Members

In the absence of inheritance, a class has two kinds of users: members of the
class itself and the users of that class. This separation between kinds of users is
reflected in the division of the class into private and public access levels. Users
may access only the public interface; class members and friends may access both
the public and private members.

Under inheritance, there is now a third kind of user of a class: programmers who
will define new classes that are derived from the class. The provider of a derived
class often (but not always) needs access to the (ordinarily private ) base-class

implementation. To allow that access while still preventing general access to the
implementation, an additional access label, protected , is provided. The data and
function members in a protected section of a class remain inaccessible to the

general program, yet are accessible to the derived class. Anything placed within a
private section of the base class is accessible only to the class itself and its
friends. The private members are not accessible to the derived classes.

When designing a class to serve as a base class, the criteria for designating a
member as public do not change: It is still the case that interface functions should
be public and data generally should not be public . A class designed to be inherited
from must decide which parts of the implementation to declare as protected and
which should be private . A member should be made private if we wish to prevent

subsequently derived classes from having access to that member. A member
should be made protected if it provides an operation or data that a derived class

will need to use in its implementation. In other words, the interface to the derived
type is the combination of both the protected and public members.

15.2.3. Derived Classes

To define a derived class, we use a class derivation list to specify the base class(es). A class
derivation list names one or more base classes and has the form

     class classname: access-label base-class

where access-label is one of public, protected , or private , and base-class is the name of a previously



defined class. As we'll see, a derivation list might name more than one base class. Inheritance from a
single base class is most common and is the topic of this chapter. Section 17.3 (p. 731 ) covers use of
multiple base classes.

We'll have more to say about the access label used in a derivation list in Section 15.2.5 (p. 570 ). For
now, what's useful to know is that the access label determines the access to the inherited members.
When we want to inherit the interface of a base class, then the derivation should be public .

A derived class inherits the members of its base class and may define additional members of its own.
Each derived object contains two parts: those members that it inherits from its base and those it defines
itself. Typically, a derived class (re)defines only those aspects that differ from or extend the behavior of
the base.

Defining a Derived Class

In our bookstore application, we will derive Bulk_item from Item_base , so Bulk_item will inherit the
book, isbn , and price members. Bulk_item must redefine its net_price function and define the data
members needed for that operation:

     // discount kicks in when a specified number of copies of same book are sold
     // the discount is expressed as a fraction used to reduce the normal price
     class Bulk_item : public Item_base {
     public:
         // redefines base version so as to implement bulk purchase discount policy
         double net_price(std::size_t) const;
     private:
         std::size_t min_qty; // minimum purchase for discount to apply
         double discount;     // fractional discount to apply
      };

Each Bulk_item object contains four data elements: It inherits isbn and price from Item_base and
defines min_qty and discount . These latter two members specify the minimum quantity and the
discount to apply once that number of copies are purchased. The Bulk_item class also needs to define a
constructor, which we shall do in Section 15.4 (p. 580 ).

Derived Classes and virtual Functions

Ordinarily, derived classes redefine the virtual functions that they inherit, although they are not requried
to do so. If a derived class does not redefine a virtual, then the version it uses is the one defined in its
base class.

A derived type must include a declaration for each inherited member it intends to redefine. Our
Bulk_item class says that it will redefine the net_price function but will use the inherited version of book
.

With one exception, the declaration (Section 7.4 , p. 251 )of a virtual function in the derived class must
exactly match the way the function is defined in the base. That exception applies to virtuals that return
a reference (or pointer) to a type that is itself a base class. A virtual function in a derived class can
return a reference (or pointer) to a class that is public ly derived from the type returned by the base-
class function.

For example, the Item_base class might define a virtual function that returned an Item_base* . If it did,
then the instance defined in the Bulk_item class could be defined to return either an Item_base* or a
Bulk_item* . We'll see an example of this kind of virtual in Section 15.9 (p. 607 ).



Once a function is declared as virtual in a base class it remains virtual;
nothing the derived classes do can change the fact that the function is
virtual. When a derived class redefines a virtual, it may use the virtual
keyword, but it is not required to do so.

Derived Objects Contain Their Base Classes as Subobjects

A derived object consists of multiple parts: the (nonstatic) members defined in the derived class itself
plus the subobjects made up of the (nonstatic) members of its base class. We can think of our
Bulk_item class as consisting of two parts as represented in Figure 15.1 .

Figure 15.1. Conceptual Structure of a Bulk_item Object

There is no requirement that the compiler lay out the base and derived
parts of an object contiguously. Hence, Figure 15.1 is a conceptual, not
physical, representation of how classes work.

Functions in the Derived May Use Members from the Base

As with any member function, a derived class function can be defined inside the class or outside, as we
do here for the net_price function:

     // if specified number of items are purchased, use discounted price
     double Bulk_item::net_price(size_t cnt) const
     {
         if (cnt >= min_qty)
             return cnt * (1 - discount) * price;
         else
             return cnt * price;



     }

This function generates a discounted price: If the given quantity is more than min_qty , we apply the
discount (which was stored as a fraction) to the price .

Because each derived object has a base-class part, classes may access the
public and protected members of its base class as if those members were
members of the derived class itself.

A Class Must Be Defined to Be Used as a Base Class

A class must be defined before it can be used as a base class. Had we declared, but not defined,
Item_base , we could not use it as our base class:

     class Item_base; // declared but not defined

     // error: Item_base must be defined
     class Bulk_item : public Item_base { ... };

The reason for this restriction should already be easy to see: Each derived class contains, and may
access, the members of its base class. To use those members, the derived class must konw what they
are. One implication of this rule is that it is impossible to derive a class from itself.

Using a Derived Class as a Base Class

A base class can itself be a derived class:

     class Base { /* ... */ };
     class D1: public Base { /* ... */ };
     class D2: public D1 { /* ... */ };

Each class inherits all the members of its base class. The most derived type inherits the members of its
base, which in turn inherits the members of its base and so on up the inheritance chain. Effectively, the
most derived object contains a subobject for each of its immediate-base and indirect-base classes.

Declarations of Derived Classes

If we need to declare (but not yet define) a derived class, the declaration contains the class name but
does not include its derivation list. For example, the following forward declaration of Bulk_item results in
a compile-time error:

     // error: a forward declaration must not include the derivation list



     class Bulk_item : public Item_base;

The correct forward declarations are:

     // forward declarations of both derived and nonderived class
     class Bulk_item;
     class Item_base;

15.2.4. virtual and Other Member Functions

By default, function calls in C++ do not use dynamic binding. To trigger dynamic binding, two conditions
must be met: First, only member functions that are specified as virtual can be dynamically bound. By
default, member functions are not virtual; nonvirtual functions are not dynamically bound. Second, the
call must be made through a reference or a pointer to a base-class type. To understand this
requirement, we need to understand what happens when we use a reference or pointer to an object that
has a type from an inheritance hierarchy.

Exercises Section 15.2.3

Exercise
15.5:

Which of the following declarations, if any, are incorrect?

     class Base { ... };

     (a) class Derived : public Derived { ... };
     (b) class Derived : Base { ... };
     (c) class Derived : private Base { ... };
     (d) class Derived : public Base;
     (e) class Derived inherits Base { ... };

Exercise
15.6:

Write your own version of the Bulk_item class.

Exercise
15.7:

We might define a type to implement a limited discount strategy. This
class would give a discount for books purchased up to a limit. If the
number of copies purchased exceeds that limit, then the normal price
should be applied to any books purchased beyond the limit. Define a
class that implements this strategy.

Derived to Base Conversions

Because every derived object contains a base part, we can bind a base-type reference to the base-class



part of a derived object. We can also use a pointer to base to point to a derived object:

     // function with an Item_base reference parameter
     double print_total(const Item_base&, size_t);
     Item_base item;           // object of base type

     // ok: use pointer or reference to Item_base to refer to an Item_base object

     print_total(item, 10);    // passes reference to an Item_base object

     Item_base *p = &item;     // p points to an Item_base object

     Bulk_item bulk;           // object of derived type

     // ok: can bind a pointer or reference to Item_base to a Bulk_item object

     print_total(bulk, 10);    // passes reference to the Item_base part of bulk

     p = &bulk;                // p points to the Item_base part of bulk

This code uses the same base-type pointer to point to an object of the base type and to an object of the
derived type. It also calls a function that expects a reference to the base type, passing an object of the
base-class type and also passing an object of the derived type. Both uses are fine, because every
derived object has a base part.

Because we can use a base-type pointer or reference to refer to a derived-type object, when we use a
base-type reference or pointer, we don't know the type of the object to which the pointer or reference is
bound: A base-type reference or pointer might refer to an object of base type or an object of derived
type. Regardless of which actual type the object has, the compiler treats the object as if it is a base type
object. Treating a derived object as if it were a base is safe, because every derived object has a base
subobject. Also, the derived class inherits the operations of the base class, meaning that any operation
that might be performed on a base object is available through the derived object as well.

The crucial point about references and pointers to base-class types is that
the static type the type of the reference or pointer, which is knowable at
compile timeand the dynamic type the type of the object to which the
pointer or reference is bound, which is knowable only at run timemay
differ.

Calls to virtual Functions May Be Resolved at Run time

Binding a base-type reference or pointer to a derived object has no effect on the underlying object. The
object itself is unchanged and remains a derived object. The fact that the actual type of the object might
differ from the static type of the reference or pointer addressing that object is the key to dynamic
binding in C++.

When a virtual function is called through a reference or pointer, the compiler generates code to decide
at run time which function to call. The function that is called is the one that corresponds to the dynamic
type. As an example, let's look again at the print_total function:

     // calculate and print price for given number of copies, applying any discounts
     void print_total(ostream &os,
                      const Item_base &item, size_t n)



     {

         os << "ISBN: " << item.book() // calls Item_base::book
            << "\tnumber sold: " << n << "\ttotal price: "

            // virtual call: which version of net_price to call is resolved at run time
            << item.net_price(n) << endl;
     }

Because the item parameter is a reference and net_price is virtual, the version of net_price that is
called in item.net_price(n) depends at run time on the actual type of the argument bound to the item
parameter:

     Item_base base;
     Bulk_item derived;

     // print_total makes a virtual call to net_price

     print_total(cout, base, 10);     // calls Item_base::net_price

     print_total(cout, derived, 10);  // calls Bulk_item::net_price

In the first call, the item parameter is bound, at run time, to an object of type Item_base . As a result,
the call to net_price inside print_total calls the version defined in Item_base . In the second call, item
is bound to an object of type Bulk_item . In this call, the version of net_price called from print_total
will be the one defined by the Bulk_item class.

Key Concept: Polymorphism in C++

The fact that the static and dynamic types of references and pointers can differ is
the cornerstone of how C++ supports polymorphism.

When we call a function defined in the base class through a base-class reference
or pointer, we do not know the precise type of the object on which the function is
executed. The object on which the function executes might be of the base type or
it might be an object of a derived type.

If the function called is nonvirtual, then regardless of the actual object type, the
function that is executed is the one defined by the base type. If the function is
virtual, then the decision as to which function to run is delayed until run time. The
version of the virtual function that is run is the one defined by the type of the
object to which the reference is bound or to which the pointer points.

From the perspective of the code that we write, we need not care. As long as the
classes are designed and implemented correctly, the operations will do the right
thing whether the actual object is of base or derived type.

On the other hand, an object is not polymorphicits type is known and unchanging.
The dynamic type of an object (as opposed to a reference or pointer) is always the
same as the static type of the object. The function that is run, virtual or
nonvirtual, is the one defined by the type of the object.



Virtuals are resolved at run time only if the call is made
through a reference or pointer. Only in these cases is it
possible for an object's dynamic type to be unknown until
run time.

Nonvirtual Calls Are Resolved at Compile Time

Regardless of the actual type of the argument passed to print_total , the call of book is resolved at
compile time to Item_base::book .

Even if Bulk_item defined its own version of the book function, this call
would call the one from the base class.

Nonvirtual functions are always resolved at compile time based on the type of the object, reference, or
pointer from which the function is called. The type of item is reference to const Item_base , so a call to a
nonvirtual function on that object will call the one from Item_base regardless of the type of the actual
object to which item refers at run time.

Overriding the Virtual Mechanism

In some cases, we want to override the virtual mechanism and force a call to use a particular version of
a virtual function. We can do so by using the scope operator:

     Item_base *baseP = &derived;

     // calls version from the base class regardless of the dynamic type of baseP
     double d = baseP->Item_base::net_price(42);

This code forces the call to net_price to be resolved to the version defined in Item_base . The call will be
resolved at compile time.

Only code inside member functions should ever need to use the
scope operator to override the virtual mechanism.



Why might we wish to override the virtual mechanism? The most common reason is when a derived-
class virtual calls the version from the base. In such cases, the base-class version might do work
common to all types in the hierarchy. Each derived type adds only whatever is particular to its own type.

For example, we might define a Camera hierarchy with a virtual display operation. The display function
in the Camera class would display information common to all Camera s. A derived class, such as
PerspectiveCamera , would need to display both that common information and the information unique to
PerspectiveCamera . Rather than duplicate the Camera operations within PerspectiveCamera 's
implementation of display , we could explicitly invoke the Camera version to display the common
information. In a case such as this one, we'd know exactly which instance to invoke, so there would be
no need to go through the virtual mechanism.

When a derived virtual calls the base-class version, it must do so explicitly
using the scope operator. If the derived function neglected to do so, then
the call would be resolved at run time and would be a call to itself,
resulting in an infinite recursion.

Virtual Functions and Default Arguments

Like any other function, a virtual function can have default arguments. As usual, the value, if any, of a
default argument used in a given call is determined at compile time. If a call omits an argument that has
a default value, then the value that is used is the one defined by the type through which the function is
called, irrespective of the object's dynamic type. When a virtual is called through a reference or pointer
to base, then the default argument is the value specified in the declaration of the virtual in the base
class. If a virtual is called through a pointer or reference to derived, the default argument is the one
declared in the version in the derived class.

Using different default arguments in the base and derived versions of the same virtual is almost
guaranteed to cause trouble. Problems are likely to arise when the virtual is called through a reference
or pointer to base, but the version that is executed is the one defined by the derived. In such cases, the
default argument defined for the base version of the virtual will be passed to the derived version, which
was defined using a different default argument.

15.2.5. Public, Private, and Protected Inheritance

Access to members defined within a derived class is controlled in exactly the same way as access is
handled for any other class (Section 12.1.2 , p. 432 ). A derived class may define zero or more access
labels that specify the access level of the members following that label. Access to the members the class
inherits is controlled by a combination of the access level of the member in the base class and the
access label used in the derived class' derivation list.



Exercises Section 15.2.4

Exercise
15.8:

Given the following classes, explain each print function:

     struct base {
        string name() { return basename; }
        virtual void print(ostream &os) { os << basename; }
     private:
           string basename;
     };

     struct derived {
        void print() { print(ostream &os); os << " " << mem; }
     private:
           int mem;
     };

If there is a problem in this code, how would you fix it?

Exercise
15.9:

Given the classes in the previous exercise and the following objects,
determine which function is called at run time:

     base bobj;    base *bp1 = &base;  base &br1 = bobj;
     derived dobj; base *bp2 = &doboj; base &br2 = dobj;

     (a) bobj.print(); (b) dobj.print();   (c) bp1->name();
     (d) bp2->name();  (e) br1.print();    (f) br2.print();

Each class controls access to the members it defines. A derived class may
further restrict but may not loosen the access to the members that it
inherits.

The base class itself specifies the minimal access control for its own members. If a member is private in
the base class, then only the base class and its friends may access that member. The derived class has
no access to the private members of its base class, nor can it make those members accessible to its
own users. If a base class member is public or protected , then the access label used in the derivation
list determines the access level of that member in the derived class:



In public inheritance , the members of the base retain their access levels: The public members

of the base are public members of the derived and the protected members of the base are
protected in the derived.

In protected inheritance , the public and protected members of the base class are protected

members in the derived class.

In private inheritance , all the members of the base class are private in the derived class.

As an example, consider the following hierarchy:

     class Base {
     public:

         void basemem();   // public member
     protected:

         int i;            // protected member
         // ...
     };
     struct Public_derived : public Base {

         int use_base() { return i; } // ok: derived classes can access i
         // ...
     };
     struct Private_derived : private Base {

         int use_base() { return i; } // ok: derived classes can access i
     };

All classes that inherit from Base have the same access to the members in Base , regardless of the
access label in their derivation lists. The derivation access label controls the access that users of the
derived class have to the members inherited from Base :

     Base b;
     Public_derived d1;
     Private_derived d2;

     b.basemem();   // ok: basemem is public

     d1.basemem();  // ok: basemem is public in the derived class

     d2.basemem();  // error: basemem is private in the derived class

Both Public_derived and Private_derived inherit the basemem function. That member retains its access
level when the inheritance is public , so d1 can call basemem . In Private_derived , the members of Base
are private ; users of Private_derived may not call basemem .

The derivation access label also controls access from indirectly derived classes:

     struct Derived_from Private : public Private_derived {

         // error: Base::i is private in Private_derived
         int use_base() { return i; }
     };
     struct Derived_from_Public : public Public_derived {

         // ok: Base::i remains protected in Public_derived
         int use_base() { return i; }
     };



Classes derived from Public_derived may access i from the Base class because that member remains a
protected member in Public_derived . Classes derived from Private_derived have no such access. To
them all the members that Private_base inherited from Base are private .

Interface versus Implementation Inheritance

A public ly derived class inherits the interface of its base class; it has the same interface as its base
class. In well-designed class hierarchies, objects of a public ly derived class can be used wherever an
object of the base class is expected.

Classes derived using either private or protected do not inherit the base-class interface. Instead, these
derivations are often referred to as implementation inheritance. The derived class uses the inherited
class in its implementation but does not expose the fact of the inheritance as part of its interface.

As we'll see in Section 15.3 (p. 577 ), whether a class uses interface or implementation inheritance has
important implications for users of the derived class.

By far the most common form of inheritance is public .

Key Concept: Inheritance versus Composition

The design of inheritance hierarchies is a complex topic in its own right and well
beyond the scope of this language primer. However, there is one important design
guide that is so fundamental that every programmer should be familiar with it.

When we define one class as publicly inherited from another, the derived class
should reflect a so-called "Is A" relationship to the base class. In our bookstore
example, our base class represents the concept of a book sold at a stipulated
price. Our Bulk_item is a kind of book, but one with a different pricing strategy.

Another common relationship among types is a so-called "Has A" relationship. Our
bookstore classes have a price and they have an ISBN. Types related by a "Has A"
relationship imply membership. Thus, our bookstore classes are composed from
members representing the price and the ISBN.

Exempting Individual Members

When inheritance is private or protected , the access level of members of the base may be more
restrictive in the derived class than it was in the base:

     class Base {
     public:



         std::size_t size() const { return n; }
     protected:
         std::size_t n;
     };
     class Derived : private Base { . . . };

The derived class can restore the access level of an inherited member. The
access level cannot be made more or less restrictive than the level
originally specified within the base class.

In this hierarchy, size is public in Base but private in Derived . To make size public in Derived we can
add a using declaration for it to a public section in Derived . By changing the definition of Derived as
follows, we can make the size member accessible to users and n accessible to classes subsequently
derived from Derived :

     class Derived : private Base {
     public:
        // maintain access levels for members related to the size of the object
        using Base::size;
     protected:
         using Base::n;
         // ...
      };

Just as we can use a using declaration (Section 3.1 , p. 78 ) to use names from the std namespace, we
may also use a using declaration to access a name from a base class. The form is the same except that
the left-hand side of the scope operator is a class name instead of a namespace name.

Default Inheritance Protection Levels

In Section 2.8 (p. 65 ) we learned that classes defined with the struct and class keywords have
different default access levels. Similarly, the default inheritance access level differs depending on which
keyword is used to define the derived class. A derived class defined using the class keyword has
private inheritance. A class is defined with the struct keyword, has public inheritance:

     class Base { /* ... */ };

     struct D1 : Base { /* ... */ };   // public inheritance by default

     class D2 : Base { /* ... */ };    // private       inheritance by default

It is a common misconception to think that there are deeper differences between classes defined using
the struct keyword and those defined using class . The only differences are the default protection level
for members and the default protection level for a derivation. There are no other distinctions:



     class D3 : public Base {
     public:
         /* ... */
     };

     // equivalent definition of D3

     struct D3 : Base {      // inheritance public by default

         /* ... */           // initial member access public by default
     };
     struct D4 : private Base {
     private:
         /* ... */
     };

     // equivalent definition of D4

     class D4 : Base {   // inheritance private by default

     /* ... */           // initial member access private by default
     };

Although private inheritance is the default when using the class
keyword, it is also relatively rare in practice. Because private
inheritance is so rare, it is usually a good idea to explicitly specify
private , rather than rely on the default. Being explicit makes it
clear that private inheritance is intended and not an oversight.

Exercises Section 15.2.5

Exercise
15.10:

In the exercises to Section 15.2.1 (p. 562 ) you wrote a base class to represent
the lending policies of a library. Assume the library offers the following kinds of
lending materials, each with its own check-out and check-in policy. Organize
these items into an inheritance hierarchy:

     book                     audio book                  record
     children's puppet        sega video game             video
     cdrom book               nintendo video game        rental book
     sony play stationvideo game

Exercise
15.11:

Choose one of the following general abstractions containing a family of types (or
choose one of your own). Organize the types into an inheritance hierarchy:

[View full width]
     (a) Graphical file formats (such as gif, tiff, jpeg, bmp)
     (b) Geometric primitives (such as box, circle, sphere, cone)
     (c) C++ language types (such as class, function, member



 function)

Exercise
15.12:

For the class you chose in the previous exercise, identify some of the likely
virtual functions as well as public and protected members.

15.2.6. Friendship and Inheritance

As with any other class, a base or derived class can make other class(es) or function(s) friends (Section
12.5 , p. 465 ). Friends may access the class' private and protected data.

Friendship is not inherited. Friends of the base have no special access to
members of its derived classes. If a base class is granted friendship, only
the base has special access. Classes derived from that base have no access
to the class granting friendship.

Each class controls friendship to its own members:

     class Base {
         friend class Frnd;
     protected:
         int i;
     };

     // Frnd has no access to members in D1
     class D1 : public Base {
     protected:
         int j;
     };
     class Frnd {
     public:

        int mem(Base b) { return b.i; }  // ok: Frnd is friend to Base
        int mem(D1 d) { return d.i; }    // error: friendship doesn't inherit
     };

     // D2 has no access to members in Base
     class D2 : public Frnd {
     public:
        int mem(Base b) { return b.i; } // error: friendship doesn't inherit
     };

If a derived class wants to grant access to its members to the friends of its base class, the derived class
must do so explicitly: Friends of the base have no special access to types derived from that base class.
Similarly, if a base and its derived types all need access to another class, that class must specifically
grant access to the base and each derived class.



15.2.7. Inheritance and Static Members

If a base class defines a static member (Section 12.6 , p. 467 ) there is only one such member defined
for the entire hierarchy. Regardless of the number of classes derived from the base class, there exists a
single instance of each static member. static members obey normal access control: If the member is
private in the base class, then derived classes have no access to it. Assuming the member is accessible,
we can access the static member either through the base or derived class. As usual, we can use either
the scope operator or the dot or arrow member access operators.

     struct Base {

         static void statmem(); // public by default
     };
     struct Derived : Base {
         void f(const Derived&);
     };
     void Derived::f(const Derived &derived_obj)
     {

        Base::statmem();      // ok: Base defines statmem

        Derived::statmem();   // ok: Derived in herits statmem
        // ok: derived objects can be used to access static from base

        derived_obj.statmem();     // accessed through Derived object
        statmem();                 // accessed through this class

Exercises Section 15.2.7

Exercise
15.13:

Given the following classes, list all the ways a member function in C1
might access the static members of ConcreteBase . List all the ways
an object of type C2 might access those members.

     struct ConcreteBase {
         static std::size_t object_count();
     protected:
         static std::size_t obj_count;
     };
     struct C1 : public ConcreteBase { /* . . . */ };
     struct C2 : public ConcreteBase { /* . . . */ };

 



 

15.3. Conversions and Inheritance

Understanding conversions between base and derived types is
essential to understanding how object-oriented programming works
in C++.

As we've seen, every derived object contains a base part, which means that we can execute
operations on a derived object as if it were a base object. Because a derived object is also a
base, there is an automatic conversion from a reference to a derived type to a reference to its
base type(s). That is, we can convert a reference to a derived object to a reference to its base
subobject and likewise for pointers.

Base-type objects can exist either as independent objects or as part of a derived object.
Therefore, a base object might or might not be part of a derived object. As a result, there is no
(automatic) conversion from reference (or pointer) to base to reference (or pointer) to derived.

The situation with respect to conversions of objects (as opposed to references or pointers) is
more complicated. Although we can usually use an object of a derived type to initialize or assign
an object of the base type, there is no direct conversion from an object of a derived type to an
object of the base type.

15.3.1. Derived-to-Base Conversions

If we have an object of a derived type, we can use its address to assign or initialize a pointer to
the base type. Similarly, we can use a reference or object of the derived type to initialize a
reference to the base type. Pedantically speaking, there is no similar conversion for objects. The
compiler will not automatically convert an object of derived type into an object of the base type.

It is, however, usually possible to use a derived-type object to initialize or assign an object of
base type. The difference between initializing and/or assigning an object and the automatic
conversion that is possible for a reference or pointer is subtle and must be well understood.

Conversion to a Reference is Not the Same as Converting an Object

As we've seen, we can pass an object of derived type to a function expecting a reference to
base. We might therefore think that the object is converted. However, that is not what happens.
When we pass an object to a function expecting a reference, the reference is bound directly to
that object. Although it appears that we are passing an object, the argument is actually a
reference to that object. The object itself is not copied and the conversion doesn't change the
derived-type object in any way. It remains a derived-type object.



When we pass a derived object to a function expecting a base-type object (as opposed to a
reference) the situation is quite different. In that case, the parameter's type is fixedboth at
compile time and run time it will be a base-type object. If we call such a function with a derived-
type object, then the base-class portion of that derived object is copied into the parameter.

It is important to understand the difference between converting a derived object to a base-type
reference and using a derived object to initialize or assign to a base-type object.

Using a Derived Object to Initialize or Assign a Base Object

When we initialize or assign an object of base type, we are actually calling a function: When we
initialize, we're calling a constructor; when we assign, we're calling an assignment operator.

When we use a derived-type object to initialize or assign a base object, there are two
possibilities. The first (albeit unlikely) possibility is that the base class might explicitly define
what it means to copy or assign an object of the derived type to an object of the base type. It
would do so by defining an appropriate constructor or assignment operator:

     class Derived;
     class Base {
     public:

         Base(const Derived&);  // create a new Base from a Derived

         Base &operator=(const Derived&);  // assign from a Derived
         // ...
     };

In this case, the definition of these members would control what happens when a Derived object
is used to initialize or assign to a Base object.

However, it is uncommon for classes to define explicitly how to initialize or assign an object of
the base type from an object of derived type. Instead, base classes ususally define (either
explicitly or implicitly) their own copy constructor and assignment operator (Chapter 13 ). These
members take a parameter that is a (const ) reference to the base type. Because there is a
conversion from reference to derived to reference to base, these copy-control members can be
used to initialize or assign a base object from a derived object:

     Item_base item; // object of base type
     Bulk_item bulk; // object of derived type

     // ok: uses Item_base::Item_base(const Item_base&) constructor

     Item_base item(bulk);  // bulk is "sliced down" to its Item_base portion

     // ok: calls Item_base::operator=(const Item_base&)

     item = bulk;           // bulk is "sliced down" to its Item_base portion

When we call the Item_base copy constructor or assignment operator on an object of type
Bulk_item , the following steps happen:

The Bulk_item object is converted to a reference to Item_base , which means only that an
Item_base reference is bound to the Bulk_item object.

That reference is passed as an argument to the copy constructor or assignment operator.



Those operators use the Item_base part of Bulk_item to initialize and assign, respectively,
the members of the Item_base on which the constructor or assignment was called.

Once the operator completes, the object is an Item_base . It contains a copy of the
Item_base part of the Bulk_item from which it was initialized or assigned, but the Bulk_item
parts of the argument are ignored.

In these cases, we say that the Bulk_item portion of bulk is "sliced down" as part of the
initialization or assignment to item . An Item_base object contains only the members defined in
the base class. It does not contain the members defined by any of its derived types. There is no
room in an Item_base object for the derived members.

Accessibility of Derived-to-Base Conversion

Like an inherited member function, the conversion from derived to base may or may not be
accessible. Whether the conversion is accessible depends on the access label specified on the
derived class' derivation.

To determine whether the conversion to base is accessible,
consider whether a public member of the base class would be
accessible. If so, the conversion is accessible; otherwise, it is
not.

If the inheritance is public , then both user code and member functions of subsequently derived
classes may use the derived-to-base conversion. If a class is derived using private or protected
inheritance, then user code may not convert an object of derived type to a base type object. If
the inheritance is private , then classes derived from the private ly inherited class may not
convert to the base class. If the inheritance is protected , then the members of subsequently
derived classes may convert to the base type.

Regardless of the derivation access label, a public member of the base class is accessible to the
derived class itself. Therefore, the derived-to-base conversion is always accessible to the
members and friends of the derived class itself.

15.3.2. Conversions from Base to Derived

There is no automatic conversion from the base class to a derived class. We cannot use a base
object when a derived object is required:

     Item_base base;
     Bulk_item* bulkP = &base;  // error: can't convert base to derived
     Bulk_item& bulkRef = base; // error: can't convert base to derived
     Bulk_item bulk = base;     // error: can't convert base to derived



The reason that there is no (automatic) conversion from base type to derived type is that a base
object might be just thata base. It does not contain the members of the derived type. If we
were allowed to assign a base object to a derived type, then we might attempt to use that
derived object to access members that do not exist.

What is sometimes a bit more surprising is that the restriction on converting from base to
derived exists even when a base pointer or reference is actually bound to a derived object:

     Bulk_item bulk;

     Item_base *itemP = &bulk;  // ok: dynamic type is Bulk_item
     Bulk_item *bulkP = itemP;  // error: can't convert base to derived

The compiler has no way to know at compile time that a specific conversion will actually be safe
at run time. The compiler looks only at the static types of the pointer or reference to determine
whether a conversion is legal.

In those cases when we know that the conversion from base to derived is safe, we can use a
static_cast (Section 5.12.4 , p. 183 ) to override the compiler. Alternatively, we could request
a conversion that is checked at run time by using a dynamic_cast , which is covered in Section
18.2.1 (p. 773 ).

 



 

15.4. Constructors and Copy Control

The fact that each derived object consists of the (nonstatic) members defined in the derived
class plus one or more base-class subobjects affects how derived-type objects are constructed,
copied, assigned, and destroyed. When we construct, copy, assign, or destroy an object of
derived type, we also construct, copy, assign, or destroy those base-class subobjects.

Constructors and the copy-control members are not inherited; each class defines its own
constructor(s) and copy-control members. As is the case for any class, synthesized versions of
the default constructor and the copy-control members will be used if the class does not define
its own versions.

15.4.1. Base-Class Constructors and Copy Control

Constructors and copy control for base classes that are not themselves a derived class are
largely unaffected by inheritance. Our Item_base constructor looks like many we've seen before:

     Item_base(const std::string &book = "",
               double sales_price = 0.0):
                      isbn(book), price(sales_price) { }

The only impact inheritance has on base-class constructors is that there is a new kind of user
that must be considered when deciding which constructors to offer. Like any other member,
constructors can be made protected or private . Some classes need special constructors that
are intended only for their derived classes to use. Such constructors should be made protected .

15.4.2. Derived-Class Constructors

Derived constructors are affected by the fact that they inherit from another class. Each derived
constructor initializes its base class in addition to initializing its own data members.

The Synthesized Derived-Class Default Constructor

A derived-class synthesized default constructor (Section 12.4.3 , p. 458 ) differs from a
nonderived constructor in only one way: In addition to initializing the data members of the
derived class, it also initializes the base part of its object. The base part is initialized by the
default constructor of the base class.

For our Bulk_item class, the synthesized default constructor would execute as follows:

Invoke the Item_base default constructor, which initializes the isbn member to the empty
string and the price member to zero.

1.

Initialize the members of Bulk_item using the normal variable initialization rules, which2.



1.

means that the qty and discount members would be uninitialized.
2.

Defining a Default Constructor

Because Bulk_item has members of built-in type, we should define our own default constructor:

     class Bulk_item : public Item_base {
     public:
         Bulk_item(): min_qty(0), discount(0.0) { }
         // as before
     };

This constructor uses the constructor initializer list (Section 7.7.3 , p. 263 ) to initialize its
min_qty and discount members. The constructor initializer also implicitly invokes the Item_base
default constructor to initialize its base-class part.

The effect of running this constructor is that first the Item_base part is initialized using the
Item_base default constructor. That constructor sets isbn to the empty string and price to zero.
After the Item_base constructor finishes, the members of the Bulk_item part are initialized, and
the (empty) body of the constructor is executed.

Passing Arguments to a Base-Class Constructor

In addition to the default constructor, our Item_base class lets users initialize the isbn and price
members. We'd like to support the same initialization for Bulk_item objects. In fact, we'd like
our users to be able to specify values for the entire Bulk_item , including the discount rate and
quantity.

The constructor initializer list for a derived-class constructor may initialize only the members of
the derived class; it may not directly initialize its inherited members. Instead, a derived
constructor indirectly initializes the members it inherits by including its base class in its
constructor initializer list:

     class Bulk_item : public Item_base {
     public:
         Bulk_item(const std::string& book, double sales_price,
                   std::size_t qty = 0, double disc_rate = 0.0):
                      Item_base(book, sales_price),
                      min_qty(qty), discount(disc_rate) { }
         // as before
      };

This constructor uses the two-parameter Item_base constructor to initialize its base subobject. It
passes its own book and sales_price arguments to that constructor. We might use this
constructor as follows:

     // arguments are the isbn, price, minimum quantity, and discount
     Bulk_item bulk("0-201-82470-1", 50, 5, .19);



bulk is built by first running the Item_base constructor, which initializes isbn and price from the
arguments passed in the Bulk_item constructor initializer. After the Item_base constructor
finishes, the members of Bulk_item are initialized. Finally, the (empty) body of the Bulk_item
constructor is run.

The constructor initializer list supplies initial values for a class' base
class and members. It does not specify the order in which those
initializations are done. The base class is initialized first and then
the members of the derived class are initialized in the order in which
they are declared.

Using Default Arguments in a Derived Constructor

Of course, we might write these two Bulk_item constructors as a single constructor that takes
default arguments:

     class Bulk_item : public Item_base {
     public:
         Bulk_item(const std::string& book, double sales_price,
                   std::size_t qty = 0, double disc_rate = 0.0):
                      Item_base(book, sales_price),
                      min_qty(qty), discount(disc_rate) { }
         // as before
      };

Here we provide defaults for each parameter so that the constructor might be used with zero to
four arguments.

Only an Immediate Base Class May Be Initialized

A class may initialize only its own immediate base class. An immediate base class is the class
named in the derivation list. If class C is derived from class B , which is derived from class A ,
then B is the immediate base of C . Even though every C object contains an A part, the
constructors for C may not initialize the A part directly. Instead, class C initializes B , and the
constructor for class B in turn initializes A . The reason for this restriction is that the author of
class B has specified how to construct and initialize objects of type B . As with any user of class B
, the author of class C has no right to change that specification.

As a more concrete example, our bookstore might have several discount strategies. In addition
to a bulk discount, it might offer a discount for purchases up to a certain quantity and then
charge the full price thereafter. Or it might offer a discount for purchases above a certain limit
but not for purchases up to that limit.

Each of these discount strategies is the same in that it requires a quantity and a discount



amount. We might support these differing strategies by defining a new class named Disc_item
to store the quantity and the discount amount. This class would not define a net_price function
but would serve as a base class for classes such as Bulk_item that define the different discount
strategies.

Key Concept: Refactoring

Adding Disc_item to the Item_base hierarchy is an example of refactoring.

Refactoring involves redesigning a class hierarchy to move operations
and/or data from one class to another. Refactoring happens most often
when classes are redesigned to add new functionality or handle other
changes in that application's requirements.

Refactoring is common in OO applications. It is noteworthy that even
though we changed the inheritance hierarchy, code that uses the Bulk_item
or Item_base classes would not need to change. However, when classes are

refactored, or changed in any other way, any code that uses those classes
must be recompiled.

To implement this design, we first need to define the Disc_item class:

     // class to hold discount rate and quantity
     // derived classes will implement pricing strategies using these data
     class Disc_item : public Item_base {
     public:
         Disc_item(const std::string& book = "",
                   double sales_price = 0.0,
                   std::size_t qty = 0, double disc_rate = 0.0):
                      Item_base(book, sales_price),
                      quantity(qty), discount(disc_rate) { }
         protected:
             std::size_t quantity; // purchase size for discount to apply
             double discount;      // fractional discount to apply
      };

This class inherits from Item_base and defines its own members, discount and quantity . Its
only member function is the constructor, which initializes its Item_base base class and the
members defined by Disc_item .

Next, we can reimplement Bulk_item to inherit from Disc_item , rather than inheriting directly
from Item_base:

     // discount kicks in when a specified number of copies of same book are sold
     // the discount is expressed as a fraction to use to reduce the normal price
     class Bulk_item : public Disc_item {
     public:
         Bulk_item(const std::string& book = "",
                   double sales_price = 0.0,
                   std::size_t qty = 0, double disc_rate = 0.0):
              Disc_item(book, sales_price, qty, disc_rate) { }



         // redefines base version so as to implement bulk purchase discount policy
         double net_price(std::size_t) const;
     };

The Bulk_item class now has a direct base class , Disc_item , and an indirect base class,
Item_base . Each Bulk_item object has three subobjects: an (empty) Bulk_item part and a
Disc_item subobject, which in turn has an Item_base base subobject.

Even though Bulk_item has no data members of its own, it defines a constructor in order to
obtain values to use to initialize its inherited members.

A derived constructor may initialize only its immediate base class. Naming Item_base in the
Bulk_item constructor initializer would be an error.

Key Concept: Respecting the Base-Class Interface

The reason that a constructor can initialize only its immediate base class is
that each class defines its own interface. When we define Disc_item , we
specify how to initialize a Disc_item by defining its constructors. Once a

class has defined its interface, all interactions with objects of that class
should be through that interface, even when those objects are part of a
derived object.

For similar reasons, derived-class constructors may not initialize and
should not assign to the members of its base class. When those members
are public or protected , a derived constructor could assign values to its base

class members inside the constructor body. However, doing so would
violate the interface of the base. Derived classes should respect the
initialization intent of their base classes by using constructors rather than
assigning to these members in the body of the constructor.

15.4.3. Copy Control and Inheritance

Like any other class, a derived class may use the synthesized copy-control members described
in Chapter 13 . The synthesized operations copy, assign, or destroy the base-class part of the
object along with the members of the derived part. The base part is copied, assigned, or
destroyed by using the base class' copy constructor, assignment operator, or destructor.



Exercises Section 15.4.2

Exercise
15.14:

Redefine the Bulk_item and Item_base classes so that they
each need to define only a single constructor.

Exercise
15.15:

Identify the base- and derived-class constructors for the
library class hierarchy described in the first exercise on page
575 .

Exercise
15.16:

Given the following base class definition,

     struct Base {
         Base(int val): id(val) { }
     protected:
         int id;
     };

explain why each of the following constructors is illegal.

     (a) struct C1 : public Base {
             C1(int val): id(val) { }
         };
     (b) struct C2 : public
             C1 { C2(int val): Base(val), C1(val){ }
         };
     (c) struct C3 : public
             C1 { C3(int val): Base(val) { }
         };
     (d) struct C4 : public Base {
             C4(int val) : Base(id + val){ }
         };
     (e) struct C5 : public Base {
             C5() { }
         };

Whether a class needs to define the copy-control members depends entirely on the class' own
direct members. A base class might define its own copy control while the derived uses the
synthesized versions or vice versa.

Classes that contain only data members of class type or built-in types other than pointers
usually can use the synthesized operations. No special control is required to copy, assign, or
destroy such members. Classes with pointer members often need to define their own copy
control to manage these members.

Our Item_base class and its derived classes can use the synthesized versions of the copy-control



operations. When a Bulk_item is copied, the (synthesized) copy constructor for Item_base is
invoked to copy the isbn and price members. The isbn member is copied by using the string
copy constructor; the price member is copied directly. Once the base part is copied, then the
derived part is copied. Both members of Bulk_item are double s, and these members are copied
directly. The assignment operator and destructor are handled similarly.

Defining a Derived Copy Constructor

If a derived class explicitly defines its own copy constructor or
assignment operator, that definition completely overrides the
defaults. The copy constructor and assignment operator for
inherited classes are responsible for copying or assigning their base-
class components as well as the members in the class itself.

If a derived class defines its own copy constructor, that copy constructor usually should
explicitly use the base-class copy constructor to initialize the base part of the object:

     class Base { /* ... */ };
     class Derived: public Base {
     public:

         // Base::Base(const Base&) not invoked automatically
         Derived(const Derived& d):
              Base(d) /* other member initialization */ { /*... */ }
     };

The initializer Base(d) converts (Section 15.3 , p. 577 ) the derived object, d , to a reference to
its base part and invokes the base-class copy constructor. Had the initializer for the base class
been omitted,

     // probably incorrect definition of the Derived copy constructor
     Derived(const Derived& d) /* derived member initizations */
                                   {/* ... */ }

the effect would be to run the Base default constructor to initialize the base part of the object.
Assuming that the initialization of the Derived members copied the corresponding elements from
d , then the newly constructed object would be oddly configured: Its Base part would hold
default values, while its Derived members would be copies of another object.

Derived-Class Assignment Operator

As usual, the assignment operator is similar to the copy constructor: If the derived class defines
its own assignment operator, then that operator must assign the base part explicitly:



     // Base::operator=(const Base&) not invoked automatically
     Derived &Derived::operator=(const Derived &rhs)
     {
        if (this != &rhs) {
            Base::operator=(rhs); // assigns the base part
            // do whatever needed to clean up the old value in the derived part
            // assign the members from the derived
        }
        return *this;
     }

The assignment operator must, as always, guard against self-assignment. Assuming the left-
and right-hand operands differ, then we call the Base class assignment operator to assign the
base-class portion. That operator might be defined by the class or it might be the synthesized
assignment operator. It doesn't matterwe can call it directly. The base-class operator will free
the old value in the base part of the left-hand operand and will assign the new values from rhs .
Once that operator finishes, we continue doing whatever is needed to assign the members in the
derived class.

Derived-Class Destructor

The destructor works differently from the copy constructor and assignment operator: The
derived destructor is never responsible for destroying the members of its base objects. The
compiler always implicitly invokes the destructor for the base part of a derived object. Each
destructor does only what is necessary to clean up its own members:

     class Derived: public Base {
     public:

         // Base::~Base invoked automatically
         ~Derived()    { /* do what it takes to clean up derived members */ }
      };

Objects are destroyed in the opposite order from which they are constructed: The derived
destructor is run first, and then the base-class destructors are invoked, walking back up the
inheritance hierarchy.

15.4.4. Virtual Destructors

The fact that destructors for the base parts are invoked automatically has an important
consequence for the design of base classes.

When we delete a pointer that points to a dynamically allocated object, the destructor is run to
clean up the object before the memory for that object is freed. When dealing with objects in an
inheritance hierarchy, it is possible that the static type of the pointer might differ from the
dynamic type of the object that is being deleted. We might delete a pointer to the base type
that actually points to a derived object.

If we delete a pointer to base, then the base-class destructor is run and the members of the
base are cleaned up. If the object really is a derived type, then the behavior is undefined. To



ensure that the proper destructor is run, the destructor must be virtual in the base class:

     class Item_base {
     public:
         // no work, but virtual destructor needed
         // if base pointer that points to a derived object is ever deleted
         virtual ~Item_base() { }
     };

If the destructor is virtual, then when it is invoked through a pointer, which destructor is run will
vary depending on the type of the object to which the pointer points:

     Item_base *itemP = new Item_base; // same static and dynamic type

     delete itemP;          // ok: destructor for Item_base called
     itemP = new Bulk_item; // ok: static and dynamic types differ

     delete itemP;          // ok: destructor for Bulk_item called

Like other virtual functions, the virtual nature of the destructor is inherited. Therefore, if the
destructor in the root class of the hierarchy is virtual, then the derived destructors will be virtual
as well. A derived destructor will be virtual whether the class explicitly defines its destructor or
uses the synthesized destructor.

Destructors for base classes are an important exception to the Rule of Three (Section 13.3 , p.
485 ). That rule says that if a class needs a destructor, then the class almost surely needs the
other copy-control members. A base class almost always needs a destructor so that it can make
the destructor virtual. If a base class has an empty destructor in order to make it virtual, then
the fact that the class has a destructor is not an indication that the assignment operator or copy
constructor is also needed.

The root class of an inheritance hierarchy should define a
virtual destructor even if the destructor has no work to do.

Constructors and Assignment Are Not Virtual

Of the copy-control members, only the destructor should be defined as virtual. Constructors
cannot be defined as virtual. Constructors are run before the object is fully constructed. While
the constructor is running, the object's dynamic type is not complete.

Although we can define a virtual operator= member function in the base class, doing so does
not affect the assignment operators used in the derived classes. Each class has its own
assignment operator. The assignment operator in a derived class has a parameter that has the
same type as the class itself. That type must differ from the parameter type for the assignment



operator in any other class in the hierarchy.

Making the assignment operator virtual is likely to be confusing because a virtual function must
have the same parameter type in base and derived classes. The base-class assignment operator
has a parameter that is a reference to its own class type. If that operator is virtual, then each
class gets a virtual member that defines an operator= that takes a base object. But this
operator is not the same as the assignment operator for the derived class.

Making the class assignment operator virtual is likely to be
confusing and unlikely to be useful.

Exercises Section 15.4.4

Exercise
15.17:

Describe the conditions under which a class should have a
virtual destructor.

Exercise
15.18:

What operations must a virtual destructor perform?

Exercise
15.19:

What if anything is likely to be incorrect about this class
definition?

[View full width]
     class AbstractObject {
     public:
         virtual void doit();
          // other members not including any of the copy-control

 functions
     };

Exercise
15.20:

Recalling the exercise from Section 13.3 (p. 487 ) in which
you wrote a class whose copy-control members printed a
message, add print statements to the constructors of the
Item_base and Bulk_item classes. Define the copy-control
members to do the same job as the synthesized versions but
that also print a message. Now write programs using objects
and functions that use the Item_base types. In each case,
predict what objects will be created and destroyed and
compare your predictions with what your programs generate.
Continue experimenting until you can correctly predict which
copy-control members are executed for a given bit of code.



15.4.5. Virtuals in Constructors and Destructors

A derived object is constructed by first running a base-class constructor to initialize the base
part of the object. While the base-class constructor is executing, the derived part of the object is
uninitialized. In effect, the object is not yet a derived object.

When a derived object is destroyed, its derived part is destroyed first, and then its base parts
are destroyed in the reverse order of how they were constructed.

In both cases, while a constructor or destructor is running, the object is incomplete. To
accommodate this incompleteness, the compiler treats the object as if its type changes during
construction or destruction. Inside a base-class constructor or destructor, a derived object is
treated as if it were an object of the base type.

The type of an object during construction and destruction affects the binding of virtual functions.

If a virtual is called from inside a constructor or destructor, then the
version that is run is the one defined for the type of the constructor
or destructor itself.

This binding applies to a virtual whether the virtual is called directly by the constructor (or
destructor) or is called indirectly from a function that the constructor (or destructor) called.

To understand this behavior, consider what would happen if the derived-class version of a
virtual function were called from a base-class constructor (or destructor). The derived version of
the virtual probably accesses members of the derived object. After all, if the derived-class
version didn't need to use members from the derived object, the derived class could probably
use the definition from the base class. However, the members of the derived part of the object
aren't initialized while the base constructor (or destructor) is running. In practice, if such access
were allowed, the program would probably crash.

 



 

15.5. Class Scope under Inheritance

Each class maintains its own scope (Section 12.3 , p. 444 ) within which the names of its
members are defined. Under inheritance, the scope of the derived class is nested within the
scope of its base classes. If a name is unresolved within the scope of the derived class, the
enclosing base-class scope(s) are searched for a definition of that name.

It is this hierarchical nesting of class scopes under inheritance that allows the members of the
base class to be accessed directly as if they are members of the derived class. When we write

     Bulk_item bulk;
     cout << bulk.book();

the use of the name book is resolved as follows:

bulk is an object of the Bulk_item class. The Bulk_item class is searched for book . That
name is not found.

1.

Because Bulk_item is derived from Item_Base , the Item_Base class is searched next. The
name book is found in the Item_base class. The reference is resolved successfully.

2.

15.5.1. Name Lookup Happens at Compile Time

The static type of an object, reference, or pointer determines the actions that the object can
perform. Even when the static and dynamic types might differ, as can happen when a reference
or pointer to a base type is used, the static type determines what members can be used. As an
example, we might add a member to the Disc_item class that returns a pair holding the
minimum (or maximum) quantity and the discounted price:

     class Disc_item : public Item_base {
     public:
         std::pair<size_t, double> discount_policy() const
             { return std::make_pair(quantity, discount); }
         // other members as before
     };

We can access discount_policy only through an object, pointer, or reference of type Disc_item
or a class derived from Disc_item:

     Bulk_item bulk;
     Bulk_item *bulkP = &bulk;  // ok: static and dynamic types are the same
     Item_base *itemP = &bulk;  // ok: static and dynamic types differ

     bulkP->discount_policy();  // ok: bulkP has type Bulk_item*



     itemP->discount_policy();  // error: itemP has type Item_base*

The call through itemP is an error because a pointer (reference or object) to a base type can
access only the base parts of an object and there is no discount_policy member defined in the
base class.

Exercises Section 15.5.1

Exercise
15.21:

Redefine your Item_base hierarchy to include a Disc_item
class.

Exercise
15.22:

Redefine Bulk_item and the class you implemented in the
exercises from Section 15.2.3 (p. 567 ) that represents a
limited discount strategy to inherit from Disc_item .

15.5.2. Name Collisions and Inheritance

Although a base-class member can be accessed directly as if it were a member of the derived
class, the member retains its base-class membership. Normally we do not care which actual
class contains the member. We usually need to care only when a base- and derived-class
member share the same name.

A derived-class member with the same name as a member of the
base class hides direct access to the base-class member.

     struct Base {
         Base(): mem(0) { }
     protected:
         int mem;
     };
     struct Derived : Base {

         Derived(int i): mem(i) { }    // initializes Derived::mem

         int get_mem() { return mem; } // returns Derived::mem
     protected:

         int mem;   // hides mem in the base
      };



The reference to mem inside get_mem is resolved to the name inside Derived . Were we to write

     Derived d(42);
     cout << d.get_mem() << endl;   // prints 42

then the output would be 42 .

Using the Scope Operator to Access Hidden Members

We can access a hidden base-class member by using the scope operator:

     struct Derived : Base {
         int get_base_mem() { return Base::mem; }
     };

The scope operator directs the compiler to look for mem starting in Base .

When designing a derived class, it is best to avoid name
collisions with members of the base class whenever
possible.

Exercises Section 15.5.2



Exercise
15.23:

Given the following base- and derived-class definitions

     struct Base {
         foo(int);
     protected:
         int bar;
         double foo_bar;
     };

     struct Derived : public Base {
         foo(string);
         bool bar(Base *pb);
         void foobar();
     protected:
         string bar;
     };

identify the errors in each of the following examples and how
each might be fixed:

     (a) Derived d; d.foo(1024);
     (b) void Derived::foobar() { bar = 1024; }
     (c) bool Derived::bar(Base *pb)
              { return foo_bar == pb->foo_bar; }

15.5.3. Scope and Member Functions

A member function with the same name in the base and derived class behaves the same way as
a data member: The derived-class member hides the base-class member within the scope of the
derived class. The base member is hidden, even if the prototypes of the functions differ :

     struct Base {
         int memfcn();
     };
     struct Derived : Base {

         int memfcn(int); // hides memfcn in the base
     };
     Derived d; Base b;

     b.memfcn();        // calls Base::memfcn
     d.memfcn(10);      // calls Derived::memfcn

     d.memfcn();        // error: memfcn with no arguments is hidden
     d.Base::memfcn();  // ok: calls Base::memfcn

The declaration of memfcn in Derived hides the declaration in Base . Not surprisingly, the first call



through b , which is aBase object, calls the version in the base class. Similarly, the second call
through d calls the one from Derived . What can be surprising is the third call:

     d.memfcn(); // error: Derived has no memfcn that takes no arguments

To resolve this call, the compiler looks for the name memfcn , which it finds in the class Derived .
Once the name is found, the compiler looks no further. This call does not match the definition of
memfcn in Derived , which expects an int argument. The call provides no such argument and so
is in error.

Recall that functions declared in a local scope do not overload
functions defined at global scope (Section 7.8.1 , p. 268 ).
Similarly, functions defined in a derived class do not overload
members defined in the base. When the function is called through a
derived object, the arguments must match a version of the function
defined in the derived class. The base class functions are
considered only if the derived does not define the function at all.

Overloaded Functions

As with any other function, a member function (virtual or otherwise) can be over-loaded. A
derived class can redefine zero or more of the versions it inherits.

If the derived class redefines any of the overloaded members, then
only the one(s) redefined in the derived class are accessible through
the derived type.

If a derived class wants to make all the overloaded versions available through its type, then it
must either redefine all of them or none of them.

Sometimes a class needs to redefine the behavior of only some of the versions in an overloaded
set, and wants to inherit the meaning for others. It would be tedious in such cases to have to
redefine every base-class version in order to redefine the ones that the class needs to
specialize.

Instead of redefining every base-class version that it inherits, a derived class can provide a
using declaration (Section 15.2.5 , p. 574 ) for the overloaded member. A using declaration
specifies only a name; it may not specify a parameter list. Thus, a using declaration for a base-
class member function name adds all the overloaded instances of that function to the scope of
the derived-class. Having brought all the names into its scope, the derived class need redefine



only those functions that it truly must define for its type. It can use the inherited definitions for
the others.

15.5.4. Virtual Functions and Scope

Recall that to obtain dynamic binding, we must call a virtual member through a reference or a
pointer to a base class. When we do so, the compiler looks for the function in the base class.
Assuming the name is found, the compiler checks that the arguments match the parameters.

We can now understand why virtual functions must have the same prototype in the base and
derived classes. If the base member took different arguments than the derived-class member,
there would be no way to call the derived function from a reference or pointer to the base type.
Consider the following (artificial) collection of classes:

     class Base {
     public:
         virtual int fcn();
     };
     class D1 : public Base {
     public:

          // hides fcn in the base; this fcn is not virtual

          int fcn(int); // parameter list differs from fcn in Base

          // D1 inherits definition of Base::fcn()
     };
     class D2 : public D1 {
     public:

         int fcn(int); // nonvirtual function hides D1::fcn(int)

         int fcn();    // redefines virtual fcn from Base
     };

The version of fcn in D1 does not redefine the virtual fcn from Base . Instead, it hides fcn from
the base. Effectively, D1 has two functions named fcn : The class inherits a virtual named fcn
from the Base and defines its own, nonvirtual member named fcn that takes an int parameter.
However, the virtual from the Base cannot be called from a D1 object (or reference or pointer to
D1 ) because that function is hidden by the definition of fcn(int) .

The class D2 redefines both functions that it inherits. It redefines the virtual version of fcn
originally defined in Base and the nonvirtual defined in D1 .

Calling a Hidden Virtual through the Base Class

When we call a function through a base-type reference or pointer, the compiler looks for that
function in the base class and ignores the derived classes:

     Base bobj;  D1 d1obj;  D2 d2obj;
     Base *bp1 = &bobj, *bp2 = &d1obj, *bp3 = &d2obj;

     bp1->fcn();   // ok: virtual call, will call Base::fcnat run time

     bp2->fcn();   // ok: virtual call, will call Base::fcnat run time

     bp3->fcn();   // ok: virtual call, will call D2::fcnat run time



All three pointers are pointers to the base type, so all three calls are resolved by looking in Base
to see if fcn is defined. It is, so the calls are legal. Next, because fcn is virtual, the compiler
generates code to make the call at run time based on the actual type of the object to which the
reference or pointer is bound. In the case of bp2 , the underlying object is a D1 . That class did
not redefine the virtual version of fcn that takes no arguments. The call through bp2 is made (at
run time) to the version defined in Base .

Key Concept: Name Lookup and Inheritance

Understanding how function calls are resolved is crucial to understanding
inheritance hierarchies in C++. The following four steps are followed:

1. Start by determining the static type of the object, reference, or pointer
through which the function is called.

2. Look for the function in that class. If it is not found, look in the
immediate base class and continue up the chain of classes until either
the function is found or the last class is searched. If the name is not
found in the class or its enclosing base classes, then the call is in error.

3. Once the name is found, do normal type-checking (Section 7.1.2 , p.
229 ) to see if this call is legal given the definition that was found.

4. Assuming the call is legal, the compiler generates code. If the function
is virtual and the call is through a reference or pointer, then the
compiler generates code to determine which version to run based on
the dynamic type of the object. Otherwise, the compiler generates
code to call the function directly.

 



 

15.6. Pure Virtual Functions

The Disc_item class that we wrote on page 583 presents an interesting problem: That class
inherits the net_price function from Item_base but does not redefine it. We didn't redefine
net_price because there is no meaning to ascribe to that function for the Disc_item class. A
Disc_item doesn't correspond to any discount strategy in our application. This class exists solely
for other classes to inherit from it.

We don't intend for users to define Disc_item objects. Instead, Disc_item objects should exist
only as part of an object of a type derived from Disc_item . However, as defined, there is
nothing that prevents users from defining a plain Disc_item object. That leaves open the
question of what would happen if a user did create a Disc_item and invoked net_price function
on it. We now know from the scope discussion in the previous section that the effect would be to
call the net_price function inherited from Item_base , which generates the undiscounted price.

Exercises Section 15.5.4

Exercise
15.24:

Why is it that, given

     Bulk_item bulk;
     Item_base item(bulk);
     Item_base *p = &bulk;

the expression

     p->net_price(10);

invokes the Bulk_item instance of net_price , whereas

     item.net_price(10);

invokes the Item_base instance?

Exercise
15.25:

Assume Derived inherits from Base and that Base defines each
of the following functions as virtual. Assuming Derived intends
to define its own version of the virtual, determine which
declarations in Derived are in error and specify what's wrong.

     (a) Base* Base::copy(Base*);



         Base* Derived::copy(Derived*);
     (b) Base* Base::copy(Base*);
         Derived* Derived::copy(Base*);
     (c) ostream& Base::print(int, ostream&=cout);
         ostream& Derived::print(int, ostream&);
     (d) void Base::eval() const;
         void Derived::eval();

It's hard to say what behavior users might expect from calling net_price on a Disc_item . The
real problem is that we'd rather they couldn't create such objects at all. We can enforce this
design intent and correctly indicate that there is no meaning for the Disc_item version of
net_price by making net_price a pure virtual function . A pure virtual function is specified by
writing = 0 after the function parameter list:

     class Disc_item : public Item_base {
     public:
         double net_price(std::size_t) const = 0;
     };

Defining a virtual as pure indicates that the function provides an interface for sub-sequent types
to override but that the version in this class will never be called. As importantly, users will not
be able to create objects of type Disc_item .

An attempt to create an object of an abstract base class is a compile-time error:

     // Disc_item declares pure virtual functions

     Disc_item discounted; // error: can't define a Disc_item object

     Bulk_item bulk;       // ok: Disc_item subobject within Bulk_item

A class containing (or inheriting) one or more pure virtual functions
is an abstract base class . We may not create objects of an
abstract type except as parts of objects of classes derived from the
abstract base.



Exercises Section 15.6

Exercise
15.26:

Make your version of the Disc_item class an abstract class.

Exercise
15.27:

Try to define an object of type Disc_item and see what errors
you get from the compiler.

 



 

15.7. Containers and Inheritance

We'd like to use containers (or built-in arrays) to hold objects that are related by inheritance.
However, the fact that objects are not polymorphic (Section 15.3.1 , p. 577 ) affects how we
can use containers with types in an inheritance hierarchy.

As an example, our bookstore application would probably have the notion of a basket that
represents the books a customer is buying. We'd like to be able to store the purchases in a
multiset (Section 10.5 , p. 375 ). To define the multiset , we must specify the type of the
objects that the container will hold. When we put an object in a container, the element is copied
(Section 9.3.3 , p. 318 ).

If we define the multiset to hold objects of the base type

     multiset<Item_base> basket;
     Item_base base;
     Bulk_item bulk;

     basket.insert(base);  // ok: add copy of base to basket

     basket.insert(bulk);  // ok: but bulk sliced down to its base part

then when we add objects that are of the derived type, only the base portion of the object is
stored in the container. Remember, when we copy a derived object to a base object, the derived
object is sliced down (Section 15.3.1 , p. 577 ).

The elements in the container are Item_base objects. Regardless of whether the element was
made as a copy of a Bulk_item object, when we calculate the net_price of an element the
element would be priced without a discount. Once the object is put into the multiset , it is no
longer a derived object.

Because derived objects are "sliced down" when assigned to a base
object, containers and types related by inheritance do not mix well.

We cannot fix this problem by defining the container to hold derived objects. In this case, we
couldn't put objects of Item_base into the containerthere is no standard conversion from base to
derived type. We could explicitly cast a base-type object into a derived and add the resulting
object to the container. However, if we did so, disaster would strike when we tried to use such
an element. In this case, the element would be treated as if it were a derived object, but the
members of the derived part would be uninitialized.



The only viable alternative would be to use the container to hold pointers to our objects. This
strategy worksbut at the cost of pushing onto our users the problem of managing the objects
and pointers. The user must ensure that the objects pointed to stay around for as long as the
container. If the objects are dynamically allocated, then the user must ensure that they are
properly freed when the container goes away. The next section presents a better and more
common solution to this problem.

Exercises Section 15.7

Exercise
15.28:

Define a vector to hold objects of type Item_base and copy a
number of objects of type Bulk_item into the vector . Iterate
over the vector and generate the net_price for the elements
in the container.

Exercise
15.29:

Repeat your program, but this time store pointers to objects of
type Item_base . Compare the resulting sum.

Exercise
15.30:

Explain any discrepancy in the amount generated by the
previous two programs. If there is no discrepancy, explain why
there isn't one.

 



 

15.8. Handle Classes and Inheritance

One of the ironies of object-oriented programming in C++ is that we cannot use objects to
support it. Instead, we must use pointers and references, not objects. For example, in the
following code fragment,

     void get_prices(Item_base object,
                     const Item_base *pointer,
                     const Item_base &reference)
     {

         // which version of net_price is called is determined at run time
         cout << pointer->net_price(1) << endl;
         cout << reference.net_price(1) << endl;

         // always invokes Item_base::net_price
         cout << object.net_price(1) << endl;
     }

the invocations through pointer and reference are resolved at run time based on the dynamic
types of the object to which they are bound.

Unfortunately, using pointers or references puts a burden on the users of our classes. We saw
one such burden in the previous section that discussed the inter-actions between objects of
inherited types and containers.

A common technique in C++ is to define a so-called cover or handle class . The handle class
stores and manages a pointer to the base class. The type of the object to which that pointer
points will vary; it can point at either a base- or a derived-type object. Users access the
operations of the inheritance hierarchy through the handle. Because the handle uses its pointer
to execute those operations, the behavior of virtual members will vary at run time depending on
the kind of object to which the handle is actually bound. Users of the handle thus obtain
dynamic behavior but do not themselves have to worry about managing the pointer.

Handles that cover an inheritance hierarchy have two important design considerations:

As with any class that holds a pointer (Section 13.5 , p. 492 ), we must decide what to do
about copy control. Handles that cover an inheritance hierarchy typically behave like either
a smart pointer (Section 13.5.1 , p. 495 ) or a value (Section 13.5.2 , p. 499 ).

The handle class determines whether the handle interface will hide the inheritance
hierarchy or expose it. If the hierarchy is not hidden, users must know about and use
objects in the underlying hierarchy.

There is no one right choice among these options; the decisions depend on the details of the
hierarchy and how the class designer wants programmers to interact with those class(es). In the
next two sections, we'll implement two different kinds of handles that address these design
questions in different ways.



15.8.1. A Pointerlike Handle

As our first example, we'll define a pointerlike handle class, named Sales_item , to represent
our Item_base hierarchy. Users of Sales_item will use it as if it were a pointer: Users will bind a
Sales_item to an object of type Item_base and will then use the * and -> operations to execute
Item_base operations:

     // bind a handle to a Bulk_item object
     Sales_item item(Bulk_item("0-201-82470-1", 35, 3, .20));

     item->net_price();   // virtual call to net_price function

However, users won't have to manage the object to which the handle points; the Sales_item
class will do that part of the job. When users call a function through a Sales_item , they'll get
polymorphic behavior.

Defining the Handle

We'll give our class three constructors: a default constructor, a copy constructor, and a
constructor that takes an Item_base . This third constructor will copy the Item_base and ensure
that the copy stays around as long as the Sales_item does. When we copy or assign a
Sales_item , we'll copy the pointer rather than copying the object. As with our other pointerlike
handle classes, we'll use a use count to manage the copies.

The use-counted classes we've used so far have used a companion class to store the pointer and
associated use count. In this class, we'll use a different design, as illustrated in Figure 15.2 .
The Sales_item class will have two data members, both of which are pointers: One pointer will
point to the Item_base object and the other will point to the use count. The Item_base pointer
might point to an Item_base object or an object of a type derived from Item_base . By pointing
to the use count, multiple Sales_item objects can share the same counter.

Figure 15.2. Use-Count Strategy for the Sales_item Handle Class

In addition to managing the use count, the Sales_item class will define the dereference and
arrow operators:



     // use counted handle class for the Item_base hierarchy
     class Sales_item {
     public:
         // default constructor: unbound handle
         Sales_item(): p(0), use(new std::size_t(1)) { }

         // attaches a handle to a copy of the Item_base object
         Sales_item(const Item_base&);
         // copy control members to manage the use count and pointers
         Sales_item(const Sales_item &i):
                           p(i.p), use(i.use) { ++*use; }
         ~Sales_item() { decr_use(); }
         Sales_item& operator=(const Sales_item&);
         // member access operators
         const Item_base *operator->() const { if (p) return p;
             else throw std::logic_error("unbound Sales_item"); }
         const Item_base &operator*() const { if (p) return *p;
             else throw std::logic_error("unbound Sales_item"); }
     private:
         Item_base *p;        // pointer to shared item
         std::size_t *use;    // pointer to shared use count
         // called by both destructor and assignment operator to free pointers
         void decr_use()
              { if (--*use == 0) { delete p; delete use; } }
     };

Use-Counted Copy Control

The copy-control members manipulate the use count and the Item_base pointer as appropriate.
Copying a Sales_item involves copying the two pointers and incrementing the use count. The
destructor decrements the use count and destroys the pointers if the count goes to zero.
Because the assignment operator will need to do the same work, we implement the destructor's
actions in a private utility function named decr_use .

The assignment operator is a bit more complicated than the copy constructor:

     // use-counted assignment operator; use is a pointer to a shared use count
     Sales_item&
     Sales_item::operator=(const Sales_item &rhs)
     {
         ++*rhs.use;
         decr_use();
         p = rhs.p;
         use = rhs.use;
         return *this;
     }

The assignment operator acts like the copy constructor in that it increments the use count of the
right-hand operand and copies the pointer. It also acts like the destructor in that we first have
to decrement the use count of the left-hand operand and then delete the pointers if the use
count goes to zero.

As usual with an assignment operator, we must protect against self-assignment. This operator
handles self-assignment by first incrementing the use count in the right-hand operand. If the



left- and right-hand operands are the same, the use count will be at least 2 when decr_use is
called. That function decrements and checks the use count of the left-hand operand. If the use
count goes to zero, then decr_use will free the Item_base and use objects currently in this
object. What remains is to copy the pointers from the right-hand to the left-hand operand. As
usual, our assignment operator returns a reference to the left-hand operand.

Aside from the copy-control members, the only other functions Sales_item defines are the
operator functions, operator* and operator-> . Users will access Item_base members through
these operators. Because these operators return a pointer and reference, respectively, functions
called through these operators will be dynamically bound.

We define only the const versions of these operators because the public members in the
underlying Item_base hierarchy are all const .

Constructing the Handle

Our handle has two constructors: the default constructor, which creates an un-bound
Sales_item , and a second constructor, which takes an object to which it attaches the handle.

The first constructor is easy: We set the Item_base pointer to 0 to indicate that this handle is not
attached to any object. The constructor allocates a new use counter and initializes it to 1.

The second constructor is more difficult. We'd like users of our handle to create their own
objects, to which they could attach a handle. The constructor will allocate a new object of the
appropriate type and copy the parameter into that newly allocated object. That way the
Sales_item class will own the object and can guarantee that the object is not deleted until the
last Sales_item attached to the object goes away.

15.8.2. Cloning an Unknown Type

To implement the constructor that takes an Item_base , we must first solve a problem: We do
not know the actual type of the object that the constructor is given. We know that it is an
Item_base or an object of a type derived from Item_base . Handle classes often need to allocate
a new copy of an existing object without knowing the precise type of the object. Our Sales_item
constructor is a good example.

The common approach to solving this problem is to define a
virtual operation to do the copy, which we'll name clone .

To support our handle class, we'll need to add clone to each of the types in the hierarchy,
starting with the base class, which must define the function as virtual:

     class Item_base {
     public:
         virtual Item_base* clone() const
                            { return new Item_base(*this); }



     };

Each class must now redefine the virtual. Because the function exists to generate a new copy of
an object of the class, we'll define the return type to reflect the type of the class itself:

     class Bulk_item : public Item_base {
     public:
         Bulk_item* clone() const
             { return new Bulk_item(*this); }
     };

On page 564 we said there is one exception to the requirement that the return type of the
derived class must match exactly that of the base class instance. That exception supports cases
such as this one. If the base instance of a virtual function returns a reference or pointer to a
class type, the derived version of the virtual may return a class public ly derived from the class
returned by the base class instance (or a pointer or a reference to a class type).

Defining the Handle Constructors

Once the clone function exists, we can write the Sales_item constructor:

     Sales_item::Sales_item(const Item_base &item):
                 p(item.clone()), use(new std::size_t(1)) { }

Like the default constructor, this constructor allocates and initializes its use count. It calls clone
on its parameter to generate a (virtual) copy of that object. If the argument is an Item_base ,
then the clone function for Item_base is run; if the argument is a Bulk_item , then the Bulk_item
clone is executed.

Exercises Section 15.8.2



Exercise
15.31:

Define and implement the clone operation for the limited
discount class implemented in the exercises for Section 15.2.3
(p. 567 ).

Exercise
15.32:

In practice, our programs are unlikely to run correctly the first
time we run them or the first time we run them against real
data. It is often useful to incorporate a debugging strategy
into the design of our classes. Implement a virtual debug
function for our Item_base class hierarchy that displays the
data members of the respective classes.

Exercise
15.33:

Given the version of the Item_base hierarchy that includes the
Disc_item abstract base class, indicate whether the Disc_item
class should implement the clone function. If not, why not? If
so, why?

Exercise
15.34:

Modify your debug function to let users turn debugging on or
off. Implement the control two ways:

By defining a parameter to the debug functiona.

By defining a class data member that allows individual
objects to turn on or turn off the display of debugging
information

b.

15.8.3. Using the Handle

Using Sales_item objects, we could more easily write our bookstore application. Our code
wouldn't need to manage pointers to the Item_base objects, yet the code would obtain virtual
behavior on calls made through a Sales_item .

As an example, we could use Item_base objects to solve the problem proposed in Section 15.7
(p. 597 ). We could use Sales_items to keep track of the purchases a customer makes, storing a
Sales_item representing each purchase in a multiset . When the customer was done shopping,
we would total the sale.

Comparing Two Sales_items

Before writing the function to total a sale, we need to define a way to compare Sales_items . To
use Sales_item as the key in an associative container, we must be able to compare them
(Section 10.3.1 , p. 360 ). By default, the associative containers use the less-than operator on
the key type. However, for the same reasons discussed about our original Sales_item type in
Section 14.3.2 (p. 520 ), defining operator< for the Sales_item handle would be a bad idea: We
want to take only the ISBN into account when we use Sales_item as a key, but want to consider
all data members when determining equality.

Fortunately, the associative containers allow us to specify a function (or function object (Section
14.8 , p. 530 )) to use as the comparison function. We do so similarly to the way we passed a
separate function to the stable_sort algorithm in Section 11.2.3 (p. 403 ). In that case, we
needed only to pass an additional argument to stable_sort to provide a comparison function to



use in place of the < operator. Overriding an associative container's comparison function is a bit
more complicated because, as we shall see, we must supply the comparison function when we
define the container object.

Let's start with the easy part, which is to define a function to use to compare Sales_item
objects:

     // compare defines item ordering for the multiset in Basket
     inline bool
     compare(const Sales_item &lhs, const Sales_item &rhs)
     {
         return lhs->book() < rhs->book();
     }

Our compare function has the same interface as the less-than operator. It returns a bool and
takes two const references to Sales_items . It compares the parameters by comparing their
ISBNs. This function uses the Sales_item -> operator, which returns a pointer to an Item_base
object. That pointer is used to fetch and run the book member, which returns the ISBN.

Using a Comparator with an Associative Container

If we think a bit about how the comparison function is used, we'll realize that it must be stored
as part of the container. The comparison function is used by any operation that adds or finds an
element in the container. In principle, each of these operations could take an optional extra
argument that represented the comparison function. However, this strategy would be error-
prone: If two operations used different comparison functions, then the ordering would be
inconsistent. It's impossible to predict what would happen in practice.

To work effectively, an associative container needs to use the same comparison function for
every operation. Yet, it is unreasonable to expect users to remember the comparison function
every time, especially when there is no way to check that each call uses the same comparison
function. Therefore, it makes sense for the container to remember the comparison function. By
storing the comparator in the container object, we are assured that every operation that
compares elements will do so consistently.

For the same reasons that the container needs to know the element type, it needs to know the
comparator type in order to store the comparator. In principle, the container could infer this
type by assuming that the comparator is pointer to a function that returns a bool and takes
references to two objects of the key_type of the container. Unfortunately, this inferred type
would be overly restrictive. For one thing, we should allow the comparator to be a function
object as well as a plain function. Even if we were willing to require that the comparator be a
function, the inferred type would still be too restrictive. After all, the comparison function might
return an int or any other type that can be used in a condition. Similarly, the parameter type
need not exactly match the key_type . Any parameter type that is convertible to the key_type
should also be allowed.

So, to use our Sales_item comparison function, we must specify the comparator type when we
define the multiset . In our case, that type is a function that returns a bool and takes two const
Sales_item references.

We'll start by defining a typedef that is a synonym for this type (Section 7.9 , p. 276 ):

     // type of the comparison function used to order the multiset
     typedef bool (*Comp)(const Sales_item&, const Sales_item&);



This statement defines Comp as a synonym for the pointer to function type that matches the
comparison function we wish to use to compare Sales_item objects.

Next we'll need to define a multiset that holds objects of type Sales_item and that uses this
Comp type for its comparison function. Each constructor for the associative containers allows us
to supply the name of the comparison function. We can define an empty multiset that uses our
compare function as follows:

     std::multiset<Sales_item, Comp> items(compare);

This definition says that items is a multiset that holds Sales_item objects and uses an object of
type Comp to compare them. The multiset is emptywe supplied no elementsbut we did supply a
comparison function named compare . When we add or look for elements in items our compare
function will be used to order the multiset .

Containers and Handle Classes

Now that we know how to supply a comparison function, we'll define a class, named Basket , to
keep track of a sale and calculate the purchase price:

     class Basket {

         // type of the comparison function used to order the multiset
         typedef bool (*Comp)(const Sales_item&, const Sales_item&);
     public:

         // make it easier to type the type of our set
         typedef std::multiset<Sales_item, Comp> set_type;
         // typedefs modeled after corresponding container types
         typedef set_type::size_type size_type;
         typedef set_type::const_iterator const_iter;
         Basket(): items(compare) { } // initialze the comparator
         void add_item(const Sales_item &item)
                             { items.insert(item); }
         size_type size(const Sales_item &i) const
                              { return items.count(i); }
         double total() const; // sum of net prices for all items in the basket
     private:
         std::multiset<Sales_item, Comp> items;
     };

This class holds the customer's purchases in a multiset of Sales_item objects. We use a
multiset to allow the customer to buy multiple copies of the same book.

The class defines a single constructor, the Basket default constructor. The class needs its own
default constructor to pass compare to the multiset constructor that builds the items member.

The operations that the Basket class defines are fairly simple: add_item takes a reference to a
Sales_item and puts a copy of that item into the multiset ; item_count returns the number of
records for this ISBN in the basket for a given ISBN. In addition to the operations, Basket



defines three typedefs to make it easier to use its multiset member.

Using the Handle to Execute a Virtual Function

The only complicated member of class Basket is the total function, which returns the price for
all the items in the basket:

     double Basket::total() const
     {
         double sum = 0.0; // holds the running total

         /* find each set of items with the same isbn and calculate
          * the net price for that quantity of items

          * iter refers to first copy of each book in the set

          * upper_bound refers to next element with a different isbn
          */
          for (const_iter iter = items.begin();
                                 iter != items.end(); iter =
                                 items.upper_bound(*iter))
     {

              // we know there's at least one element with this key in the Basket

              // virtual call to net_price applies appropriate discounts, if any
              sum += (*iter)->net_price(items.count(*iter));
          }
          return sum;
     }

The total function has two interesting parts: the call to the net_price function, and the
structure of the for loop. We'll look at each in turn.

When we call net_price , we need to tell it how many copies of a given book are being
purchased. The net_price function uses this argument to determine whether the purchase
qualifies for a discount. This requirement implies that we'd like to process the multiset in
chunksprocessing all the records for a given title in one chunk and then the set of those for the
next title and so on. Fortunately, multiset is well suited to this problem.

Our for loop starts by defining and initializing iter to refer to the first element in the multiset .
We use the multiset count member (Section 10.3.6 , p. 367 ) to determine how many elements
in the multiset have the same key (e.g., same isbn ) and use that number as the argument to
the call to net_price .

The interesting bit is the "increment" expression in the for . Rather than the usual loop that
reads each element, we advance iter to refer to the next key. We skip over all the elements
that match the current key by calling upper_bound (Section 10.5.2 , p. 377 ). The call to
upper_bound returns the iterator that refers to the element just past the last one with the same
key as in iter . That iterator we get back denotes either the end of the set or the next unique
book. We test the new value of iter . If iter is equal to items.end() , we drop out of the for .
Otherwise, we process the next book.

The body of the for calls the net_price function. That call can be a bit tricky to read:

     sum += (*iter)->net_price(items.count(*iter));



We dereference iter to get the underlying Sales_item to which we apply the overloaded arrow
operator from the Sales_item class. That operator returns the underlying Item_base object to
which the handle is attached. From that object we call net_price , passing the count of items
with the same isbn . The net_price function is virtual, so the version of the pricing function that
is called depends on the type of the underlying Item_base object.

Exercises Section 15.8.3

Exercise
15.35:

Write your own version of the compare function and Basket
class and use them to manage a sale.

Exercise
15.36:

What is the underlying type of Basket::const_iter?

Exercise
15.37:

Why did we define the Comp typedef in the private part of
Basket ?

Exercise
15.38:

Why did we define two private sections in Basket ?

 



 

15.9. Text Queries Revisited

As a final example of inheritance, we'll extend our text query application from Section 10.6 (p. 379
). The class we developed there let us look for occurrences of a given word in a text file. We'd like
to extend the system to support more complex queries.

For illustration purposes, we'll run queries against the following simple story:

     Alice Emma has long flowing red hair.
     Her Daddy says when the wind blows
     through her hair, it looks almost alive,
     like a fiery bird in flight.
     A beautiful fiery bird, he tells her,
     magical but untamed.
     "Daddy, shush, there is no such thing,"
     she tells him, at the same time wanting
     him to tell her more.
     Shyly, she asks, "I mean, Daddy, is there?"

Our system should support:

Word queries that find a single word. All lines in which the word appears should be displayed
in ascending order:

     Executed Query for:
     Daddy match occurs 3 times:
     (line 2) Her Daddy says when the wind blows
     (line 7) "Daddy, shush, there is no such thing,"
     (line 10) Shyly, she asks, "I mean, Daddy, is there?"

1.

Not queries, using the ~ operator. All lines that do not match the query are displayed:

     Executed Query for: ~(Alice)
     match occurs 9 times:
     (line 2) Her Daddy says when the wind blows
     (line 3) through her hair, it looks almost alive,
     (line 4) like a fiery bird in flight. ...

2.

Or queries, using the | operator. All lines in which either of two queries match are displayed:

     Executing Query for: (hair | Alice)
     match occurs 2 times:

3.



     (line 1) Alice Emma has long flowing red hair.
     (line 3) through her hair, it looks almost alive,

And queries, using the & operator. All lines in which both queries match are displayed.

     Executed query: (hair & Alice)
     match occurs 1 time:
     (line 1) Alice Emma has long flowing red hair.

4.

Moreover, these elements can be combined, as in

     fiery & bird | wind

Our system will not be sophisticated enough to read these expressions. Instead, we'll build them
up inside a C++ program. Hence, we'll evaluate compound expressions such as this example using
normal C++ precedence rules. The evaluation of this query will match a line in which fiery and
bird appear or one in which wind appears. It will not match a line on which fiery or bird appears
alone:

     Executing Query for: ((fiery & bird) | wind)
     match occurs 3 times:
     (line 2) Her Daddy says when the wind blows
     (line 4) like a fiery bird in flight.
     (line 5) A beautiful fiery bird, he tells her,

Our output will print the query, using parentheses to indicate the way in which the query was
interpreted. As with our original implementation, our system must be smart enough not to display
the same line more than once.

15.9.1. An Object-Oriented Solution

We might think that we could use the TextQuery class from page 382 to represent our word
queries. We might then derive our other queries from that class.

However, this design would be flawed. Conceptually, a "not" query is not a kind of word query.
Instead, a not query "has a" query (word query or any other kind of query) whose value it
negates.

This observation suggests that we model our different kinds of queries as independent classes that
share a common base class:

     WordQuery // Shakespeare
     NotQuery  // ~Shakespeare
     OrQuery   // Shakespeare | Marlowe
     AndQuery  // William & Shakespeare



Instead of inheriting from TextQuery , we will use that class to hold the file and build the
associated word_map . We'll use the query classes to build up expressions that will ultimately run
queries against the file in a TextQuery object.

Abstract Interface Class

We have identified four kinds of query classes. These classes are conceptually siblings. Each class
shares the same abstract interface, which suggests that we'll need to define an abstract base class
(Section 15.6 , p. 595 ) to represent the operations performed by a query. We'll name our abstract
class Query_base , indicating that its role is to serve as the root of our query hierarchy.

We'll derive WordQuery and NotQuery directly from our abstract base. The AndQuery and OrQuery
classes share one property that the other classes in our system do not: They each have two
operands. To model this fact, we'll add another abstract class, named BinaryQuery , to our
hierarchy to represent queries with two operands. The AndQuery and OrQuery classes will inherit
from the BinaryQuery class, which in turn will inherit from Query_base . These decisions give us the
class design represented in Figure 15.3 on the next page.

Figure 15.3. Query_base Inheritance Hierarchy

Operations

Our Query_base classes exist mostly to represent kinds of queries; they do little actual work. We'll
reuse our TextQuery class to store the file, build the query map , and search for each word. Our
query types need only two operations:

An eval operation to return the set of matching line numbers. This operation takes a
TextQuery object on which to execute the query.

1.

A display operation that takes a reference to an ostream and prints the query that a given
object performs on that stream.

2.

We'll define each of these operations as pure virtual functions (Section 15.6 , p. 595 ) in the
Query_base class. Each of our derived classes will have to define its own version of these functions.

15.9.2. A Valuelike Handle



Our program will deal with evaluating queries, not with building them. However, we need to be
able to create queries in order to run our program. The simplest way to do so is to write C++
expressions to create queries directly. For example, we'd like to be able to write code such as

     Query q = Query("fiery") & Query("bird") | Query("wind");

to generate the compound query previously described.

This problem description implicitly suggests that user-level code won't use our inherited classes
directly. Instead, we'll define a handle class named Query , which will hide the hierarchy. User code
will execute in terms of the handle; user code will only indirectly manipulate Query_base objects.

As with our Sales_item handle, our Query handle will hold a pointer to an object of a type in an
inheritance hierarchy. The Query class will also point to a use count, which we'll use to manage the
object to which the handle points.

In this case, our handle will completely hide the underlying inheritance hierarchy. Users will create
and manipulate Query_base objects only indirectly through operations on Query objects. We'll
define three overloaded operators on Query objects and a Query constructor that will dynamically
allocate a new Query_base object. Each operator will bind the generated Query_base object to a
Query handle: The & operator will generate a Query bound to a new AndQuery ; the | operator will
generate a Query bound to a new OrQuery ; and the ~ operator will generate a Query bound to a
new NotQuery . We'll give Query a constructor that takes a string . This constructor will generate a
new WordQuery .

The Query class will provide the same operations as the Query_base classes: eval to evaluate the
associated query, and display to print the query. It will define an overloaded output operator to
display the associated query.

Table 15.1. Query Program Design: A Recap

TextQuery Class that reads a specified file and builds an associated lookup
map. That class provides a query_text operation that takes a
string argument and returns a set of line numbers on which
the argument appears.

Query_base Abstract base class for the query classes.

Query Use-counted handle class, which points to an object of a type
derived from Query_base .

WordQuery Class derived from Query_base that looks for a given word.

NotQuery Class derived from Query_base that returns the set of lines in
which its Query operand does not appear.

BinaryQuery Abstract base type derived from Query_base that represents
queries with two Query operands.

OrQuery Class derived from BinaryQuery that returns the union of the
line numbers in which its two operands appear.

AndQuery Class derived from BinaryQuery that returns the intersection of
the line numbers in which its two operands appear.



q1 & q2 Returns a Query bound to a new AndQuery object that holds q1
and q2 .

q1 | q2 Returns a Query bound to a new OrQuery object that holds q1
and q2 .

~q Returns a Query bound to a new NotQuery object that holds q .

Query q(s) Binds the Query q to a new WordQuery that holds the string s .

Our Design: A Recap

It is often the case, especially when new to designing object-oriented
systems, that understanding the design is the hardest part. Once
we're comfortable with the design, the implementation flows
naturally.

It is important to realize that much of the work in this application consists of building objects to
represent the user's query. As illustrated in Figure 15.4 on the following page, an expression such
as

Figure 15.4. Objects Created by Query Expressions

     Query q = Query("fiery") & Query("bird") | Query("wind");

generates ten objects: five Query_base objects and their associated handles. The five Query_base
objects are three WordQuery s, an OrQuery , and an AndQuery .



Once the tree of objects is built up, evaluating (or displaying) a given query is basically a process
(managed for us by the compiler) of following these links, asking each object in the tree to
evaluate (or display) itself. For example, if we call eval on q (i.e., on the root of this tree), then
eval will ask the OrQuery to which it points to eval itself. Evaluating this OrQuery calls eval on its
two operands, which in turn calls eval on the AndQuery and WordQuery that looks for the word wind
, and so on.

     Objects Created by the Expression
     Query("fiery") & Query("bird") | Query("wind");

Exercises Section 15.9.2

Exercise
15.39:

Given that s1, s2, s3 and s4 are all string s, determine what objects
are created in the following uses of the Query class:

     (a) Query(s1) | Query(s2) & ~ Query(s3);
     (b) Query(s1) | (Query(s2) & ~ Query(s3));
     (c) (Query(s1) & (Query(s2)) | (Query(s3) & Query(s4)));

15.9.3. The Query_base Class

Now that we've explained our design, we'll start our implementation by defining the Query_base
class:

     // private, abstract class acts as a base class for concrete query types
     class Query_base {
         friend class Query;
     protected:
         typedef TextQuery::line_no line_no;
         virtual ~Query_base() { }
     private:

         // eval returns the |set| of lines that this Query matches
         virtual std::set<line_no>
             eval(const TextQuery&) const = 0;

         // display prints the query
         virtual std::ostream&
             display(std::ostream& = std::cout) const = 0;
     };

The class defines two interface members: eval and display . Both are pure virtual functions
(Section 15.6 , p. 595 ), which makes this class abstract. There will be no objects of type



Query_base in our applications.

Users and the derived classes will use the Query_base class only through the Query handle.
Therefore, we made our Query_base interface private . The (virtual ) destructor (Section 15.4.4 ,
p. 587 ) and the typedef are protected so that the derived types can access these members. The
destructor is used (implicitly) by the derived-class destructors and so must be accessible to them.

We grant friendship to the Query handle class. Members of that class will call the virtuals in
Query_base and so must have access to them.

15.9.4. The Query Handle Class

Our Query handle will be similar to the Sales_item class in that it will hold a pointer to the
Query_base and a pointer to a use count. As in the Sales_item class, the copy-control members of
Query will manage the use count and the Query_base pointer.

Unlike the Sales_item class, Query will provide the only interface to the Query_base hierarchy.
Users will not directly access any of the members of Query_base or its derived classes. This design
decision leads to two differences between Query and Sales_item . The first is that the Query class
won't define overloaded versions of dereference and arrow operators. The Query_base class has no
public members. If the Query handle defined the dereference or arrow operators, they would be of
no use! Any attempt to use those operators to access a Query_base member would fail. Instead,
Query must define its own versions of the Query_base interface functions eval and display .

The other difference results from how we intend objects of the hierarchy to be created. Our design
says that objects derived from Query_base will be created only through operations on the Query
handle. This difference results in different constructors being required for the Query class than
were used in the Sales_item handle.

The Query Class

Given the preceeding design, the Query class itself is quite simple:

     // handle class to manage the Query_base inheritance hierarchy
     class Query {

         // these operators need access to the Query_base* constructor
         friend Query operator~(const Query &);
         friend Query operator|(const Query&, const Query&);
         friend Query operator&(const Query&, const Query&);
     public:

         Query(const std::string&); // builds a new WordQuery
         // copy control to manage pointers and use counting
         Query(const Query &c): q(c.q), use(c.use) { ++*use; }
         ~Query() { decr_use(); }
         Query& operator=(const Query&);

     // interface functions: will call corresponding Query_base operations
     std::set<TextQuery::line_no>
       eval(const TextQuery &t) const { return q->eval(t); }
     std::ostream &display(std::ostream &os) const
                             { return q->display(os); }
     private:
         Query(Query_base *query): q(query),
                                   use(new std::size_t(1)) { }
         Query_base *q;
         std::size_t *use;
         void decr_use()



         { if (--*use == 0) { delete q; delete use; } }
     };

We start by naming as friends the operators that create Query objects. We'll see shortly why these
operators need to be friends.

In the public interface for Query , we declare, but cannot yet define, the constructor that takes a
string . That constructor creates a WordQuery object, so we cannot define the constructor until we
have defined the WordQuery class.

The next three members handle copy control and are the same as the corresponding members of
the Sales_item class.

The last two public members represent the interface for Query_base . In each case, the Query
operation uses its Query_base pointer to call the respective Query_base operation. These operations
are virtual. The actual version that is called is determined at run time and will depend on the type
of the object to which q points.

The private implementation of Query includes a constructor that takes a pointer to a Query_base
object. This constructor stores in q the pointer it is given and allocates a new use counter, which it
initializes to one. This constructor is private because we don't intend general user code to define
Query_base objects. Instead, the constructor is needed for the operators that create Query objects.
Because the constructor is private , the operators had to be made friends.

The Query Overloaded Operators

The |, & and ~ operators create OrQuery, AndQuery , and NotQuery objects, respectively:

     inline Query operator&(const Query &lhs, const Query &rhs)
     {
         return new AndQuery(lhs, rhs);
     }
     inline Query operator|(const Query &lhs, const Query &rhs)
     {
          return new OrQuery(lhs, rhs);
     }
     inline Query operator~(const Query &oper)
     {
         return new NotQuery(oper);
     }

Each of these operations dynamically allocates a new object of a type derived from Query_base .
The return (implicitly) uses the Query constructor that takes a pointer to a Query_base to create
the Query object from the Query_base pointer that the operation allocates. For example the return
statement in the ~ operator is equivalent to

     // allocate a new Not Query object

     // convert the resulting pointer to NotQuery to a pointer to Query_base
     Query_base *tmp = new NotQuery(expr);

     return Query(tmp); // use Query constructor that takes a pointer to Query_base



There is no operator to create a WordQuery . Instead, we gave our Query class a constructor that
takes a string . That constructor generates a WordQuery to look for the given string .

The Query Output Operator

We'd like users to be able to print Query s using the normal (overloaded) output operator.
However, we also need the print operation to be virtualprinting a Query should print the
Query_base object to which the Query points. There's only one problem: only member functions can
be virtual, but the output operator cannot be a member of the Query_base classes (Section 14.2.1
, p. 514 ).

To obtain the necessary virtual behavior, our Query_base classes defined a virtual display
member, which the Query output operator will use:

     inline std::ostream&
     operator<<(std::ostream &os, const Query &q)
     {
         return q.display(os);
     }

When we write

     Query andq = Query(sought1) & Query(sought2);
     cout << "\nExecuted query: " << andq << endl;

the Query output operator is invoked. That operator calls

     q.display(os)

with q referring to the Query object that points to this AndQuery, an dos bound to cout. When we
write

     Query name(sought);
     cout << "\nExecuted Query for: " << name << endl;

the WordQuery instance of display is called. More generally, a call

     Query query = some_query;
     cout << query << endl;

invokes the instance of display associated with the object that query addresses at that point in the



execution of our program.

15.9.5. The Derived Classes

We next need to implement our concrete query classes. The one interesting part about these
classes is how they are represented. The WordQuery class is most straightforward. Its job is to hold
the search word.

The other classes operate on one or two Query operands. A NotQuery negates the result of another
Query . Both AndQuery and OrQuery have two operands, which are actually stored in their common
base class, BinaryQuery .

In each of these classes, the operand(s) could be an object of any of the concrete Query_base
classes: A NotQuery could be applied to a WordQuery , an AndQuery , an OrQuery , or another
NotQuery . To allow this flexibility, the operands must be stored as pointers to Query_base that
might point to any one of the concrete Query_base classes.

However, rather than storing a Query_base pointer, our classes will themselves use the Query
handle. Just as user code is simplified by using a handle, we can simplify our own class code by
using the same handle class. We'll make the Query operand const because once a given
Query_base object is built, there are no operations that can change the operand(s).

Now that we know the design for these classes, we can implement them.

The WordQuery Class

A WordQuery is a kind of Query_base that looks for a specified word in a given query map:

     class WordQuery: public Query_base {

         friend class Query; // Query uses the WordQuery constructor
         WordQuery(const std::string &s): query_word(s) { }

         // concrete class: WordQuery defines all inherited pure virtual functions
         std::set<line_no> eval(const TextQuery &t) const
                                 { return t.run_query(query_word); }
         std::ostream& display (std::ostream &os) const
                                   { return os << query_word; }
         std::string query_word; // word for which to search
      };

Like Query_base, WordQuery has no public members; WordQuery must make Query a friend to allow
Query to access the WordQuery constructor.

Each of the concrete query classes must define the inherited pure virtual functions. The WordQuery
operations are simple enough to define in the class body. The eval member calls the query_text
member of its TextQuery parameter passing it the string that was used to create this WordQuery .
To display a WordQuery , we print the query_word .

The NotQuery Class

A NotQuery holds a const Query , which it negates:

     class NotQuery: public Query_base {
         friend Query operator~(const Query &);



         NotQuery(Query q): query(q) { }

          // concrete class: NotQuery defines all inherited pure virtual functions
          std::set<line_no> eval(const TextQuery&) const;
          std::ostream& display(std::ostream &os) const
                { return os << "~(" << query << ")"; }
          const Query query;
     };

The Query overloaded ~ operator is made a friend to allow that operator to create a new NotQuery
object. To display a NotQuery , we print the ~ symbol followed by the underlying Query . We
parenthesize the output to ensure that precedence is clear to the reader.

The use of the output operator in the display operation is ultimately a
virtual call to a Query_base object:

     // uses the Query output operator, which calls Query::display

     // that funtion makes a virtual call to Query_base::display
     { return os << "~(" << query << ")"

The eval member is complicated enough that we will implement it outside the class body. The
eval function appears in Section 15.9.6 (p. 620 ).

The BinaryQuery Class

The BinaryQuery class is an abstract class that holds the data needed by the two query types,
AndQuery and OrQuery , that operate on two operands:

     class BinaryQuery: public Query_base {
     protected:
         BinaryQuery(Query left, Query right, std::string op):
               lhs(left), rhs(right), oper(op) { }

         // abstract class: BinaryQuery doesn't define eval
         std::ostream& display(std::ostream &os) const
         { return os << "(" << lhs << " " << oper << " "
                                  << rhs << ")"; }
         const Query lhs, rhs; // right- and left-hand operands
         const std::string oper; // name of the operator
      };

The data in a BinaryQuery are the two Query operands and the operator symbol to use when
displaying the query. These data are all declared const , because the contents of a query should
not change once it has been constructed. The constructor takes the two operands and the operator
symbol, which it stores in the appropriate data members.



To display a BinaryOperator , we print the parenthesized expression consisting of the left-hand
operand, followed by the operator, followed by the right-hand operand. As when we displayed a
NotQuery , the overloaded << operator that is used to print left and right ultimately makes a
virtual call to the underlying Query_base display .

The BinaryQuery class does not define the eval function and so
inherits a pure virtual. As such, BinaryQuery is also an abstract class,
and we cannot create objects of BinaryQuery type.

The AndQuery and OrQuery Classes

The AndQuery and OrQuery classes are nearly identical:

     class AndQuery: public BinaryQuery {
         friend Query operator&(const Query&, const Query&);
         AndQuery (Query left, Query right):
                               BinaryQuery(left, right, "&") { }

         // concrete class: And Query inherits display and defines remaining pure virtual
         std::set<line_no> eval(const TextQuery&) const;
     };
         class OrQuery: public BinaryQuery {
             friend Query operator|(const Query&, const Query&);
             OrQuery(Query left, Query right):
                         BinaryQuery(left, right, "|") { }

             // concrete class: OrQuery inherits display and defines remaining pure virtual
             std::set<line_no> eval(const TextQuery&) const;
     };

These classes make the respective operator a friend and define a constructor to create their
BinaryQuery base part with the appropriate operator. They inherit the BinaryQuery definition of
display , but each defines its own version of the eval function.



Exercises Section 15.9.5

Exercise
15.40:

For the expression built in Figure 15.4 (p. 612 )

List the constructors executed in processing this
expression.

a.

List the calls to display and to the overloaded << operator
that are made in executing cout << q .

b.

List the calls to eval made when evaluating q.eval .c.

15.9.6. The eval Functions

The heart of the query class hierarchy are the eval virtual functions. Each of these functions calls
eval on its operand(s) and then applies its own logic: The AndQuery eval operation returns the
union of the results of its two operands; OrQuery returns the intersection. The NotQuery is more
complicated: It must return the line numbers not in its operand's set.

OrQuery::eval

An OrQuery merges the set of line numbers returned by its two operandsits result is the union of
the results for its two operands:

     // returns union of its operands' result sets
     set<TextQuery::line_no>
     OrQuery::eval(const TextQuery& file) const
     {

             // virtual calls through the Query handle to get result sets for the operands
             set<line_no> right = rhs.eval(file),
                         ret_lines = lhs.eval(file); // destination to hold results

             // inserts the lines from right that aren't already in ret_lines
             ret_lines.insert(right.begin(), right.end());

             return ret_lines;
     }

The eval function starts by calling eval on each of its Query operands. Those calls call Query::eval
, which in turn makes a virtual call to eval on the underlying Query_base object. Each of these calls
yields a set of line numbers in which its operand appears. We then call insert on ret_lines ,
passing a pair of iterators denoting the set returned from evaluating the right-hand operand.
Because ret_lines is a set , this call adds the elements from right that are not also in left into
ret_lines . After the call to insert, ret_lines contains each line number that was in either of the
left or right sets. We complete the function by returning ret_lines .



AndQuery::eval

The AndQuery version of eval uses one of the library algorithms that performs setlike operations.
These algorithms are described in the Library Appendix, in Section A.2.8 (p. 821 ):

     // returns intersection of its operands' result sets
     set<TextQuery::line_no>
     AndQuery::eval(const TextQuery& file) const
     {

          // virtual calls through the Query handle to get result sets for the operands
          set<line_no> left = lhs.eval(file),
                             right = rhs.eval(file);
          set<line_no> ret_lines; // destination to hold results
          // writes intersection of two ranges to a destination iterator
          // destination iterator in this call adds elements to ret
          set_intersection(left.begin(), left.end(),
                        right.begin(), right.end(),
                        inserter(ret_lines, ret_lines.begin()));
          return ret_lines;
     }

This version of eval uses the set_intersection algorithm to find the lines in common to both
queries: That algorithm takes five iterators: The first four denote two input ranges, and the last
denotes a destination. The algorithm writes each element that is in both of the two input ranges
into the destination. The destination in this call is an insert iterator (Section 11.3.1 , p. 406 )
which inserts new elements into ret_lines .

NotQuery::eval

NotQuery finds each line of the text within which the operand is not found. To support this function,
we need the TextQuery class to add a member to return the size of the file, so that we can know
what line numbers exist.

     // returns lines not in its operand's result set
     set<TextQuery::line_no>
     NotQuery::eval(const TextQuery& file) const
     {

          // virtual call through the Query handle to eval
          set<TextQuery::line_no> has_val = query.eval(file);
          set<line_no> ret_lines;

          // for each line in the input file, check whether that line is in has_val

         // if not, add that line number to ret_lines
         for (TextQuery::line_no n = 0; n != file.size(); ++n)
             if (has_val.find(n) == has_val.end())
                 ret_lines.insert(n);
         return ret_lines;
     }

As in the other eval functions, we start by calling eval on this object's operand. That call returns
the set of line numbers on which the operand appears. What we want is the set of line numbers
on which the operand does not appear. We obtain that set by looking at each line number in the
input file. We use the size member that must be added to TextQuery to control the for loop. That



loop adds each line number to ret_lines that does not appear in has_val . Once we've processed
all the line numbers, we return ret_lines .

Exercises Section 15.9.6

Exercise
15.41:

Implement the Query and Query_base classes, and add the
needed size operation to the TextQuery class from Chapter 10 .
Test your application by evaluating and printing a query such as
the one in Figure 15.4 (p. 612 ).

Exercise
15.42:

Design and implement one of the following enhancements:

Introduce support for evaluating words based on their
presence within the same sentence rather than the same
line.

a.

Introduce a history system in which the user can refer to a
previous query by number, possibly adding to it or
combining it with another.

b.

Rather than displaying the count of matches and all the
matching lines, allow the user to indicate a range of lines to
display, both for intermediate query evaluation and the
final query.

c.

 



 

Chapter Summary

The ideas of inheritance and dynamic binding are simple but powerful. Inheritance lets us write
new classes that share behavior with their base class(es) but redefine that behavior as needed.
Dynamic binding lets the compiler decide at run time which version of a function to run based
on an object's dynamic type. The combination of inheritance and dynamic binding lets us write
type-independent programs that have type-specific behavior.

In C++, dynamic binding applies only to functions declared as virtual when called through a
reference or pointer. It is common for C++ programs to define handle classes to interface to an
inheritance hierarchy. These classes allocate and manage pointers to objects in the inheritance
hierarchy, thus obtaining dynamic behavior while shielding user code from having to deal with
pointers.

Inherited objects are composed of base-class part(s) and a derived-class part. Inherited objects
are constructed, copied, and assigned by constructing, copying, and assigning the base part(s)
of the object before handling the derived part. Because a derived object contains a base part, it
is possible to convert a reference or pointer to a derived type to a reference or pointer to its
base type.

Base classes usually should define a virtual destructor even if the class otherwise has no need
for a destructor. The destructor must be virtual if a pointer to a base is ever deleted when it
actually addresses a derived-type object.

 



 

Defined Terms

abstract base class

Class that has or inherits one or more pure virtual functions. It is not possible to create
objects of an abstract base-class type. Abstract base classes exist to define an interface.
Derived classes will complete the type by defining type-specific implementations for the
pure virtuals defined in the base.

base class

Class from which another class inherits. The members of the base class become members
of the derived class.

class derivation list

Used by a class definition to indicate that the class is a derived class. A derivation list
includes an optional access level and names the base class. If no access label is specified,
the type of inheritance depends on the keyword used to define the derived class. By
default, if the derived class is defined with the struct keyword, then the base class is
inherited public ly. If the class is defined using the class keyword, then the base class is
inherited private ly.

derived class

A class that inherits from another class. The members of the base class are also members
of the derived class. A derived class can redefine the members of its base and can define
new members. A derived-class scope is nested in the scope of its base class(es), so the
derived class can access members of the base class directly. Members defined in the
derived with the same name as members in the base hide those base members; in
particular, member functions in the derived do not overload members from the base. A
hidden member in the base can be accessed using the scope operator.

direct base class

Synonym for immediate base class.

dynamic binding

Delaying until run time the selection of which function to run. In C++, dynamic binding
refers to the run-time choice of which virtual function to run based on the underlying
type of the object to which a reference or pointer is bound.



dynamic type

Type at run time. Pointers and references to base-class types can be bound to objects of
derived type. In such cases the static type is reference (or pointer) to base, but the
dynamic type is reference (or pointer) to derived.

handle class

Class that provides an interface to another class. Commonly used to allocate and manage
a pointer to an object of an inheritance hierarchy.

immediate base class

A base class from which a derived class inherits directly. The immediate base is the class
named in the derivation list. The immediate base may itself be a derived class.

indirect base class

A base class that is not immediate. A class from which the immediate base class inherits,
directly or indirectly, is an indirect base class to the derived class.

inheritance hierarchy

Term used to describe the relationships among classes related by inheritance that share a
common base class.

object-oriented programming

Term used to describe programs that use data abstraction, inheritance, and dynamic
binding.

polymorphism

A term derived from a Greek word that means "many forms." In object-oriented
programming, polymorphism refers to the ability to obtain type-specific behavior based on
the dynamic type of a reference or pointer.

private inheritance

A form of implementation inheritance in which the public and protected members of a
private base class are private in the derived.

protected access label



Members defined after a protected label may be accessed by class members and friends
and by the members (but not friends) of a derived class. protected members are not
accessible to ordinary users of the class.

protected inheritance

In protected inheritance the protected and public members of the base class are
protected in the derived class.

public inheritance

The public interface of the base class is part of the public interface of the derived class.

pure virtual

A virtual function declared in the class header using =0 at the end of the function's
parameter list. A pure virtual is one that need not be (but may be) defined by the class. A
class with a pure virtual is an abstract class. If a derived class does not define its own
version of an inherited pure virtual, then the derived class is abstract as well.

refactoring

Redesigning programs to collect related parts into a single abstraction, replacing the
original code by uses of the new abstraction. In OO programs, refactoring frequently
happens when redesigning the classes in an inheritance hierarchy. Refactoring often
occurs in response to a change in requirements. In general, classes are refactored to
move data or function members to the highest common point in the hierarchy to avoid
code duplication.

sliced

Term used to describe what happens when an object of derived type is used to initialize or
assign an object of the base type. The derived portion of the object is "sliced down,"
leaving only the base portion, which is assigned to the base.

static type

Compile-time type. Static type of an object is the same as its dynamic type. The dynamic
type of an object to which a reference or pointer refers may differ from the static type of
the reference or pointer.

virtual function

A member function that defines type-specific behavior. Calls to a virtual made through a
reference or pointer are resolved at run time, based on the type of the object to which the
reference or pointer is bound.
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Generic programming involves writing code in a way that is independent of any particular type.
When we use a generic program we supply the type(s) or value(s) on which that instance of the
program will operate. The library containers, iterators, and algorithms described in Part II are
examples of generic programming. There is a single definition of each container, such as vector
, but we can define many different kinds of vector s that differ by the element type that the
vector contains.

Templates are the foundation of generic programming. We can, and have, used templates
without understanding how they are defined. In this chapter we'll see how we can define our
own template classes and functions.

Generic programming, like object-oriented programming, relies on a form of polymorphism. The
polymorphism in OOP applies at run time to classes related by inheritance. We can write code
that uses such classes in ways that ignore the type differences among the base and derived
classes. As long as we use references or pointers to the base type, we can use the same code
on objects of the base type or a type derived from that type.

Generic programming lets us write classes and functions that are polymorphic across unrelated
types at compile time. A single class or function can be used to manipulate objects of a variety
of types. The standard library containers, iterators, and algorithms are good examples of
generic programming. The library defines each of the containers, iterators, and algorithms in a
type-independent manner. We can use library classes and functions on most any kind of type.
For example, we can define a vector of Sales_item objects even though the designers of vector
could have had no knowledge of our application-specific class.

In C++, templates are the foundation for generic programming. A template is a blueprint or
formula for creating a class or a function. For example, the standard library defines a single
class template that defines what it means to be a vector . That template is used to generate any
number of type-specific vector classesfor example, vector<int> or vector<string> . Part II
showed how to use generic types and functions; this chapter shows how we can define our own



templates.

 



 

16.1. Template Definitions

Let's imagine that we want to write a function to compare two values and indicate whether the
first is less than, equal to, or greater than the second. In practice, we'd want to define several
such functions, each of which could compare values of a given type. Our first attempt might be
to define several overloaded functions:

     // returns 0 if the values are equal, -1 if v1 is smaller, 1 if v2 is smaller
     int compare(const string &v1, const string &v2)
     {
         if (v1 < v2) return -1;
         if (v2 < v1) return 1;
         return 0;
     }
     int compare(const double &v1, const double &v2)
     {
         if (v1 < v2) return -1;
         if (v2 < v1) return 1;
         return 0;
     }

These functions are nearly identical: The only difference between them is the type of their
parameters. The function body is the same in each function.

Having to repeat the body of the function for each type that we compare is tedious and error-
prone. More importantly, we need to know in advance all the types that we might ever want to
compare . This strategy cannot work if we want to be able to use the function on types that we
don't know about.

16.1.1. Defining a Function Template

Rather than defining a new function for each type, we can define a single function template .
A function template is a type-independent function that is used as a formula for generating a
type-specific version of the function. For example, we might write a function template named
compare , which would tell the compiler how to generate specific versions of compare for the
types that we want to compare.

The following is a template version of compare :

     // implement strcmp-like generic compare function

     // returns 0 if the values are equal, 1 if v1 is larger, -1 if v1 is smaller
     template <typename T>
     int compare(const T &v1, const T &v2)
     {
         if (v1 < v2) return -1;
         if (v2 < v1) return 1;
         return 0;
     }



A template definition starts with the keyword template followed by a template parameter list ,
which is a comma-separated list of one or more template parameters bracketed by the less-
than (< ) and greater-than (> ) tokens.

The template parameter list cannot be empty.

Template Parameter List

The template parameter list acts much like a function parameter list. A function parameter list
defines local variable(s) of a specified type but leaves those variables uninitialized. At run time,
arguments are supplied that initialize the parameters.

Analogously, template parameters represent types or values we can use in the definition of a
class or function. For example, our compare function declares one type parameter named T .
Inside compare , we can use the name T to refer to a type. Which actual type T represents is
determined by the compiler based on how the function is used.

A template parameter can be a type parameter , which represents a type, or a nontype
parameter , which represents a constant expression. A nontype parameter is declared following
a type specifier. We'll see more about nontype parameters in Section 16.1.5 (p. 632 ). A type
parameter is defined following the keyword class or typename . For example, class T is a type
parameter named T . There is no difference between class and typename in this context.

Using a Function Template

When we use a function template, the compiler infers what template argument(s) to bind to
the template parameter(s). Once the compiler determines the actual template argument(s), it
instantiates an instance of the function template for us. Essentially, the compiler figures out
what type to use in place of each type parameter and what value to use in place of each
nontype parameter. Having deduced the actual template arguments, it generates and compiles
a version of the function using those arguments in place of the corresponding template
parameters. The compiler takes on the tedium of (re)writing the function for each type we use.

Given the calls

     int main ()
     {

         // T is int;

         // compiler instantiates int compare(const int&, const int&)
         cout << compare(1, 0) << endl;

         // T is string;

         // compiler instantiates int compare(const string&, const string&)
         string s1 = "hi", s2 = "world";



         cout << compare(s1, s2) << endl;
         return 0;
     }

the compiler will instantiate two different versions of compare . The compiler will create one
version that replaces T by int and a second version that uses string in place of T .

inline Function Templates

A function template can be declared inline in the same way as a nontemplate function. The
specifier is placed following the template parameter list and before the return type. It is not
placed in front of the template keyword.

     // ok: inline specifier follows template parameter list
     template <typename T> inline T min(const T&, const T&);
     // error: incorrect placement of inline specifier
     inline template <typename T> T min(const T&, const T&);

Exercises Section 16.1.1

Exercise
16.1:

Write a template that returns the absolute value of its
parameter. Call the template on values of at least three
different types. Note: until we discuss how the compiler
handles template instantiation in Section 16.3 (p. 643 ), you
should put each template definition and all uses of that
template in the same file.

Exercise
16.2:

Write a function template that takes a reference to an ostream
and a value, and writes the value to the stream. Call the
function on at least four different types. Test your program by
writing to cout , to a file, and to a stringstream .

Exercise
16.3:

When we called compare on two string s, we passed two
string objects, which we initialized from string literals. What
would happen if we wrote:

     compare ("hi", "world");

16.1.2. Defining a Class Template

Just as we can define function templates, we can also define class templates.



To illustrate class templates, we'll implement our own version of the
standard library queue (Section 9.7 , p. 348 ) class. User programs
ought to use the standard queue class, not the one we define here.

Our Queue must be able to hold objects of different types, so we'll define it as a class template
. The operations our Queue will support are a subset of the interface of the standard queue :

push to add an item to the back of the queue

pop to remove the item at the head of the queue

front to return a reference to the element at the head of the queue

empty to indicate whether there are any elements in the queue

We'll look at how we might implement our Queue in Section 16.4 (p. 647 ), but we can start by
defining its interface:

     template <class Type> class Queue {
     public:
         Queue ();                // default constructor

         Type &front ();          // return element from head of Queue
         const Type &front () const;

         void push (const Type &); // add element to back of Queue

         void pop();              // remove element from head of Queue

         bool empty() const;      // true if no elements in the Queue
     private:
         // ...
     };

A class template is a template, so it must begin with the keyword template followed by a
template parameter list. Our Queue template takes a single template type parameter named
Type .

With the exception of the template parameter list, the definition of a class template looks like
any other class. A class template may define data, function, and type members; it may use
access labels to control access to those members; it defines constructors and destructors; and
so on. In the definition of the class and its members, we can use the template parameters as
stand-ins for types or values that will be supplied when the class is used.

For example, our Queue template has one template type parameter. We can use that parameter
anywhere a type name can be used. In this template definition, we use Type to name the return
type from the overloaded front operations and as the parameter type for the push operation.

Using a Class Template



In contrast to calling a function template, when we use a class template, we must explicitly
specify arguments for the template parameters:

     Queue<int> qi;                 // Queue that holds ints

     Queue< vector<double> > qc;    // Queue that holds vectors of doubles

     Queue<string> qs;              // Queue that holds strings

The compiler uses the arguments to instantiate a type-specific version of the class. Essentially,
the compiler rewrites our Queue class replacing Type by the specified actual type provided by the
user. In this case, the compiler will instantiate three classes: a version of Queue with Type
replaced by int , a second Queue class that uses vector<double> in place of Type , and a third
that replaces Type by string .

Exercises Section 16.1.2

Exercise
16.4:

What is a function template? What is a class template?

Exercise
16.5:

Define a function template to return the larger of two values.

Exercise
16.6:

Similar to our a simplified version of queue , write a class
template named List that is a simplified version of the
standard list class.

16.1.3. Template Parameters

As with a function parameter, the name chosen by the programmer for a template parameter
has no intrinsic meaning. In our example, we named compare 's template type parameter T , but
we could have named it anything:

     // equivalent template definition
     template <class Glorp>
     int compare(const Glorp &v1, const Glorp &v2)
     {
         if (v1 < v2) return -1;
         if (v2 < v1) return 1;
         return 0;
     }

This code defines the same compare template as before.

The only meaning we can ascribe to a template parameter is to distinguish whether the



parameter is a type parameter or a nontype parameter. If it is a type parameter, then we know
that the parameter represents an as yet unknown type. If it is a nontype parameter, we know it
is an as yet unknown value.

When we wish to use the type or value that a template parameter represents, we use the same
name as the corresponding template parameter. For example, all references to Glorp in the
compare function template will be resolved to the same type when the function is instantiated.

Template Parameter Scope

The name of a template parameter can be used after it has been declared as a template
parameter and until the end of the template declaration or definition.

Template parameters follow normal name-hiding rules. A template parameter with the same
name as an object, function, or type declared in global scope hides the global name:

     typedef double T;
     template <class T> T calc(const T &a, const T &b)
     {

          // tmp has the type of the template parameter T
          // not that of the global typedef
          T tmp = a;
          // ...
          return tmp;
     }

The global typedef that defines T as double is hidden by the type parameter named T . Thus, tmp
is not a double . Instead, the type of tmp is whatever type gets bound to the template parameter
T .

Restrictions on the Use of a Template Parameter Name

A name used as a template parameter may not be reused within the template:

     template <class T> T calc(const T &a, const T &b)
     {
         typedef double T; // error: redeclares template parameter T
         T tmp = a;
         // ...
         return tmp;
     }

This restriction also means that the name of a template parameter can be used only once within
the same template parameter list:

     // error: illegal reuse of template parameter name V
     template <class V, class V> V calc(const V&, const V&) ;



Of course, just as we can reuse function parameter names, the name of a template parameter
can be reused across different templates:

     // ok: reuses parameter type name across different templates
     template <class T> T calc (const T&, const T&) ;
     template <class T> int compare(const T&, const T&) ;

Template Declarations

As with any other function or class, we can declare a template without defining it. A declaration
must indicate that the function or class is a template:

     // declares compare but does not define it
     template <class T> int compare(const T&, const T&) ;

The names of the template parameters need not be the same across declarations and the
definition of the same template:

     // all three uses of calc refer to the same function template
     // forward declarations of the template
     template <class T> T calc(const T&, const T&) ;
     template <class U> U calc(const U&, const U&) ;
     // actual definition of the template
     template <class Type>
     Type calc(const Type& a, const Type& b) { /* ... */ }

Each template type parameter must be preceded either by the keyword class or typename ;
each nontype parameter must be preceded by a type name. It is an error to omit the keyword
or a type specifier:

     // error: must precede U by either typename or class
     template <typename T, U> T calc (const T&, const U&) ;
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Exercise
16.7:

Explain each of the following function template definitions and identify
whether any are illegal. Correct each error that you find.

     (a) template <class T, U, typename V> void f1(T, U, V) ;
     (b) template <class T> T f2(int &T) ;
     (c) inline template <class T> T foo(T, unsigned int*) ;
     (d) template <class T> f4 (T, T) ;
     (e) typedef char Ctype ;
         template <typename Ctype> Ctype f5(Ctype a) ;

Exercise
16.8:

Explain which, if any, of the following declarations are errors and why.

     (a) template <class Type> Type bar(Type, Type) ;
         template <class Type> Type bar(Type, Type) ;
     (b) template <class T1, class T2> void bar(T1, T2) ;
         template <class C1, typename C2> void bar(C1, C2) ;

Exercise
16.9:

Write a template that acts like the library find algorithm. Your template
should take a single type parameter that will name the type for a pair of
iterators that should be parameters to the function. Use your function to
find a given value in a vector<int> and in a list<string> .

16.1.4. Template Type Parameters

Type parameters consist of the keyword class or the keyword typename followed by an identifier.
In a template parameter list, these keywords have the same meaning: They indicate that the
name that follows represents a type.

A template type parameter can be used as a type specifier anywhere in the template, in exactly
the same way as a built-in or class type specifier. In particular, it can be used to name the
return type or a function parameter type, and for variable declarations or casts inside the
function body:

     // ok: same type used for the return type and both parameters
     template <class T> T calc (const T& a, const T& b)
     {

          // ok: tmp will have same type as the parameters & return type
          T tmp = a;
          // ...
          return tmp;
     }



Distinction Between typename and class

In a function template parameter list, the keywords typename and class have the same meaning
and can be used interchangeably. Both keywords can be used in the same template parameter
list:

     // ok: no distinction between typename and class in template parameter list
     template <typename T, class U> calc (const T&, const U&);

It may seem more intuitive to use the keyword typename instead of the keyword class to
designate a template type parameter; after all, we can use built-in (nonclass types) types as the
actual type parameter. Moreover, typename more clearly indicates that the name that follows is a
type name. However, the keyword typename was added to C++ as part of Standard C++, so
older programs are more likely to use the keyword class exclusively.

Designating Types inside the Template Definition

In addition to defining data or function members, a class may define type members. For
example, the library container classes define various types, such as size_type , that allow us to
use the containers in a machine-independent way. When we want to use such types inside a
function template, we must tell the compiler that the name we are using refers to a type. We
must be explicit because the compiler (and a reader of our program) cannot tell by inspection
when a name defined by a type parameter is a type or a value. As an example, consider the
following function:

     template <class Parm, class U>
     Parm fcn(Parm* array, U value)
     {
         Parm: :size_type * p; // If Parm::size_type is a type, then a declaration
                              // If Parm::size_type is an object, then multiplication
     }

We know that size_type must be a member of the type bound to Parm , but we do not know
whether size_type is the name of a type or a data member. By default, the compiler assumes
that such names name data members, not types.

If we want the compiler to treat size_type as a type, then we must explicitly tell the compiler to
do so:

     template <class Parm, class U>
     Parm fcn(Parm* array, U value)
     {

         typename Parm::size_type * p; // ok: declares p to be a pointer
     }



We tell the compiler to treat a member as a type by prefixing uses of the member name with
the keyword typename . By writing typename Parm::size_type we say that member size_type of
the type bound to Parm is the name of a type. Of course, this declaration puts an obligation on
the types used to instantiate fcn : Those types must have a member named size_type that is a
type.

If there is any doubt as to whether typename is necessary to
indicate that a name is a type, it is a good idea to specify it.
There is no harm in specifying typename before a type, so if the
typename was unnecessary, it won't matter.

Exercises Section 16.1.4

Exercise
16.10:

What, if any, are the differences between a type parameter
that is declared as a typename and one that is declared as a
class ?

Exercise
16.11:

When must typename be used?

Exercise
16.12:

Write a function template that takes a pair of values that
represent iterators of unknown type. Find the value that
occurs most frequently in the sequence.

Exercise
16.13:

Write a function that takes a reference to a container and
prints the elements in that container. Use the container's
size_type and size members to control the loop that prints
the elements.

Exercise
16.14:

Rewrite the function from the previous exercise to use
iterators returned from begin and end to control the loop.

16.1.5. Nontype Template Parameters

A template parameter need not be a type. In this section we'll look at nontype parameters as
used by function templates. We'll look at nontype parameters for class templates in Section
16.4.2 (p. 655 ) after we've seen more about how class templates are implemented.

Nontype parameters are replaced by values when the function is called. The type of that value is
specified in the template parameter list. For example, the following function template declares
array_init as a function template with one type and one nontype template parameter. The
function itself takes a single parameter, which is a reference to an array (Section 7.2.4 , p. 240
):



     // initialize elements of an array to zero
     template <class T, size_t N> void array_init(T (&parm)[N])
     {
         for (size_t i = 0; i != N; ++i) {
             parm[i] = 0;
         }
     }

A template nontype parameter is a constant value inside the template definition. A nontype
parameter can be used when constant expressions are requiredfor example, as we do hereto
specify the size of an array.

When array_init is called, the compiler figures out the value of the nontype parameter from the
array argument:

     int x[42];
     double y[10];

     array_init(x);  // instantiates array_init(int(&)[42]

     array_init(y);  // instantiates array_init(double(&)[10]

The compiler will instantiate a separate version of array_init for each kind of array used in a
call to array_init . For the program above, the compiler instantiates two versions of
array_init: The first instance has its parameter bound to int[42] , and in the other, that
parameter is bound to double[10] .

Type Equivalence and Nontype Parameters

Expressions that evaluate to the same value are considered equivalent template arguments for
a template nontype parameter. The following calls to array_init both refer to the same
instantiation, array_init<int, 42> :

     int x[42];
     const int sz = 40;
     int y[sz + 2];

     array_init(x);  // instantiates array_init(int(&)[42])
     array_init(y);  // equivalent instantiation
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Exercise
16.15:

Write a function template that can determine the size of an
array.

Exercise
16.16:

Rewrite the printValues function from page 240 as a function
template that could be used to print the contents of arrays of
varying sizes.

16.1.6. Writing Generic Programs

When we write a template, the code may not be overtly type-specific, but template code always
makes some assumptions about the types that will be used. For example, although our compare
function is technically valid for any type, in practice the instantiated version might be illegal.

Whether the generated program is legal depends on the operations used in the function and the
operations supported by the type or types used. Our compare function has has three statements:

     if (v1 < v2) return -1; // < on two objects of type T

     if (v2 < v1) return 1;  // < on two objects of type T

     return 0;               // return int; not dependent on T

The first two statements contain code that implicitly depends on the parameter type. The if
tests use the < operator on the parameters. The type of those parameters isn't known until the
compiler sees a call to compare and T is bound to an actual type. Which < operator is used
depends entirely on the argument type.

If we call compare on an object that does not support the < operator, then the call will be invalid:

     Sales_item item1, item2;
     // error: no < on Sales_item
     cout << compare(item1, item2) << endl;

The program is in error. The Sales_item type does not define the < operator, so the program
won't compile.

The operations performed inside a function template constrains the
types that can be used to instantiate the function. It is up to the
programmer to guarantee that the types used as the function
arguments actually support any operations that are used, and that
those operations behave correctly in the context in which the
template uses them.



Writing Type-Independent Code

The art of writing good generic code is beyond the scope of this language primer. However,
there is one overall guideline that is worth noting.

When writing template code, it is useful to keep the
number of requirements placed on the argument types as
small as possible.

Simple though it is, our compare function illustrates two important principles for writing generic
code:

The parameters to the template are const references.

The tests in the body use only < comparisons.

By making the parameters const references, we allow types that do not allow copying. Most
typesincluding the built-in types and, except for the IO types, all the library types we've useddo
allow copying. However, there can be class types that do not allow copying. By making our
parameters const references, we ensure that such types can be used with our compare function.
Moreover, if compare is called with large objects, then this design will also make the function run
faster.

Some readers might think it would be more natural for the comparisons to be done using both
the < and > operators:

     // expected comparison
     if (v1 < v2) return -1;
     if (v1 > v2) return 1;
     return 0;

However, by writing the code as

     // expected comparison
     if (v1 < v2) return -1;

     if (v2 < v1) return 1; // equivalent to v1 > v2
     return 0;



we reduce the requirements on types that can be used with our compare function. Those types
must support < , but they need not also support > .

Exercises Section 16.1.6

Exercise
16.17:

In the "Key Concept" box on page 95 , we noted that as a
matter of habit C++ programmers prefer using != to using < .
Explain the rationale for this habit.

Exercise
16.18:

In this section we noted that we deliberately wrote the test in
compare to avoid requiring a type to have both the < and >
operators. On the other hand, we tend to assume that types
will have both == and != . Explain why this seeming
discrepancy in treatment actually reflects good programming
style.

Caution: Compile-Time Errors at Link-Time

In general, when compiling a template, there are three stages during which
the compiler might flag an error: The first is when we compile the template
definition itself. The compiler generally can't find many errors at this stage.
Syntax errors, such as forgetting a semicolon or misspelling a variable
name, can be detected.

The second error-detection time is when the compiler sees a use of the
template. At this stage, there is still not much the compiler can check. For a
call to a function template, many compilers check only that the number and
types of the arguments are appropriate. The compiler can detect that there
are too many or too few arguments. It can also detect whether two
arguments that are supposed to have the same type do so. For a class
template, the compiler can check that the right number of template
arguments are provided but not much else.

The third time when errors are generated is during instantiation. It is only
then that type-related errors can be found. Depending on how the compiler
manages instantiation, which we'll cover on page 643 , these errors may be
reported at link time.

It is important to realize that when we compile a template definition, we do
not know much about how valid the program is. Similarly, we may obtain
compiler errors even after we have successfully compiled each file that
uses the template. It is not uncommon to detect errors only during
instantiation, which may happen at link-time.

 



 

16.2. Instantiation

A template is a blueprint; it is not itself a class or a function. The compiler uses the template to
generate type-specific versions of the specified class or function. The process of generatng a
type-specific instance of a template is known as instantiation. The term reflects the notion that a
new "instance" of the template type or function is created.

A template is instantiated when we use it. A class template is instantiated when we refer to the
an actual template class type, and a function template is instantiated when we call it or use it to
initialize or assign to a pointer to function.

Instantiating a Class

When we write

     Queue<int> qi;

the compiler automatially creates a class named Queue<int> . In effect, the compiler creates the
Queue<int> class by rewriting the Queue template, replacing every occurrence of the template
parameter Type by the type int . The instantiated class is as if we had written:

     // simulated version of Queue instantiated for type int
     template <class Type> class Queue<int> {
     public:

         Queue();                  // this bound to Queue<int>*

         int &front();             // return type bound to int

         const int &front() const; // return type bound to int

         void push(const int &);   // parameter type bound to int
         void pop();               // type invariant code
         bool empty() const;       // type invariant code
     private:
         // ...
     };

To create a Queue class for objects of type string , we'd write:

     Queue<string> qs;

In this case, each occurrence of Type would be replaced by string .



Each instantiation of a class template constitutes an independent
class type. The Queue instantiation for the type int has no
relationship to nor any special access to the members of any other
Queue type.

Class Template Arguments Are Required

When we want to use a class template, we must always specify the template arguments
explicitly.

     Queue qs; // error: which template instantiation?

A class template does not define a type; only a specific instantiation defines a type. We define a
specific instantiation by providing a template argument to match each template parameter.
Template arguments are specified in a comma-separated list and bracketed by the (< ) and (>)
tokens:

     Queue<int> qi;         // ok: defines Queue that holds ints

     Queue<string> qs;      // ok: defines Queue that holds strings

The type defined by a template class always includes the template argument(s). For example,
Queue is not a type; Queue<int> or Queue<string> are.

Function-Template Instantiation

When we use a function template, the compiler will usually infer the template arguments for us:

     int main()
     {

        compare(1, 0);             // ok: binds template parameter to int

        compare(3.14, 2.7);        // ok: binds template parameter to double
        return 0;
     }

This program instantiates two versions of compare : one where T is replaced by int and the
other where it is replaced by double . The compiler essentially writes for us these two instances
of compare :

     int compare(const int &v1, const int &v2)
     {
         if (v1 < v2) return -1;



         if (v2 < v1) return 1;
         return 0;
     }
     int compare(const double &v1, const double &v2)
     {
         if (v1 < v2) return -1;
         if (v2 < v1) return 1;
         return 0;
     }

16.2.1. Template Argument Deduction

To determine which functions to instantiate, the compiler looks at each argument. If the
corresponding parameter was declared with a type that is a type parameter, then the compiler
infers the type of the parameter from the type of the argument. In the case of compare , both
arguments have the same template type: they were each declared using the type parameter T .

In the first call, compare(1, 0) , those arguments are type int ; in the second, compare(3.14,
2.7) , they have type double . The process of determining the types and values of the template
arguments from the type of the function arguments is called template argument deduction .

Multiple Type Parameter Arguments Must Match Exactly

A template type parameter may be used as the type of more than one function parameter. In
such cases, template type deduction must generate the same template argument type for each
corresponding function argument. If the deduced types do not match, then the call is an error:

     template <typename T>
     int compare(const T& v1, const T& v2)
     {
         if (v1 < v2) return -1;
         if (v2 < v1) return 1;
         return 0;
     }
     int main()
     {
         short si;
         // error: cannot instantiate compare(short, int)
         // must be: compare(short, short) or
         // compare(int, int)
         compare(si, 1024);
         return 0;
     }

This call is in error because the arguments to compare don't have the same type. The template
argument deduced from the first argument is short ; the one for the second is int . These types
don't match, so template argument deduction fails.

If the designer of compare wants to allow normal conversions on the arguments, then the
function must be defined with two type parameters:



     // argument types can differ, but must be compatible
     template <typename A, typename B>
     int compare(const A& v1, const B& v2)
     {
         if (v1 < v2) return -1;
         if (v2 < v1) return 1;
         return 0;
     }

Now the user may supply arguments of different types:

     short si;
     compare(si, 1024); // ok: instantiates compare(short, int)

However, a < operator must exist that can compare values of those types.

Limited Conversions on Type Parameter Arguments

Consider the following calls to compare :

     short s1, s2;
     int i1, i2;

     compare(i1, i2);           // ok: instantiate compare(int, int)

     compare(s1, s2);           // ok: instantiate compare(short, short)

The first call generates an instance of compare with T bound to int . A new instance is created
for the second call, binding T to short .

Had compare(int, int) been an ordinary nontemplate function, then the second call would
match that function. The short arguments would be promoted (Section 5.12.2 , p. 180 ) to int .
Because compare is a template, a new function is instantiated with the type parameter bound to
short .

In general, arguments are not converted to match an existing instantiation; instead, a new
instance is generated. There are only two kinds of conversions that the compiler will perform
rather than generating a new instantiation:

const conversions: A function that takes a reference or pointer to a const can be called
with a reference or pointer to nonconst object, respectively, without generating a new
instantiation. If the function takes a nonreference type, then const is ignored on either the
parameter type or the argument. That is, the same instantiation will be used whether we
pass a const or nonconst object to a function defined to take a nonreference type.

array or function to pointer conversions: If the template parameter is not a reference type,
then the normal pointer conversion will be applied to arguments of array or function type.
An array argument will be treated as a pointer to its first element, and a function argument
will be treated as a pointer to the function's type.



As examples, consider calls to the functions fobj and fref . The fobj function copies its
parameters, whereas fref 's parameters are references:

     template <typename T> T fobj(T, T); // arguments are copied
     template <typename T>
     T fref(const T&, const T&);       // reference arguments
     string s1("a value");
     const string s2("another value");

     fobj(s1, s2);     // ok: calls f(string, string), const is ignored

     fref(s1, s2);     // ok: non const object s1 converted to const reference
     int a[10], b[42];

     fobj(a, b); // ok: calls f(int*, int*)
     fref(a, b); // error: array types don't match; arguments aren't converted to pointers

In the first case, we pass a string and a const string as arguments. Even though these types
do not match exactly, both calls are legal. In the call to fobj , the arguments are copied, so
whether the original object is const doesn't matter. In the call to fref , the parameter type is a
reference to const . Conversion to const for a reference parameter is one of the acceptable
conversions, so this call is also okay.

In the next case, we pass array arguments in which the arrays are different sizes. In the call to
fobj , the fact that the arrays are different doesn't matter. Both arrays are converted to
pointers. The template parameter type in fobj is int* . The call to fref , however, is illegal.
When the parameter is a reference (Section 7.2.4 , p. 240 ), the arrays are not converted to
pointers. The types of a and b don't match, so the call is in error.

Normal Conversions Apply for Nontemplate Arguments

The restriction on type conversions applies only to those arguments
whose types are template parameters.

Normal conversions (Section 7.1.2 , p. 229 ) are allowed for parameters defined using ordinary
types. The following function template sum has two parameters:

     template <class Type> Type sum(const Type &op1, int op2)
     {
         return op1 + op2;
     }

The first parameter, op1 , has a template parameter type. Its actual type cannot be known until
the function is used. The type of the second parameter, op2 , is known: It's int .



Because the type of op2 is fixed, normal conversions can be applied to arguments passed to op2
when sum is called:

     double d = 3.14;
     string s1("hiya"), s2(" world");

     sum(1024, d); // ok: instantiates sum(int, int), converts d to int

     sum(1.4, d); // ok: instantiates sum(double, int), converts d to int

     sum(s1, s2); // error: s2 cannot be converted to int

In the first two calls, the type of the second argument dd is not the same as the type of the
corresponding function parameter. However, these calls are okay: There is a conversion from
double to int . Because the type of the second parameter does not depend on a template
parameter, the compiler will implicitly convert dd . The first call causes the function sum(int,
int) to be instantiated; sum(double, int) is instantiated by the second call.

The third call is an error. There is no conversion from string to int . Using a string argument
to match an int parameter is, as usual, illegal.

Template Argument Deduction and Function Pointers

We can use a function template to initialize or assign to a function pointer (Section 7.9 , p. 276
). When we do so, the compiler uses the type of the pointer to instantiate a version of the
template with the appropriate template argument(s).

As an example, assume we have a function pointer that points to a function returning an int
that takes two parameters, each of which is a reference to a const int . We could use that
pointer to point to an instantiation of compare :

     template <typename T> int compare(const T&, const T&);

     // pf1 points to the instantiation int compare (const int&, const int&)
     int (*pf1) (const int&, const int&) = compare;

The type of pf1 is "pointer to function returning an int taking two parameters of type const
int& ." The type of the parameters in pf1 determines the type of the template argument for T .
The template argument for T is int . The pointer pf1 refers to the instantiation with T bound to
int .

When the address of a function-template instantiation is taken, the
context must be such that it allows a unique type or value to be
determined for each template parameter.

It is an error if the template arguments cannot be determined from the function pointer type.
For example, assume we have two functions named func . Each function takes a pointer to



function argument. The first version of func takes a pointer to a function that has two const
string reference parameters and returns a string . The second version of func takes a pointer
to a function taking two const int reference parameters and returning an int . We cannot use
compare as an argument to func :

     // overloaded versions of func; each take a different function pointer type
     void func(int(*) (const string&, const string&));
     void func(int(*) (const int&, const int&));

     func(compare); // error: which instantiation of compare?

The problem is that by looking at the type of func 's parameter, it is not possible to determine a
unique type for the template argument. The call to func could instantiate either of the following
functions:

     compare(const string&, const string&)
     compare(const int&, const int&)

Because it is not possible to identify a unique instantiation for the argument to func , this call is
a compile-time (or link-time) error.

Exercises Section 16.2.1

Exercise
16.19:

What is instantiation?

Exercise
16.20:

What happens during template argument deduction?

Exercise
16.21:

Name two type conversions allowed on function arguments
involved in template argument deduction.

Exercise
16.22:

Given the following templates

     template <class Type>
     Type calc (const Type* array, int size);
     template <class Type>
     Type fcn(Type p1,Type p2;

which ones of the following calls, if any, are errors? Why?

     double dobj;    float fobj;    char cobj;
     int ai[5] = { 511, 16, 8, 63, 34 };

     (a) calc(cobj, 'c');



     (b) calc(dobj, fobj);
     (c) fcn(ai, cobj);

16.2.2. Function-Template Explicit Arguments

In some situations, it is not possible to deduce the types of the template arguments. This
problem arises most often when a function return type must be a type that differs from any
used in the parameter list. In such situations, it is necessary to override the template argument
deduction mechanism and explicitly specify the types or values to be used for the template
parameters.

Specifying an Explicit Template Argument

Consider the following problem. We wish to define a function template called sum that takes
arguments of two differnt types. We'd like the return type to be large enough to contain the
sum of two values of any two types passed in any order. How can we do that? How should we
specify sum 's return type?

     // T or U as the returntype?
     template <class T, class U> ??? sum(T, U);

In this case, the answer is that neither parameter works all the time. Using either parameter is
bound to fail at some point:

     // neither T nor U works as return type

     sum(3, 4L); // second type is larger; want U sum(T, U)

     sum(3L, 4); // first type is larger; want T sum(T, U)

One approach to solving this problem would be to force callers of sum to cast (Section 5.12.4 , p.
183 ) the smaller type to the type we wish to use as the result:

     // ok: now either T or U works as return type
     int i; short s;

     sum(static_cast<int>(s), i); // ok: instantiates int sum(int, int)

Using a Type Parameter for the Return Type

An alternative way to specify the return type is to introduce a third template parameter that
must be explicitly specified by our caller:



     // T1 cannot be deduced: it doesn't appear in the function parameter list
     template <class T1, class T2, class T3>
     T1 sum(T2, T3);

This version adds a template parameter to specify the return type. There is only one catch:
There is no argument whose type can be used to infer the type of T1 . Instead, the caller must
explicitly provide an argument for this parameter on each call to sum .

We supply an explicit template argument to a call in much the same way that we define an
instance of a class template. Explicit template arguments are specified in a comma-separated
list, bracketed by the less-than (< ) and greater-than (> ) tokens. The list of explicit template
types appears after the function name and before the argument list:

     // ok T1 explicitly specified; T2 and T3 inferred from argument types

     long val3 = sum<long>(i, lng); // ok: calls long sum(int, long)

This call explicitly specifies the type for T1 . The compiler deduces the types for T2 and T3 from
the arguments passed in the call.

Explicit template argument(s) are matched to corresponding template parameter(s) from left to
right; the first template argument is matched to the first template parameter, the second
argument to the second parameter, and so on. An explicit template argument may be omitted
only for the trailing (rightmost) parameters, assuming these can be deduced from the function
parameters. If our sum function had been written as

     // poor design: Users must explicitly specify all three template parameters
     template <class T1, class T2, class T3>
     T3 alternative_sum(T2, T1);

then we would always have to specify arguments for all three parameters:

     // error: can't infer initial template parameters
     long val3 = alternative_sum<long>(i, lng);
     // ok: All three parameters explicitly specified
     long val2 = alternative_sum<long, int, long>(i, lng);

Explicit Arguments and Pointers to Function Templates

Another example where explicit template arguments would be useful is the ambiguous program
from page 641 . We could disambiguate that case by using explicit template argument:

     template <typename T> int compare(const T&, const T&);

     // overloaded versions of func; each take a different function pointer type
     void func(int(*) (const string&, const string&));
     void func(int(*) (const int&, const int&));

     func(compare<int>); // ok: explicitly specify which version of compare



As before, we want to pass an instantiation of compare in the call to the overloaded function
named func . It is not possible to select which instantiation of compare to pass by looking at the
parameter lists for the different versions of func . Two different instantiations of compare could
satisfy the call. The explicit template argument indicates which instantiation of compare should
be used and which func function is called.

 



 

16.3. Template Compilation Models

When the compiler sees a template definition, it does not generate code immediately. The compiler
produces type-specific instances of the template only when it sees a use of the template, such as
when a function template is called or an object of a class template is defined.

Ordinarily, when we call a function, the compiler needs to see only a declaration for the function.
Similarly, when we define an object of class type, the class definition must be available, but the
definitions of the member functions need not be present. As a result, we put class definitions and
function declarations in header files and definitions of ordinary and class-member functions in
source files.

Exercises Section 16.2.2

Exercise
16.23:

The library max function takes a single type parameter. Could you call max
passing it an int and a double ? If so, how? If not, why not?

Exercise
16.24:

In Section 16.2.1 (p. 638 ) we saw that the arguments to the version of
compare that has a single template type parameter must match exactly. If
we wanted to call the function with compatible types, such as int and short
, we could use an explicit template argument to specify either int or short
as the parameter type. Write a program that uses the version of compare
that has one template parameter. Call compare using an explicit template
argument that will let you pass arguments of type int and short .

Exercise
16.25:

Use an explicit template argument to make it sensible to call compare
passing two string literals.

Exercise
16.26:

Given the following template definition for sum

     template <class T1, class T2, class T3> T1 sum(T2, T3);

explain each of the following calls. Indicate which, if any, are errors. For
each error, explain what is wrong.

     double dobj1, dobj2; float fobj1, fobj2; char cobj1, cobj2;

     (a) sum(dobj1, dobj2);
     (b) sum<double, double, double>(fobj1, fobj2);
     (c) sum<int>(cobj1, cobj2);
     (d) sum<double, ,double>(fobj2, dobj2);



Templates are different: To generate an instantiation, the compiler must have access to the source
code that defines the template. When we call a function template or a member function of a class
template, the compiler needs the function definition. It needs the code we normally put in the
source files.

Standard C++ defines two models for compiling template code. In each of these models, we
structure our programs in largely the same way: Class definitions and function declarations go in
header files, and function and member definitions go in source files. The two models differ in how
the definitions from the source files are made available to the compiler. As of this writing, all
compilers support the first model, known as the "inclusion" model; only some compilers support the
second, "separate compilation" model.

To compile code that uses your own class and function templates, you
must consult your compiler's user's guide to see how your compiler
handles instantiation.

Inclusion Compilation Model

In the inclusion compilation model , the compiler must see the definition for any template that is
used. Typically, we make the definitions available by adding a #include directive to the headers
that declare function or class templates. That #include brings in the source file(s) that contain the
associated definitions:

     // header file utlities.h
     #ifndef UTLITIES_H // header gaurd (Section 2.9.2, p. 69)
     #define UTLITIES_H
     template <class T> int compare(const T&, const T&);
     // other declarations

     #include "utilities.cc" // get the definitions for compare etc.
     #endif

     // implemenatation file utlities.cc
     template <class T> int compare(const T &v1, const T &v2)
     {
         if (v1 < v2) return -1;
         if (v2 < v1) return 1;
         return 0;
     }
     // other definitions

This strategy lets us maintain the separation of header files and implementation files but ensures
that the compiler will see both files when compiling code that uses the templates.

Some, especially older, compilers that use the inclusion model may generate multiple
instantiations. If two or more separately compiled source files use the same template, these



compilers will generate an instantiation for the template in each file. Ordinarily, this approach
implies that a given template will be instantiated more than once. At link time, or during a prelink
phase, the compiler selects one instantiation, discarding the others. In such cases, compile-time
performance can be significantly degraded if there are a lot of files that instantiate the same
template. This compile-time degradation is unlikely to be a problem on modern computers for many
applications. However, in the context of large systems, the compile-time hit may become
important.

Such compilers often support mechanisms that avoid the compile-time overhead implicit in multiple
instantiations of the same template. The way compilers optimize compile-time performance varies
from one compiler to the next. If compile time for programs using templates is too burdensome,
consult your compiler's user's guide to see what support your compiler offers to avoid redundant
instantiations.

Separate Compilation Model

In the separate compilation model , the compiler keeps track of the associated template
definitions for us. However, we must tell the compiler to remember a given template definition. We
use the export keyword to do so.

The export keyword indicates that a given definition might be needed to generate instantiations in
other files. A template may be defined as exported only once in a program. The compiler figures out
how to locate the template definition when it needs to generate these instantiations. The export
keyword need not appear on the template declaration.

Ordinarily, we indicate that a function template is export ed as part of its definition. We do so by
including the keyword export before the template keyword:

     // the template definition goes in a separately-compiled source file
     export template <typename Type>
     Type sum(Type t1, Type t2) /* ...*/

The declaration for this function template, should, as usual, be put in a header. The declaration
must not specify export .

Using export on a class template is a bit more complicated. As usual, the class declaration must go
in a header file. The class body in the header should not use the export keyword. If we used export
in the header, then that header could be used by only one source file in the program.

Instead, we export the class in the class implementation file:

     // class template header goes in shared header file
     template <class Type> class Queue { ... };

     // Queue.ccimplementation file declares Queue as exported
     export template <class Type> class Queue;
     #include "Queue.h"

     // Queue member definitions

The members of an exported class are automatically declared as exported. It is also possible to
declare individual members of a class template as exported. In this case, the keyword export is not
specified on the class template itself. It is specified only on the specific member definitions to be
exported. The definition of exported member functions need not be visible when the member is



used. The definitions of any nonexported member must be treated as in the inclusion model: The
definition should be placed inside the header that defines the class template.

Exercises Section 16.3

Exercise
16.27:

Determine which compilation model your compiler uses. Write
and call a function template to find the median value in a vector
that holds objects of unknown type. (Note: The median is a value
such that half the elements are larger than the median, and half
are smaller.) Structure your program in the normal way: The
function definition should go in one file, a declaration for it in a
header, which the code that defines and uses the function
template should include.

Exercise
16.28:

Where would you place the definitions for the member functions
and static data members of your class templates if the compiler
you use supports the separation compilation model? Explain why.

Exercise
16.29:

Where would you put those template member definitions if your
compiler uses the inclusion model? Explain why.

Caution: Name Lookup in Class Templates

Compiling templates is a surprisingly difficult task. Fortunately, it is a task
handled by compiler writers. Unfortunately, some of that complexity is pushed
onto users of templates: Templates contain two kinds of names:

Those that do not depend on a template parameter1.

Those that do depend on a template parameter2.

It is up to the template designer to ensure that all names that do not depend
on a template parameter are defined in the same scope as the template itself.

It is up to users of a template to ensure that declarations for all functions,
types, and operators associated with the types used to instantiate the
template are visible. This responsibility means that the user must ensure that
these declarations are visible when a member of a class template or a function
template is instantiated.

Both of these requirements are easily satisfied by well-structured programs
that make appropriate use of headers. Authors of templates should provide a
header that contains declarations for all the names used in the class template
or in the definitions of its members. Before defining a template on a particular
type or using a member of that template, the user must ensure that the
header for the template type and the header that defines the type used as the
element type are included.



 



 

16.4. Class Template Members

So far we have seen only how to declare the interface members of our Queue class template. In
this section, we'll look at how we might implement the class.

The standard library implements queue as an adaptor (Section 9.7 , p.
348 ) on top of another container. To emphasize the programming
points involved in using a lower-level data structure, we'll implement
our Queue class as a linked list. In practice, using a library container in
our implementation would probably be a better decision.

Queue Implementation Strategy

Our implementation, shown in Figure 16.1 on the next page, uses two classes:

Figure 16.1. Queue Implementation

Class QueueItem will represent a node in Queue 's linked list. This class has two data
members: item and next :

item holds the value of the element in the Queue ; its type varies with each instance of
Queue .

next is a pointer to the next QueueItem object in the queue.

Each element in the Queue is stored in a QueueItem object.

1.

Class Queue will provide the interface functions described in Section 16.1.2 (p. 627 ). The
Queue class will also have two data members: head and tail . These members are pointers to
QueueItem .

2.

As do the standard containers, our Queue class will copy the values it's given.



The QueueItem Class

We'll start our implementation by writing the QueueItem class:

     template <class Type> class QueueItem {
     // private class: no public section
         QueueItem(const Type &t): item(t), next(0) { }
         Type item;           // value stored in this element

         QueueItem *next;     // pointer to next element in the Queue
     };

As it stands, this class is already complete: It holds two data elements, which its constructor
initializes. Like Queue, QueueItem is a class template. The class uses its template parameter to
name the type of its item member. The value of each element in the Queue will be stored in item .

Each time we instantiate a Queue class, the same version of QueueItem will be instantiated as well.
For example, if we create Queue<int> , then a companion class, QueueItem<int> , will be
instantiated.

Class QueueItem is a private classit has no public interface. We intend this class to be used to
implement Queue and have not built it for general use. Hence, it has no public members. We'll
need to make class Queue a friend of QueueItem so that its members can access the members of
QueueItem . We'll see how to do so in Section 16.4.4 (p. 658 ).

Inside the scope of a class template, we may refer to the class using
its unqualified name.

The Queue Class

We can now flesh out our Queue class:

     template <class Type> class Queue {
     public:

         // empty Queue
         Queue(): head(0), tail(0) { }

         // copy control to manage pointers to QueueItems in the Queue
         Queue(const Queue &Q): head(0), tail(0)
                                       { copy_elems(Q); }
         Queue& operator=(const Queue&);
         ~Queue() { destroy(); }

              // return element from head of Queue

         // unchecked operation: front on an empty Queue is undefined
         Type& front()             { return head->item; }
         const Type &front() const { return head->item; }

         void push(const Type &);       // add element to back of Queue



         void pop ();                    // remove element from head of Queue

         bool empty () const {           // true if no elements in the Queue
             return head == 0;
         }
     private:

         QueueItem<Type> *head;         // pointer to first element in Queue

         QueueItem<Type> *tail;         // pointer to last element in Queue
         // utility functions used by copy constructor, assignment, and destructor
         void destroy();                // delete all the elements
         void copy_elems(const Queue&); // copy elements from parameter
     };

In addition to the interface members, we have added the three copy-control members (Chapter 13
) and associated utility functions used by those members. The private utility functions destroy
and copy_elems will do the work of freeing the elements in the Queue and copying elements from
another Queue into this one. The copy-control members are needed to manage the data members,
head and tail , which are pointers to the first and last elements in the Queue . These elements are
values of type QueueItem<Type> .

The class implements several of its member functions:

The default constructor sets both head and tail pointers to zero, indicating that the Queue is
currently empty.

The copy constructor initializes head and tail , and calls copy_elems to copy the elements
from its initializer.

The front functions return the value at the head of the Queue . These functions do no
checking: As with the analogous operations in the standard queue , users may not run front
on an empty Queue .

The empty function returns the result of comparing head with zero. If head is zero, the Queue
is empty; otherwise, it is not.

References to a Template Type in the Scope of the Template

For the most part, this class definition should be familiar. It differs little from other classes that we
have defined. What is new is the use (or lack thereof) of the template type parameter in
references to the Queue and QueueItem types.

Ordinarily, when we use the name of a class template, we must specify the template parameters.
There is one exception to this rule: Inside the scope of the class itself, we may use the unqualified
name of the class template. For example, in the declarations of the default and copy constructor
the name Queue is a shorthand notation that stands for Queue<Type> . Essentially the compiler
infers that when we refer to the name of the class, we are referring to the same version. Hence,
the copy constructor definition is really equivalent to writing:

     Queue<Type>(const Queue<Type> &Q): head(0), tail(0)
                 { copy_elems(Q); }

The compiler performs no such inference for the template parameter(s) for other templates used
within the class. Hence, we must specify the type parameter when declaring pointers to the



companion QueueItem class:

     QueueItem<Type> *head;    // pointer to first element in Queue

     QueueItem<Type> *tail;    // pointer to last element in Queue

These declarations say that for a given instantiation of class Queue, head and tail point to an
object of type QueueItem instantiated for the same template parameter. That is, the type of head
and tail inside the Queue<int> instantiation is QueueItem<int>* . It would be an error to omit the
template parameter in the definition of the head and tail members:

     QueueItem *head;        // error: which version of QueueItem?

     QueueItem *tail;        // error: which version of QueueItem?

Exercises Section 16.4

Exercise
16.30:

Identify which, if any, of the following class template declarations (or
declaration pairs) are illegal.

     (a) template <class Type> class C1;
         template <class Type, int size> class C1;
     (b) template <class T, U, class V> class C2;
     (c) template <class C1, typename C2> class C3 { };
     (d) template <typename myT, class myT> class C4 { };
     (e) template <class Type, int *ptr> class C5;
         template <class T, int *pi> class C5;

Exercise
16.31:

The following definition of List is incorrect. How would you fix it?

     template <class elemType> class ListItem;
     template <class elemType> class List {
     public:
         List<elemType>();
         List<elemType>(const List<elemType> &);
         List<elemType>& operator=(const List<elemType> &);
         ~List();
         void insert(ListItem *ptr, elemType value);
         ListItem *find(elemType value);
     private:
         ListItem *front;
         ListItem *end;
     };



16.4.1. Class-Template Member Functions

The definition of a member function of a class template has the following form:

It must start with the keyword template followed by the template parameter list for the
class.

It must indicate the class of which it is a member.

The class name must include its template parameters.

From these rules, we can see that a member function of class Queue defined outside the class will
start as

     template <class T> ret-type Queue<T>::member-name

The destroy Function

To illustrate a class template member function defined outside its class, let's look at the destroy
function:

     template <class Type> void Queue<Type>::destroy()
     {
         while (!empty())
             pop();
     }

This definition can be read from left to right as:

Defining a function template with a single type parameter named Type

that returns void ,

which is in the scope of the Queue<Type> class template.

The use of Queue<Type> preceding the scope operator (:: ) names the class to which the member
function belongs.

Following the member-function name is the function definition. In the case of destroy , the
function body looks very much like an ordinary nontemplate function definition. Its job is to walk
the list of entries in this Queue , calling pop to remove each item.

The pop Function

The pop member removes the value at the front of the Queue :



     template <class Type> void Queue<Type>::pop()
     {

         // pop is unchecked: Popping off an empty Queue is undefined

         QueueItem<Type>* p = head; // keep pointer to head so we can delete it

         head = head->next;         // head now points to next element

         delete p;                  // delete old head element
      }

The pop function assumes that users do not call pop on an empty Queue . The job of pop is to
remove the element at the start of the Queue . We must reset the head pointer to point to the next
element in the Queue , and then delete the element that had been at the head . The only tricky part
is remembering to keep a separate pointer to that element so we can delete it after resetting the
head pointer.

The push Function

The push member places a new item at the back of the queue:

     template <class Type> void Queue<Type>::push(const Type &val)
     {

         // allocate a new QueueItem object
         QueueItem<Type> *pt = new QueueItem<Type>(val);
         // put item onto existing queue
         if (empty())
             head = tail = pt; // the queue now has only one element
         else {
             tail->next = pt; // add new element to end of the queue
             tail = pt;
         }
     }

This function starts by allocating a new QueueItem , which is initialized from the value we were
passed. There's actually a surprising bit of work going on in this statement:

The QueueItem constructor copies its argument into the QueueItem 's item member. As do the
standard containers, our Queue class stores copies of the elements it is given.

1.

If item is a class type, the initialization of item uses the copy constructor of whatever type
item has.

2.

The QueueItem constructor also initializes the next pointer to 0 to indicate that this element
points to no other QueueItem .

3.

Because we're adding the element at the end of the Queue , setting next to 0 is eactly what we
want.

Having created and initialized a new element, we must next hook it into the Queue . If the Queue is
empty, then both head and tail should point to this new element. If there are already other
elements in the Queue , then we make the current tail element point to this new element. The old
tail is no longer the last element, which we indicate by making tail point to the newly
constructed element as well.



The copy Function

Aside from the assignment operator, which we leave as an exercise, the only remaining function to
write is copy_elems . This function is designed to be used by the assignment operator and copy
constructor. Its job is to copy the elements from its parameter into this Queue :

     template <class Type>
     void Queue<Type>::copy_elems(const Queue &orig)
     {

         // copy elements from orig into this Queue

         // loop stops when pt == 0, which happens when we reach orig.tail
         for (QueueItem<Type> *pt = orig.head; pt; pt = pt->next)
             push(pt->item); // copy the element
      }

We copy the elements in a for loop that starts by setting pt equal to the parameter's head pointer.
The for continues until pt is 0, which happens after we get to the element that is the last one in
orig . For each element in orig , we push a copy of value in that element onto this Queue and
advance pt to point to the next element in orig .

Instantiation of Class-Template Member Functions

Member functions of class templates are themselves function templates. Like any other function
template, a member function of a class template is used to generate instantiations of that
member. Unlike other function templates, the compiler does not perform template-argument
deduction when instantiating class template member functions. Instead, the template parameters
of a class template member function are determined by the type of the object on which the call is
made. For example, when we call the push member of an object of type Queue<int> , the push
function that is instantiated is

     void Queue<int>::push(const int &val)

The fact that member-function template parameters are fixed by the template arguments of the
object means that calling a class template member function is more flexible than comparable calls
to function templates. Normal conversions are allowed on arguments to function parameters that
were defined using the template parameter:

     Queue<int> qi; // instantiates class Queue<int>
     short s = 42;
     int i = 42;

     // ok: s converted to int and passed to push

     qi.push(s); // instantiates Queue<int>::push(const int&)

     qi.push(i); // uses Queue<int>::push(const int&)

     f(s);       // instantiates f(const short&)

     f(i);       // instantiates f(const int&)

When Classes and Members Are Instantiated



Member functions of a class template are instantiated only for functions that are used by the
program. If a function is never used, then that member function is never instantiated. This
behavior implies that types used to instantiate a template need to meet only the requirements of
the operations that are actually used. As an example, recall the sequential container constructor
(Section 9.1.1 , p. 309 ) that takes only a size parameter. That constructor uses the default
constructor for the element type. If we have a type that does not define the default constructor,
we may still define a container to hold this type. However, we may not use the constructor that
takes only a size.

When we define an object of a template type, that definition causes the class template to be
instantiated. Defining an object also instantiates whichever constructor was used to initialize the
object, along with any members called by that constructor:

     // instantiates Queue<int> class and Queue<int>::Queue()
     Queue<string> qs;

     qs.push("hello"); // instantiates Queue<int>::push

The first statement instantiates the Queue<string> class and its default constructor. The next
statement instantiates the push member function.

The instantiation of the push member:

     template <class Type> void Queue<Type>::push(const Type &val)
     {

          // allocate a new QueueItem object
          QueueItem<Type> *pt = new QueueItem<Type>(val);

          // put item onto existing queue
          if (empty())
              head = tail = pt;    // the queue now has only one element
          else {
              tail->next = pt;     // add new element to end of the queue
              tail = pt;
          }
     }

in turn instantiates the companion QueueItem<string> class and its constructor.

The QueueItem members in Queue are pointers. Defining a pointer to a class template doesn't
instantiate the class; the class is instantiated only when we use such a pointer. Thus, QueueItem is
not instantiated when we create a Queue object. Instead, the QueueItem class is instanatiated when
a Queue member such as front, push , or pop is used.



Exercises Section 16.4.1

Exercise
16.32:

Implement the assignment operator for class Queue .

Exercise
16.33:

Explain how the next pointers in the newly created Queue get set
during the copy_elems function.

Exercise
16.34:

Write the member function definitions of the List class that you
defined for the exercises in Section 16.1.2 (p. 628 ).

Exercise
16.35:

Write a generic version of the CheckedPtr class described in
Section 14.7 (p. 526 ).

16.4.2. Template Arguments for Nontype Parameters

Now that we've seen more about how class templates are implemented, we can look at nontype
parameters for class templates. We'll do so by defining a new version of the Screen class first
introduced in Chapter 12 . In this case, we'll redefine Screen to be a template, parameterized by
its height and width:

     template <int hi, int wid>
     class Screen {
     public:
         // template nontype parameters used to initialize data members
         Screen(): screen(hi * wid, '#'), cursor (0),
                   height(hi), width(wid) { }
         // ...
     private:
         std::string            screen;
         std::string::size_type cursor;
         std::string::size_type height, width;
     };

This template has two parameters, both of which are nontype parameters. When users define
Screen objects, they must provide a constant expression to use for each of these parameters. The
class uses these parameters in the default constructor to set the size of the default Screen .

As with any class template, the parameter values must be explicitly stated whenever we use the
Screen type:

     Screen<24,80> hp2621; // screen 24 lines by 80 characters

The object hp2621 uses the template instantiation Screen<24, 80> . The template argument for hi



is 24, and the argument for wid is 80. In both cases, the template argument is a constant
expression.

Nontype template arguments must be compile-time constant
expressions.

16.4.3. Friend Declarations in Class Templates

There are three kinds of friend declarations that may appear in a class template. Each kind of
declaration declares friendship to one or more entities:

A friend declaration for an ordinary nontemplate class or function, which grants friendship to
the specific named class or function.

1.

A friend declaration for a class template or function template, which grants access to all
instances of the friend.

2.

A friend declaration that grants access only to a specific instance of a class or function
template.

3.

Exercises Section 16.4.2

Exercise
16.36:

Explain what instantiations, if any, are caused by each labeled statement.

     template <class T> class Stack { };
     void f1(Stack<char>);                   // (a)
     class Exercise {
         Stack<double> &rsd;                 // (b)
         Stack<int> si;                      // (c)
     };
     int main() {
         Stack<char> *sc;                    // (d)
         f1(*sc);                            // (e)
         int iObj = sizeof(Stack< string >); // (f)
     }

Exercise
16.37:

Identify which, if any, of the following template instantiations are valid.
Explain why the instantiation isn't valid.

     template <class T, int size> class Array { /* . . . */ };
     template <int hi, int wid> class Screen { /* . . . */ };



     (a) const int hi = 40, wi = 80; Screen<hi, wi+32> sObj;
     (b) const int arr_size = 1024; Array<string, arr_size> a1;
     (c) unsigned int asize = 255; Array<int, asize> a2;
     (e) const double db = 3.1415; Array<double, db> a3;

Ordinary Friends

A nontemplate class or function can be a friend to a class template:

     template <class Type> class Bar {
         // grants access to ordinary, nontemplate class and function
         friend class FooBar;
         friend void fcn();
         // ...
     };

This declaration says that the members of FooBar and the function fcn may access the private and
protected members of any instantiation of class Bar .

General Template Friendship

A friend can be a class or function template:

     template <class Type> class Bar {

         // grants access to Foo1 or templ_fcn1 parameterized by any type
         template <class T> friend class Foo1;
         template <class T> friend void templ_fcn1(const T&);
         // ...
     };

These friend declarations use a different type parameter than does the class itself. That type
parameter refers to the type parameter of Foo1 and templ_fcn1 . In both these cases, an unlimited
number of classes and functions are made friends to Bar . The friend declaration for Foo1 says that
any instance of Foo1 may access the private elements of any instance of Bar . Similarly, any
instance of templ_fcn1 may access any instance of Bar .

This friend declaration establishes a one-to-many mapping between each instantiation of Bar and
its friends, Foo1 and templ_fcn1 . For each instantiation of Bar , all instantiations of Foo1 or
templ_fcn1 are friends.

Specific Template Friendship

Rather than making all instances of a template a friend, a class can grant access to only a specific
instance:



     template <class T> class Foo2;
     template <class T> void templ_fcn2(const T&);
     template <class Type> class Bar {

          // grants access to a single specific instance parameterized by char*
          friend class Foo2<char*>;
          friend void templ_fcn2<char*>(char* const &);
          // ...
     };

Even though Foo2 itself is a class template, friendship is extended only to the specific instance of
Foo2 that is parameterized by char* . Similarly, the friend declaration for templ_fcn2 says that only
the instance of that function parameterized by char* is a friend to class Bar . The specific
instantiations of Foo2 and templ_fcn2 parameterized by char* can access every instantiation of Bar
.

More common are friend declarations of the following form:

     template <class T> class Foo3;
     template <class T> void templ_fcn3(const T&);
     template <class Type> class Bar {

         // each instantiation of Bar grants access to the

         // version of Foo3 or templ_fcn3 instantiated with the same type
         friend class Foo3<Type>;
         friend void templ_fcn3<Type>(const Type&);
         // ...
     };

These friends define friendship between a particular instantiation of Bar and the instantiation of
Foo3 or templ_fcn3 that uses the same template argument. Each instantiation of Bar has a single
associated Foo3 and templ_fcn3 friend:

     Bar<int> bi;    // Foo3<int> and templ_fcn3<int> are friends

     Bar<string> bs; // Foo3<string>, templ_fcn3<string> are friends

Only those versions of Foo3 or templ_fcn3 that have the same template argument as a given
instantiation of Bar are friends. Thus, Foo3<int> may access the private parts of Bar<int> but not
of Bar<string> or any other instantiation of Bar .

Declaration Dependencies

When we grant access to all instances of a given template, there need not be a declaration for that
class or function template in scope. Essentially, the compiler treats the friend declaration as a
declaration of the class or function as well.

When we want to restrict friendship to a specific instantiation, then the class or function must have
been declared before it can be used in a friend declaration:

     template <class T> class A;



     template <class T> class B {
     public:

         friend class A<T>;      // ok: A is known to be a template

         friend class C;         // ok: C must be an ordinary, nontemplate class

         template <class S> friend class D; // ok: D is a template

         friend class E<T>;      // error: E wasn't declared as a template

         friend class F<int>;    // error: F wasn't declared as a template
      };

If we have not previously told the compiler that the friend is a template, then the compiler will
infer that the friend is an ordinary nontemplate class or function.

16.4.4. Queue and QueueItem Friend Declarations

Our QueueItem class is not intended to be used by the general program: All its members are
private. In order for Queue to use QueueItem, QueueItem must make Queue a friend.

Making a Class Template a Friend

As we have just seen, when making a class template a friend, the class designer must decide how
wide to make that friendship. In the case of QueueItem , we need to decide whether QueueItem
should grant friendship to all Queue instances or only to a specific instance.

Making every Queue a friend of each QueueItem is too broad. It makes no sense to allow a Queue
instantiated with the type string to access members of a QueueItem instantiated with type double .
The Queue<string> instantiation should be a friend only to the instantiation of the QueueItem for
string s. That is, we want a one-to-one mapping between a Queue and QueueItem for each type of
Queue that is instantiated:

     // declaration that Queue is a template needed for friend declaration in QueueItem
     template <class Type> class Queue;
     template <class Type> class QueueItem {
         friend class Queue<Type>;
         // ...
      };

This declaration establishes the desired one-to-one mapping; only the Queue class that is
instantiated with the same type as QueueItem is made a friend.

The Queue Output Operator

One operation that might be useful to add to our Queue interface is the ability to print the contents
of a Queue object. We'll do so by providing an overloaded instance of the output operator. This
operator will walk the list of elements in the Queue and print the value in each element. We'll print
the elements inside a pair of brackets.

Because we want to be able to print the contents of Queues of any type, we need to make the
output operator a template as well:

     template <class Type>



     ostream& operator<<(ostream &os, const Queue<Type> &q)
     {
         os << "< ";
         QueueItem<Type> *p;
         for (p = q.head; p; p = p->next)
                 os << p->item << " ";
         os <<">";
         return os;
     }

If a Queue of type int contains the values 3, 5, 8, and 13, the output of this Queue displays as
follows:

     <3 5 8 13 >

If the Queue is empty, the for loop body is never executed. The effect will be to print an empty
pair of brackets if the Queue is empty.

Making a Function Template a Friend

The output operator needs to be a friend of both the Queue and QueueItem classes. It uses the head
member of class Queue and the next and item members of class QueueItem . Our classes grant
friendship to the specific instance of the output operator instantiated with the same type:

     // function template declaration must precede friend declaration in QueueItem
     template <class T>
     std::ostream& operator<<(std::ostream&, const Queue<T>&);
     template <class Type> class QueueItem {
         friend class Queue<Type>;

         // needs access to item and next
         friend std::ostream&
         operator<< <Type> (std::ostream&, const Queue<Type>&);
         // ...
     };
     template <class Type> class Queue {

         // needs access to head
         friend std::ostream&
         operator<< <Type> (std::ostream&, const Queue<Type>&);
     };

Each friend declaration grants access to the corresponding instantiation of the operator<< . That
is, the output operator that prints a Queue<int> is a friend to class Queue<int> (and
QueueItem<int>) . It is not a friend to any other Queue type.

Type Dependencies and the Output Operator

The Queue output operator<< relies on the operator<< of item to actually print each element:



     os << p->item << " ";

When we use p->item as an operand of the << operator, we are using the << defined for whatever
type item has.

This code is an example of a type dependency between Queue and the element type that Queue
holds. In effect, each type bound to Queue that uses the Queue output operator must itself have an
output operator. There is no language mechanism to specify or enforce that dependency in the
definition of Queue itself. It is legal to create a Queue for a class that does not define the output
operator but it is a compile-time (or link-time) error to print a Queue holding such a type.

Exercises Section 16.4.4

Exercise
16.38:

Write a Screen class template that uses nontype parameters to define
the height and width of the Screen .

Exercise
16.39:

Implement input and output operators for the template Screen class.

Exercise
16.40:

Which, if any, friends are necessary in class Screen to make the input
and output operators work? Explain why each friend declaration, if
any, was needed.

Exercise
16.41:

The friend declaration for operator<< in class Queue was

     friend std::ostream&
     operator<< <Type> (std::ostream&, const Queue<Type>&);

What would be the effect of writing the Queue parameter as const
Queue& rather than const Queue<Type>&?

Exercise
16.42:

Write an input operator that reads an istream and puts the values it
reads into a Queue .

16.4.5. Member Templates

Any class (template or otherwise) may have a member that is itself a class or function template.
Such members are referred to as member templates . Member templates may not be virtual.

One example of a member template is the assign (Section 9.3.8 , p. 328 ) member of the
standard containers. The version assign that takes two iterators uses a template parameter to
represent the type of its iterator parameters. Another member template example is the container
constructor that takes two iterators (Section 9.1.1 , p. 307 ). This constructor and the assign
member allow containers to be built from sequences of different but compatible element types
and/or different container types. Having implemented our own Queue class, we now can
understand the design of these standard container members a bit better.



Consider the Queue copy constructor: It takes a single parameter that is a reference to a
Queue<Type> . If we wanted to create a Queue by copying elements from a vector , we could not do
so; there is no conversion from vector to Queue . Similarly, if we wanted to copy elements from a
Queue<short> into a Queue<int> , we could not do so. Again, even though we can convert a short
to an int , there is no conversion from Queue<short> to Queue<int> . The same logic applies to the
Queue assignment operator, which also takes a parameter of type Queue<Type>& .

The problem is that the copy constructor and assignment operator fix both the container and
element type. We'd like to define a constructor and an assign member that allow both the
container and element type to vary. When we need a parameter type to vary, we need to define a
function template. In this case, we'll define the constructor and assign member to take a pair of
iterators that denote a range in some other sequence. These functions will have a single template
type parameter that represents an iterator type.

The standard queue class does not define these members: queue
doesn't support building or assigning a queue from another container.
We define these members here for illustration purposes only.

Defining a Member Template

A template member declaration looks like the declaration of any template:

     template <class Type> class Queue {
     public:

         // construct a Queue from a pair of iterators on some sequence
         template <class It>
         Queue(It beg, It end):
               head(0), tail(0) { copy_elems(beg, end); }

         // replace current Queue by contents delimited by a pair of iterators
         template <class Iter> void assign(Iter, Iter);

         // rest of Queue class as before
     private:

         // version of copy to be used by assign to copy elements from iterator range
         template <class Iter> void copy_elems(Iter, Iter);
     };

The member declaration starts with its own template parameter list. The constructor and assign
member each have a single template type parameter. These functions use that type parameter as
the type for their function parameters, which are iterators denoting a range of elements to copy.

Defining a Member Template Outside the Class

Like nontemplate members, a member template can be defined inside or outside of its enclosing
class or class template definition. We have defined the constructor inside the class body. Its job is



to copy the elements from the iterator range formed by its iterator arguments. It does so by
calling the iterator version of copy_elems to do the actual copy.

When we define a member template outside the scope of a class template, we must include both
template parameter lists:

     template <class T> template <class Iter>
     void Queue<T>::assign(Iter beg, Iter end)
     {

         destroy();            // remove existing elements in this Queue
         copy_elems(beg, end); // copy elements from the input range
     }

When a member template is a member of a class template, then its definition must include the
class-template parameters as well as its own template parameters. The class-template parameter
list comes first, followed by the member's own template parameter list. The definition of assign
starts with

     template <class T> template <class Iter>

The first template parameter list template<class T> is that of the class template. The second
template parameter list template<class Iter> is that of the member template.

The actions of our assign function are quite simple: It first calls destroy , which, as we've seen,
frees the existing members of this Queue . The assign member then calls a new utility function
named copy_elems to do the work of copying elements from the input range. That function is also
a member template:

     template <class Type> template <class It>
     void Queue<Type>::copy_elems(It beg, It end)
     {
         while (beg != end) {
            push(*beg);
            ++beg;
         }
     }

The iterator version of copy_elems walks through an input range denoted by a pair of iterators. It
calls push on each element in that range, which actually adds the element to the Queue .

Because assign erases elements in the existing container, it is
essential that the iterators passed to assign refer to elements in a
different container. The standard container assign members and
iterator constructors have the same restrictions.



Member Templates Obey Normal Access Control

A member template follows the same access rules as any other class members. If the member
template is private, then only member functions and friends of the class can use that member
template. Because the function member template assign is a public member, it can be used by the
entire program; copy_elems is private, so it can be accessed only by the friends and members of
Queue .

Member Templates and Instantiation

Like any other member, a member template is instantiated only when it is used in a program. The
instantiation of member templates of class templates is a bit more complicated than the
instantiation of plain member functions of class templates. Member templates have two kinds of
template parameters: Those that are defined by the class and those defined by the member
template itself. The class template parameters are fixed by the type of the object through which
the function is called. The template parameters defined by the member act like parameters of
ordinary function templates. These parameters are resolved through normal template argument
deduction (Section 16.2.1 , p. 637 ).

To understand how instantiation works, let's look at uses of these members to copy and assign
elements from an array of short s or a vector<int>:

     short a[4] = { 0, 3, 6, 9 };

     // instantiates Queue<int>::Queue(short *, short *)

     Queue<int> qi(a, a + 4); // copies elements from a into qi
     vector<int> vi(a, a + 4);

     // instantiates Queue<int>::assign(vector<int>::iterator,
     //                                 vector<int>::iterator)
     qi.assign(vi.begin(), vi.end());

Because we are constructing an object of type Queue<int> , we know that the compiler will
instantiate the iterator-based constructor for Queue<int> . The type of the constructor's own
template parameter is deduced by the compiler from the type of a and a +4 . That type is pointer
to short . Thus, the definition of qi instantiates

     void Queue<int>::Queue(short *, short *);

The effect of this constructor is to copy the elements of type short from the array named a into qi
.

The call to assign instantiates a member of qi , which has type Queue<int> . Thus, this call
instantiates the Queue<int> member named assign . That function is itself a function template. As
with any other function template, the compiler deduces the template argument for assign from the
arguments to the call. The type deduced is vector<int>::iterator , meaning that this call
instantiates

     void Queue<int>::assign(vector<int>::iterator,



                             vector<int>::iterator);

16.4.6. The Complete Queue Class

For completeness, here is the final definition of our Queue class:

     // declaration that Queue is a template needed for friend declaration in QueueItem
     template <class Type> class Queue;

     // function template declaration must precede friend declaration in QueueItem
     template <class T>
     std::ostream& operator<<(std::ostream&, const Queue<T>&);
     template <class Type> class QueueItem {
         friend class Queue<Type>;

         // needs access to item and next
         friend std::ostream&     // defined on page 659
         operator<< <Type> (std::ostream&, const Queue<Type>&);
     // private class: no public section
         QueueItem(const Type &t): item(t), next(0) { }
         Type item;           // value stored in this element

         QueueItem *next;     // pointer to next element in the Queue
     };
     template <class Type> class Queue {

         // needs access to head
         friend std::ostream& // defined on page 659
         operator<< <Type> (std::ostream&, const Queue<Type>&);
     public:

         // empty Queue
         Queue(): head(0), tail(0) { }

         // construct a Queue from a pair of iterators on some sequence
         template <class It>
         Queue(It beg, It end):
               head(0), tail(0) { copy_elems(beg, end); }

         // copy control to manage pointers to QueueItems in the Queue
         Queue(const Queue &Q): head(0), tail(0)
                                       { copy_elems(Q); }
         Queue& operator=(const Queue&); // left as exercise for the reader
         ~Queue() { destroy(); }

         // replace current Queue by contents delimited by a pair of iterators
         template <class Iter> void assign(Iter, Iter);

         // return element from head of Queue

         // unchecked operation: front on an empty Queue is undefined
         Type& front()             { return head->item; }
         const Type &front() const { return head->item; }
         void push(const Type &);// defined on page 652
         void pop();             // defined on page 651

         bool empty() const {           // true if no elements in the Queue
             return head == 0;
     }
     private:

         QueueItem<Type> *head;   // pointer to first element in Queue

         QueueItem<Type> *tail;   // pointer to last element in Queue
     // utility functions used by copy constructor, assignment, and destructor
     void destroy();                // defined on page 651
     void copy_elems(const Queue&); // defined on page 652



     // version of copy to be used by assign to copy elements from iterator range
     // defined on page 662
     template <class Iter> void copy_elems(Iter, Iter);
     };
     // Inclusion Compilation Model: include member function definitions as well
     #include "Queue.cc"

Members that are not defined in the class itself can be found in earlier sections of this chapter; the
comment following such members indicates the page on which the definition can be found.

Exercises Section 16.4.6

Exercise
16.43:

Add the assign member and a constructor that takes a pair of
iterators to your List class.

Exercise
16.44:

We implemented our own Queue class in order to illustrate how
class templates are implemented. One way in which our
implementation could be simplified would be to define Queue on
top of one of the existing library container types. That way, we
could avoid having to manage the allocation and deallocation of
the Queue elements. Reimplement Queue using std::list to hold
the actual Queue elements.

16.4.7. static Members of Class Templates

A class template can declare static members (Section 12.6 , p. 467 ) in the same way as any
other class:

     template <class T> class Foo {
     public:
        static std::size_t count() { return ctr; }
        // other interface members
     private:
        static std::size_t ctr;
        // other implementation members
     };

defines a class template named Foo that among other members has a public static member
function named count and a private static data member named ctr .

Each instantiation of class Foo has its own static member:

     // Each object shares the same Foo<int>::ctrand Foo<int>::count members
     Foo<int> fi, fi2, fi3;



     // has static members Foo<string>::ctrand Foo<string>::count
     Foo<string> fs;

Each instantiation represents a distinct type, so there is one static shared among the objects of
any given instantiation. Hence, any objects of type Foo<int> share the same static member ctr .
Objects of type Foo<string> share a different ctr member.

Using a static Member of a Class Template

As usual, we can access a static member of a class template through an object of the class type
or by using the scope operator to access the member directly. Of course, when we attempt to use
the static member through the class, we must refer to an actual instantiation:

     Foo<int> fi, fi2;              // instantiates Foo<int> class

     size_t ct = Foo<int>::count(); // instantiates Foo<int>::count

     ct = fi.count();               // ok: uses Foo<int>::count

     ct = fi2.count();              // ok: uses Foo<int>::count
     ct = Foo::count();             // error: which template instantiation?

Like any other member function, a static member function is instantiated only if it is used in a
program.

Defining a static Member

As with any other static data member, there must be a definition for the data member that
appears outside the class. In the case of a class template static , the member definition must
inidicate that it is for a class template:

     template <class T>

     size_t Foo<T>::ctr = 0; // define and initialize ctr

A static data member is defined like any other member of a class template that is defined outside
the class. It begins with the keyword template followed by the class template parameter list and
the class name. In this case, the name of the static data member is prefixed by Foo<T>:: , which
indicates that the member belongs to the class template Foo .

 



 

16.5. A Generic Handle Class

This example represents a fairly sophisticated use of C++.
Understanding it requires understanding both inheritance and
templates fairly well. It may be useful to delay studying this
example until you are comfortable with these features. On the other
hand, this example provides a good test of your understanding of
these features.

In Chapter 15 we defined two handle classes: the Sales_item (Section 15.8 , p. 598 ) class and
the Query (Section 15.9 , p. 607 ) class. These classes managed pointers to objects in an
inheritance hierarchy. Users of the handle did not have to manage the pointers to those objects.
User code was written in terms of the handle class. The handle dynamically allocated and freed
objects of the related inheritance classes and forwarded all "real" work back to the classes in the
underlying inheritance hierarchy.

These handles were similar to but different from each other: They were similar in that each
defined use-counted copy control to manage a pointer to an object of a type in an inheritance
hierarchy. They differed with respect to the interface they provided to users of the inheritance
hierarchy.

The use-counting implementation was the same in both classes. This kind of problem is well
suited to generic programming: We could define a class template to manage a pointer and do
the use-counting. Our otherwise unrelated Sales_item and Query types could be simplified by
using that template to do the common use-counting work. The handles would remain different
as to whether they reveal or hide the underlying inheritance hierarchy.

In this section, we'll implement a generic handle class to provide the operations that manage
the use count and the underlying objects. Then we'll rewrite the Sales_item class, showing how
it could use the generic handle rather than defining its own use-counting operations.

16.5.1. Defining the Handle Class

Our Handle class will behave like a pointer: Copying a Handle will not copy the underlying object.
After the copy, both Handle s will refer to the same underlying object. To create a Handle , a
user will be expected to pass the address of a dynamically allocated object of the type (or a type
derived from that type) managed by the Handle . From that point on, the Handle will "own" the
given object. In particular, the Handle class will assume responsibility for deleting that object
once there are no longer any Handle s attached to it.

Given this design, here is an implementation of our generic Handle :

     /* generic handle class: Provides pointerlike behavior. Although access through

      * an unbound Handle is checked and throws a runtime_error exception.



      * The object to which the Handle points is deleted when the last Handle goes away.

      * Users should allocate new objects of type T and bind them to a Handle.

      * Once an object is bound to a Handle,, the user must not delete that object.
      */
     template <class T> class Handle {
     public:
         // unbound handle
         Handle(T *p = 0): ptr(p), use(new size_t(1)) { }
         // overloaded operators to support pointer behavior
         T& operator*();
         T* operator->();
         const T& operator*() const;
         const T* operator->() const;

         // copy control: normal pointer behavior, but last Handle deletes the object
         Handle(const Handle& h): ptr(h.ptr), use(h.use)
                                             { ++*use; }
         Handle& operator=(const Handle&);
         ~Handle() { rem_ref(); }
     private:
         T* ptr;          // shared object

         size_t *use;     // count of how many Handle spointto *ptr
         void rem_ref()
             { if (--*use == 0) { delete ptr; delete use; } }
     };

This class looks like our other handles, as does the assignment operator.

     template <class T>
     inline Handle<T>& Handle<T>::operator=(const Handle &rhs)
     {
         ++*rhs.use;      // protect against self-assignment
         rem_ref();       // decrement use count and delete pointers if needed
         ptr = rhs.ptr;
         use = rhs.use;
         return *this;
     }

The only other members our class will define are the dereference and member access operators.
These operators will be used to access the underlying object. We'll provide a measure of safety
by having these operations check that the Handle is actually bound to an object. If not, an
attempt to access the object will throw an exception.

The nonconst versions of these operators look like:

     template <class T> inline T& Handle<T>::operator*()
     {
         if (ptr) return *ptr;
         throw std::runtime_error
                        ("dereference of unbound Handle");
     }
     template <class T> inline T* Handle<T>::operator->()
     {



         if (ptr) return ptr;
         throw std::runtime_error
                        ("access through unbound Handle");
     }

The const versions would be similar and are left as an exercise.

16.5.2. Using the Handle

We intend this class to be used by other classes in their internal implementations. However, as
an aid to understanding how the Handle class works, we'll look at a simpler example first. This
example illustrates the behavior of the Handle by allocating an int and binding a Handle to that
newly allocated object:

Exercises Section 16.5.1

Exercise
16.45:

Implement your own version of the Handle class.

Exercise
16.46:

Explain what happens when an object of type Handle is copied.

Exercise
16.47:

What, if any, restrictions does Handle place on the types used
to instantiate an actual Handle class.

Exercise
16.48:

Explain what happens if the user attaches a Handle to a local
object. Explain what happens if the user deletes the object to
which a Handle is attached.

     { // new scope

       // user allocates but must not delete the object to which the Handle is attached
       Handle<int> hp(new int(42));
       { // new scope
           Handle<int> hp2 = hp; // copies pointer; use count incremented
           cout << *hp << " " << *hp2 << endl; // prints 42 42
           *hp2 = 10;           // changes value of shared underlying int
       }   // hp2 goes out of scope; use count is decremented
       cout << *hp << endl; // prints 10

     } // hp goes out of scope; its destructor deletes the int

Even though the user of Handle allocates the int , the Handle destructor will delete it. In this
code, the int is deleted at the end of the outer block when the last Handle goes out of scope. To
access the underlying object, we apply the Handle * operator. That operator returns a reference
to the underlying int object.



Using a Handle to Use-Count a Pointer

As an example of using Handle in a class implementation, we might reimplement our Sales_item
class (Section 15.8.1 , p. 599 ). This version of the class defines the same interface, but we can
eliminate the copy-control members by replacing the pointer to Item_base by a
Handle<Item_base>:

     class Sales_item {
     public:
         // default constructor: unbound handle
         Sales_item(): h() { }

         // copy item and attach handle to the copy
         Sales_item(const Item_base &item): h(item.clone()) { }
         // no copy control members: synthesized versions work

         // member access operators: forward their work to the Handle class
         const Item_base& operator*() const { return *h; }
         const Item_base* operator->() const
                                { return h.operator->(); }
     private:
         Handle<Item_base> h; // use-counted handle
     };

Although the interface to the class is unchanged, its implementation differs considerably from
the original:

Both classes define a default constructor and a constructor that takes a const reference to
an Item_base object.

Both define overloaded * and -> operators as const members.

The Handle -based version of Sales_item has a single data member. That data member is a
Handle attached to a copy of the Item_base object given to the constructor. Because this version
of Sales_item has no pointer members, there is no need for copy-control members. This version
of Sales_item can safely use the synthesized copy-control members. The work of managing the
use-count and associated Item_base object is done inside Handle .

Because the interface is unchanged, there is no need to change code that uses Sales_item . For
example, the program we wrote in Section 15.8.3 (p. 603 ) can be used without change:

     double Basket::total() const
     {
         double sum = 0.0; // holds the running total

         /* find each set of items with the same isbn and calculate
          * the net price for that quantity of items

          * iter refers to first copy of each book in the set

          * upper_boundrefers to next element with a different isbn
          */
         for (const_iter iter = items.begin();
                         iter != items.end();
                         iter = items.upper_bound(*iter))
         {

             // we know there's at least one element with this key in the Basket



             // virtual call to net_priceapplies appropriate discounts, if any
             sum += (*iter)->net_price(items.count(*iter));
         }
         return sum;
     }

It's worthwhile to look in detail at the statement that calls net_price:

     sum += (*iter)->net_price(items.count(*iter));

This statement uses operator -> to fetch and run the net_price function. What's important to
understand is how this operator works:

(*iter) returns h , our use-counted handle member.

(*iter)-> therefore uses the overloaded arrow operator of the handle class

The compiler evaluates h.operator->() , which in turn yields the pointer to Item_base that
the Handle holds.

The compiler dereferences that Item_base pointer and calls the net_price member for the
object to which the pointer points.

Exercises Section 16.5.2

Exercise
16.49:

Implement the version of the Sales_item handle presented
here that uses the generic Handle class to manage the pointer
to Item_base .

Exercise
16.50:

Rerun the function to total a sale. List all changes you had to
make to get your code to work.

Exercise
16.51:

Rewrite the Query class from Section 15.9.4 (p. 613 ) to use
the generic Handle class. Note that you will need to make the
Handle a friend of the Query_base class to let it access the
Query_base destructor. List and explain all other changes you
made to get the programs to work.

 



 

16.6. Template Specializations

The rest of this chapter covers a somewhat advanced topic. It can
be safely skipped on first reading.

It is not always possible to write a single template that is best suited for every possible template
argument with which the template might be instantiated. In some cases, the general template
definition is simply wrong for a type. The general definition might not compile or might do the
wrong thing. At other times, we may be able to take advantage of some specific knowledge
about a type to write a more efficient function than the one that is instantiated from the
template.

Our compare function and our Queue class are both good examples of the problem: Neither works
correctly when used with C-style character strings. Let's look again at our compare function
template:

     template <typename T>
     int compare(const T &v1, const T &v2)
     {
        if (v1 < v2) return -1;
        if (v2 < v1) return 1;
        return 0;
     }

If we call this template definition on two const char* arguments, the function compares the
pointer values. It will tell us the relative positions in memory of these two pointers but says
nothing about the contents of the arrays to which the pointers point.

To get be able to use compare with character strings, we would have to provide a specialized
definition that knows how to compare C-style strings. The fact that these versions are
specialized is transparent to users of these templates. Calls to a specialized function or use of a
specialized class are indistinguishable from uses of a version instantiated from the general
template.

16.6.1. Specializing a Function Template

A template spacialization is a separate definition in which the actual type(s) or value(s) of



one or more template parameter(s) is (are) specified. The form of a specialization is:

The keyword template followed by an empty bracket pair (<> ),

followed by the template name and a bracket pair specifying the template parameters(s)
that this specialization defines,

the function parameter list,

and the function body.

The following program defines a specialization of compare when the template parameter type is
bound to const char* :

     // special version of compare to handle C-style character strings
     template <>
     int compare<const char*>(const char* const &v1,
                              const char* const &v2)
     {
         return strcmp(v1, v2);
     }

The declaration for the specialization must match that of the corresponding template. In this
case, the template has one type parameter and two function parameters. The function
parameters are const references to the type parameter. Here we are fixing the type parameter
to const char* ; our function parameters, therefore, are const references to a const char* .

Now when we call compare , passing it two character pointers, the compiler will call our
specialized version. It will call the generic version for any other argument types (including plain
char* ):

     const char *cp1 = "world", *cp2 = "hi";
     int i1, i2;
     compare(cp1, cp2); // calls the specialization
     compare(i1, i2);   // calls the generic version instantiated with int

Declaring a Template Specialization

As with any function, we can declare a function template specialization without defining it. A
template specialization declaration looks like the definition but omits the function body:

     // declaration of function template explicit specialization
     template<>
     int compare<const char*>(const char* const&,
                              const char* const&);

This declaration consists of an empty template parameter list (template<> ) followed by the
return type, the function name (optionally) followed by explicit template argument(s) specified
inside a pair of angle brackets, and the function parameter list. A template specialization must



always include the empty template parameter specifier, template<> , and it must include the
function parameter list. If the template arguments can be inferred from the function parameter
list, there is no need to explicitly specify the template arguments:

     // error: invalid specialization declarations
     // missing template<>
     int compare<const char*>(const char* const&,
                              const char* const&);

     // error: function parameter list missing
     template<> int compare<const char*>;

     // ok: explicit template argument const char* deduced from parameter types
     template<> int compare(const char* const&,
                            const char* const&);

Function Overloading versus Template Specializations

Omitting the empty template parameter list, template<> , on a specialization may have
surprising effects. If the specialization syntax is missing, then the effect is to declare an
overloaded nontemplate version of the function:

     // generic template definition
     template <class T>
     int compare(const T& t1, const T& t2) { /* ... */ }

     // OK: ordinary function declaration
     int compare(const char* const&, const char* const&);

The definition of compare does not define a template specialization. Instead, it declares an
ordinary function with a return type and a parameter list that could match those of a template
instantiation.

We'll look at the interaction of overloading and templates in more detail in the next section. For
now, what's important to know is that when we define a nontemplate function, normal
conversions are applied to the arguments. When we specialize a template, conversions are not
applied to the argument types. In a call to a specialized version of a template, the argument
type(s) in the call must match the specialized version function parameter type(s) exactly. If
they don't, then the compiler will instantiate an instantiation for the argument(s) from the
template definition.

Duplicate Definitions Cannot Always Be Detected

If a program consists of more than one file, the declaration for a template specialization must be
visible in every file in which the specialization is used. A function template cannot be
instantiated from the generic template definition in some files and be specialized for the same
set of template arguments in other files.



As with other function declarations, declarations for
template specializations should be included in a header
file. That header should then be included in every source
file that uses the specialization.

Ordinary Scope Rules Apply to Specializations

Before we can declare or define a specialization, a declaration for the template that it specializes
must be in scope. Similarly, a declaration for the specialization must be in scope before that
version of the template is called:

     // define the general compare template
     template <class T>
     int compare(const T& t1, const T& t2) { /* ... */ }

     int main() {
         // uses the generic template definition
         int i = compare("hello", "world");
         // ...
     }
     // invalid program: explicit specialization after call
     template<>
     int compare<const char*>(const char* const& s1,
                              const char* const& s2)
     { /* ... */ }

This program is in error because a call that would match the specialization is made before the
specialization is declared. When the compiler sees a call, it must know to expect a specialization
for this version. Otherwise, the compiler is allowed to instantiate the function from the template
definition.

A program cannot have both an explicit specialization and an
instantiation for the same template with the same set of template
arguments.

It is an error for a specialization to appear after a call to that instance of the template has been
seen.



Exercises Section 16.6.1

Exercise
16.52:

Define a function template count to count the number of
occurrences of some value in a vector .

Exercise
16.53:

Write a program to call the count function defined in the
previous exercise passing it first a vector of double s, then a
vector of int s, and finally a vector of char s.

Exercise
16.54:

Introduce a specialized template instance of the count function
to handle string s. Rerun the program you wrote to call the
function template instantiations.

16.6.2. Specializing a Class Template

Our Queue class has a problem similar to the one in compare when used with C-style strings. In
this case, the problem is in the push function. That function copies the value it's given to create
a new element in the Queue . By default, copying a C-style character string copies only the
pointer, not the characters. Copying a pointer in this case has all the problems that shared
pointers have in other contexts. The most serious is that if the pointer points to dynamic
memory, it's possible for the user to delete the array to which the pointer points.

Defining a Class Specialization

One way to provide the right behavior for Queue 's of C-style strings is to define a specialized
version of the entire class for const char* :

     /* definition of specialization for const char*

      * this class forwards its work to Queue<string>;

      * the push function translates the const char* parameter to a string

      * the front functions return a string rather than a const char*
      */
     template<> class Queue<const char*> {
     public:
         // no copy control: Synthesized versions work for this class
         // similarly, no need for explicit default constructor either
         void push(const char*);
         void pop()                  {real_queue.pop();}
         bool empty() const          {return real_queue.empty();}
         // Note: return type does not match template parameter type
         std::string front()         {return real_queue.front();}
         const std::string &front() const
                                     {return real_queue.front();}
     private:

         Queue<std::string> real_queue; // forward calls to real_queue
     };



This implementation gives Queue a single data element: a Queue of string s. The various
members delegate their work to this memberfor example, pop is implemented by calling pop on
real_queue .

This version of the class does not define the copy-control members. Its only data element has a
class type that does the right thing when copied, assigned, or destroyed; we can use the
synthesized copy-control members.

Our Queue class implements mostly, but not entirely, the same interface as the template version
of Queue . The difference is that we return a string rather than a char* from the front
members. We do so to avoid having to manage the character array that would be required if we
wanted to return a pointer.

It is worth noting that a specialization may define completely different members than the
template itself. If a specialization fails to define a member from the template, that member may
not be used on objects of the specilization type. The member definitions of the class template
are not used to create the definitions for the members of an explicit specialization.

A class template specialization ought to define the same
interface as the template it specializes. Doing otherwise
will surprise users when they attempt to use a member
that is not defined.

Class Specialization Definition

When a member is defined outside the class specialization, it is not
preceded by the tokens template<> .

Our class defines only one member outside the class:

     void Queue<const char*>::push(const char* val)
     {
         return real_queue.push(val);
     }

Although it does little obvious work, this function implicitly copies the character array to which
val points. The copy is made in the call to real_queue.push , which creates a new string from



the const char* argument. That argument uses the string constructor that takes a const char*
. The string constructor copies the characters from the array pointed to by val into an
unnamed string that will be stored in the element we push onto real_queue .

Exercises Section 16.6.2

Exercise
16.55:

The comments on the specialized version of Queue for const
char* note that there is no need to define the default
constructor or copy-control members. Explain why the
synthesized members suffice for this version of Queue .

Exercise
16.56:

We explained the generic behavior of Queue if it is not
specialized for const char* . Using the generic Queue template,
explain what happens in the following code:

     Queue<const char*> q1;
     q1.push("hi"); q1.push("bye"); q1.push("world");

     Queue<const char*> q2(q1); // q2 is a copy of q1

     Queue<const char*> q3;     // empty Queue
     q1 = q3;

In particular, say what the values of q1 and q2 are after the
initialization of q2 and after the assignment to q3 .

Exercise
16.57:

Our specialized Queue returns string s from the front function
rather than const char* . Why do you suppose we did so? How
might you implement the Queue to return a const char* ?
Discuss the pros and cons of each approach.

16.6.3. Specializing Members but Not the Class

If we look a bit more deeply at our class, we can see that we can simplify our code: Rather than
specializing the whole template, we can specialize just the push and pop members. We'll
specialize push to copy the character array and pop to free the memory we used for that copy:

     template <>
     void Queue<const char*>::push(const char *const &val)
     {

          // allocate a new character array and copy characters from val
          char* new_item = new char[strlen(val) + 1];
          strncpy(new_item, val, strlen(val) + 1);
          // store pointer to newly allocated and initialized element
          QueueItem<const char*> *pt =
              new QueueItem<const char*>(new_item);



          // put item onto existing queue
          if (empty())
              head = tail = pt; // queue has only one element
          else {
              tail->next = pt;  // add new element to end of queue
              tail = pt;
          }
     }
     template <>
     void Queue<const char*>::pop()
     {

          // remember head so we can delete it
          QueueItem<const char*> *p = head;

          delete head->item; // delete the array allocated in push

          head = head->next; // head now points to next element

          delete p;          // delete old head element
     }

Now, the class type Queue<const char*> will be instantiated from the generic class template
definition, with the exception of the push and pop functions. When we call push or pop on a
Queue<const char*> , then the specialized version will be called. When we use any other
member, the generic one will be instantiated for const char* from the class template.

Specialization Declarations

Member specializations are declared just as any other function template specialization. They
must start with an empty template parameter list:

     // push and pop specialized for const char*
     template <>
     void Queue<const char*>::push(const char* const &);
     template <> void Queue<const char*>::pop();

These declarations should be placed in the Queue header file.



Exercises Section 16.6.3

Exercise
16.58:

The specialization of Queue presented in the previous
subsection and the specialization in this subsection of push and
pop apply only to Queues of const char* . Implement these two
different ways of specializing Queue that could be used with
plain char* .

Exercise
16.59:

If we go the route of specializing only the push function, what
value is returned by front for a Queue of C-style character
strings?

Exercise
16.60:

Discuss the pros and cons of the two designs: defining a
specialized version of the class for const char* versus
specializing only the push and pop functions. In particular,
compare and contrast the behavior of front and the possibility
of errors in user code corrupting the elements in the Queue .

16.6.4. Class-Template Partial Specializations

If a class template has more than one template parameter, we might want to specialize some
but not all of the template parameters. We can do so using a class template partial
specialization:

     template <class T1, class T2>
     class some_template {
         // ...
     };

     // partial specialization: fixes T2 as int and allows T1 to vary
     template <class T1>
     class some_template<T1, int> {
         // ...
     };

A class template partial specialization is itself a template. The definition of a partial
specialization looks like a template definition. Such a definition begins with the keyword
template followed by a template parameter list enclosed by angle brackets (<> ). The parameter
list of a partial specialization is a subset of the parameter list of the corresponding class
template definition. The partial specialization for some_template has only one template type
parameter named T1 . The second template argument for T2 is known to be int . The template
parameter list for the partial specialization only lists the parameters for which the template
arguments are still unknown.

Using a Class-Template Partial Specialization

The partial specialization has the same name as the class template to which it



correspondsnamely, some_template . The name of the class template must be followed by a
template argument list. In the previous example, the template argument list is <T1,int> .
Because the argument value for the first template parameter is unknown, the argument list uses
the name of the template parameter T1 as a placeholder. The other argument is the type int ,
for which the template is partially specialized.

As with any other class template, a partial specialization is instantiated implicitly when used in a
program:

     some_template<int, string> foo; // uses template
     some_template<string, int> bar; // uses partial specialization

Notice that the type of the second variable, some_template parameterized by string and int ,
could be instantiated from the generic class template definition as well as from the partial
specialization. Why is it that the partial specialization is chosen to instantiate the template?
When a parital specialization is declared, the compiler chooses the template definition that is the
most specialized for the instantiation. When no partial specialization can be used, the generic
template definition is used. The instantiated type of foo does not match the partial specialization
provided. Thus, the type of foo must be instantiated from the general class template, binding
int to T1 and string to T2 . The partial specialization is only used to instantiate some_template
types with a second type of int .

The definition of a partial specialization is completely disjointed from the definition of the
generic template. The partial specialization may have a completely different set of members
from the generic class template. The generic definitions for the members of a class template are
never used to instantiate the members of the class template partial specialization.

 



 

16.7. Overloading and Function Templates

A function template can be overloaded: We can define multiple function templates with the
same name but differing numbers or types of parameters. We also can define ordinary
nontemplate functions with the same name as a function template.

Of course, declaring a set of overloaded function templates does not guarantee that they can be
called successfully. Overloaded function templates may lead to ambiguities.

Function Matching and Function Templates

The steps used to resolve a call to an overloaded function in which there are both ordinary
functions and function templates are as follows:

1. Build the set of candidate functions for this function name, including:

Any ordinary function with the same name as the called function.a.

Any function-template instantiation for which template argument deduction finds
template arguments that match the function arguments used in the call.

b.

2. Determine which, if any, of the ordinary functions are viable (Section 7.8.2 , p. 269 ). Each
template instance in the candidate set is viable, because template argument deduction
ensures that the function could be called.

3. Rank the viable functions by the kinds of conversions, if any, required to make the call,
remembering that the conversions allowed to call an instance of a template function are
limited.

If only one function is selected, call this function.a.

If the call is ambiguous, remove any function template instances from the set of
viable functions.

b.

4. Rerank the viable functions excluding the function template instantiations.

If only one function is selected, call this function.

Otherwise, the call is ambiguous.

An Example of Function-Template Matching

Consider the following set of overloaded ordinary and function templates:

     // compares two objects
     template <typename T> int compare(const T&, const T&);



     // compares elements in two sequences
     template <class U, class V> int compare(U, U, V);
     // plain functions to handle C-style character strings
     int compare(const char*, const char*);

The overload set contains three functions: The first template handles simple values, the second
template compares elements from two sequences, and the third is an ordinary function to
handle C-style character strings.

Resolving Calls to Overloaded Function Templates

We could call these functions on a variety of types:

     // calls compare(const T&, const T&) with T bound to int
     compare(1, 0);

     // calls compare(U, U, V), with U and V bound to vector<int>::iterator
     vector<int> ivec1(10), ivec2(20);
     compare(ivec1.begin(), ivec1.end(), ivec2.begin());
     int ia1[] = {0,1,2,3,4,5,6,7,8,9};

     // calls compare(U, U, V) with U bound to int*

     // and V bound to vector<int>::iterator
     compare(ia1, ia1 + 10, ivec1.begin());

     // calls the ordinary function taking const char* parameters
     const char const_arr1[] = "world", const_arr2[] = "hi";
     compare(const_arr1, const_arr2);

     // calls the ordinary function taking const char* parameters
     char ch_arr1[] = "world", ch_arr2[] = "hi";
     compare(ch_arr1, ch_arr2);

We'll look at each call in turn:

compare(1, 0) : Both arguments have type int . The candidate functions are the first template

instantiated with T bound to int and the ordinary function named compare . The ordinary
function, however, isn't viablewe cannot pass an int to a parameter expecting a char* . The
instantiated function using int is an exact match for the call, so it is selected.

     compare(ivec1.begin(), ivec1.end(), ivec2.begin())

compare(ia1, ia1 + 10, ivec1.begin()): In these calls, the only viable function is the

instantiation of the template that has three parameters. Neither the template with two
arguments nor the ordinary nonoverloaded function can match these calls.

compare(const_arr1, const_arr2): This call, as expected, calls the ordinary function. Both that

function and the first template with T bound to const char* are viable. Both are also exact
matches. By rule 3b, we know that the ordinary function is preferred. We eliminate the instance
of the template from consideration, leaving just the ordinary function as viable.

compare(ch_arr1, ch_arr2): This call also is bound to the ordinary function. The candidates are

the version of the function template with T bound to char* and the ordinary function that takes



const char* arguments. Both functions require a trivial conversion to convert the arrays,
ch_arr1 and ch_arr2 , to pointers. Because both functions are equal matches, the plain function
is preferred to the template version.

Conversions and Overloaded Function Templates

It can be difficult to design a set of overloaded functions in which some are templates and
others are ordinary functions. Doing so requires deep understanding of the relationships among
types and in particular of the implicit conversions that may or may not take place when
templates are involved.

Let's look at two examples of why it is hard to design overloaded functions that work properly
when there are both template and nontemplate versions in the overload set. First, consider a
call to compare using pointers instead of the arrays themselves:

     char *p1 = ch_arr1, *p2 = ch_arr2;
     compare(p1, p2);

This call matches the template version! Ordinarily, we expect to get the same function whether
we pass an array or a pointer to an element to that array. In this case, however, the function
template is an exact match for the call, binding char* to T . The plain version still requires a
conversion from char* to const char* , so the function template is preferred.

Another change that has surprising results is what happens if the template version of compare
has a parameter of type T instead of a const reference to T :

     template <typename T> int compare2(T, T);

In this case, if we have an array of plain char ; then, whether we pass the array itself or a
pointer, the template version is called. The only way to call the nontemplate version is when the
arguments are arrays of const char or pointers to const char* :

     // calls compare(T, T) with T bound to char*
     compare(ch_arr1, ch_arr2);

     // calls compare(T, T) with T bound to char*
     compare(p1, p2);

     // calls the ordinary function taking const char*

     parameters compare(const_arr1, const_arr2);
     const char *cp1 = const_arr1, *cp2 = const_arr2;

     // calls the ordinary function taking const char* parameters
     compare(cp1, cp2);

In these cases, the plain function and the function template are exact matches. As always, when
the match is equally good, the nonoverloaded version is preferred.



It is hard to design overloaded function sets involving both
function templates and nontemplate functions. Because of
the likelihood of surprise to users of the functions, it is
almost always better to define a function-template
specialization (Section 16.6 , p. 671 ) than to use a
nontemplate version.

Exercises Section 16.7

Exercise
16.61:

Implement the three versions of compare . Include a print
statement in each function that indicates which function is
being called. Use these functions to check your answers to the
remaining questions.

Exercise
16.62:

Given the compare functions and variables defined in this
section, explain which function is called, and why, for each of
these calls:

     compare(ch_arr1, const_arr1);
     compare(ch_arr2, const_arr2);
     compare(0, 0);

Exercise
16.63:

For each of the following calls, list the candidate and viable
functions. Indicate whether the call is valid and if so which
function is called.

     template <class T> T calc(T, T);
     double calc(double, double);
     template <> char calc<char>(char, char);
     int ival; double dval; float fd;
     calc(0, ival);         calc(0.25, dval);
     calc(0, fd);           calc (0, 'J');
     }

 



 

Chapter Summary

Templates are a distinctive feature of C++ and are fundamental to the library. A template is a
type-independent blueprint that the compiler uses to generate a variety of type-specific
instances. We write the template once, and the compiler instantiates the template for the type
or types with which we use the template. We can write both function templates and class
templates.

Function templates are the base on which the algorithms library is built. Class templates are the
base on which the library container and iterator types are built.

Compiling templates requires assistance from the programming environment. The language
defines two broad strategies for instantiating templates: the inclusion model and the separate
compilation model. These models have impacts on how we build our systems in so far as they
dictate whether template definitions go in header files or source files. At this time, all compilers
implement the inclusion model, while only some implement the separate compilation model.
Your compiler's user's guide should specify how your system manages templates.

An explicit template argument lets us fix the type or value of one or more template parameters.
Explicit arguments are useful in letting us design functions in which a template type need not be
inferred from a corresponding argument and lets us allow conversions on the arguments.

A template specialization is a specialized definition that defines a distinct version of the template
that binds one or more parameters to specified types or values. Specializations are useful when
there are types for which the default template definition does not apply.

 



 

Defined Terms

class template

A class definition that can be used to define a set of type-specific classes. Class templates
are defined using the template keyword followed by a comma-separated list of one or
more parameters enclosed in < and > brackets.

export keyword

Keyword used to indicate that the compiler must remember the location of the associated
template definition. Used by compilers that support the separate-compilation model of
template instantiation. The export keyword ordinarily goes with a function definition; a
class is normally declared as export ed in the associated class implementation file. A
template may be defined with the export keyword only once in a program.

function template

A definition for a function that can be used for a variety of types. A function template is
defined using the template keyword followed by a comma-separated list of template one
or more parameters enclosed in < and > brackets.

generic handle class

A class that holds and manages a pointer to another class. A generic handle takes a single
type parameter and allocates and manages a pointer to an object of that type. The handle
class defines the necessary copy control members. It also defines the dereference (* ) and
arrow (-> ) member access operators to provide access to the underlying object. A generic
handle requires no knowledge of the type it manages.

inclusion compilation model

Mechanism used by compilers to find template definitions that relies on template
definitions being included in each file that uses the template. Typically, template
definitions are stored in a header, and that header must be included in any file that uses
the template.

instantiation

Compiler process whereby the actual template argument(s) are used to generate a
specific instance of the template in which the parameter(s) are replaced by the
corresponding argument(s). Functions are instantiated automatically based on the
arguments used in a call. Template arguments must be provided explicitly whenever a
class template is used.



member template

A member of a class or class template that is a function template. A member template
may not be virtual.

nontype parameter

A template parameter that represents a value. When a function template is instantiated,
each nontype parameter is bound to a constant expression as indicated by the arguments
used in the call. When a class template is instantiated, each nontype parameter is bound
to a constant expression as indicated by the arguments used in the class instantiation.

partial specialization

A version of a class template in which some some but not all of the template parameters
are specified.

separate compilation model

Mechanism used by compilers to find template definitions that allows template definitions
and declarations to be stored in independent files. Template declarations are placed in a
header, and the definition appears only once in the program, typically in a source file. The
compiler implements whatever programming environment support is necessary to find
that source file and instantiate the versions of the template used by the program.

template argument

Type or value specified when using a template type, such as when defining an object or
naming a type in a cast.

template argument deduction

Process by which the compiler determines which function template to instantiate. The
compiler examines the types of the arguments that were specified using a template
parameter. It automatically instantiates a version of the function with those types or
values bound to the template parameters.

template parameter

A name specifed in the template parameter list that may be used inside the definition of a
template. Template parameters can be type or non-type parameters. To use a class
template, actual arguments must be specified for each template parameter. The compiler
uses those types or values to instantiate a version of the class in which uses of the
parameter(s) are replaced by the actual argument(s). When a function template is used,
the compiler deduces the template arguments from the arguments in the call and



instantiates a specific function using the deduced template arguments.

template parameter list

List of type or nontype parameters (separated by commas) to be used in the definition or
declaration of a template.

template specialization

Redefinition of a class template or a member of a class template in which the template
parameters are specified. A template specialization may not appear until after the class
that it specializes has been defined. A template specialization must appear before any use
of the template for the specialized arguments is used.

type parameter

Name used in a template parameter list to represent a type. When the template is
instantiated, each type parameter is bound to an actual type. In a function template, the
types are inferred from the argument types or are explicitly specified in the call. Type
arguments must be specified for a class template when the class is used.

 



 

Part V: Advanced Topics
Part V covers additional features that, although useful in the right context, are not needed
by every C++ programmer. These features divide into two clusters: those that are useful
for large-scale problems and those that are applicable to specialized problems rather than
general ones.

Chapter 17 covers exception handling, namespaces, and multiple inheritance. These
features tend to be most useful in the context of large-scale problems.

Even programs simple enough to be written by a single author can benefit from exception
handling, which is why we introduced the basics of exception handling in Chapter 6 .
However, the need to deal with unexpected run-time errors tends to be more important
and harder to manage in problems that require large programming teams. In Chapter 17
we review some additional useful exception-handling facilities. We also look in more detail
at how exceptions are handled and the implications of exceptions on resource allocation
and destruction. We also show how we can define and use our own exception classes.

Large-scale applications often use code from multiple independent vendors. Combining
independently developed libraries would be difficult (if not impossible) if vendors had to
put the names they define into a single namespace. Independently developed libraries
would almost inevitably use names in common with one another; a name defined in one
library would conflict with the use of that name in another library. To avoid name
collisions, we can define names inside a namespace .

Right from the beginning of this book we have used namespaces. Whenever we use a
name from the standard library, we are using a name defined in the namespace named std
. Chapter 17 shows how we can define our own namespaces.

Chapter 17 closes by looking at an important but infrequently used language feature:
multiple inheritance. Multiple inheritance is most useful for fairly complicated inheritance
hierarchies.

Chapter 18 covers several specialized tools and techniques. These tools and techniques are
applicable to particular kinds of problems.

The first part of Chapter 18 shows how classes can define their own optimized memory
management. We next look at C++ support for run-time type identification (RTTI). These
facilities let us determine the actual type of an object at run-time.

Next, we look at how we can define and use pointers to class members. Pointers to class
members differ from pointers to ordinary data or functions. Ordinary pointers only vary
based on the type of the object or function. Pointers to members must also reflect the
class to which the member belongs.

We then look at three additional aggregate types: unions, nested classes, and local
classes.

The chapter closes by looking briefly at a collection of features that are inherently
nonportable: the volatile qualifier, bit-fields, and linkage directives.
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C++ is used on problems that have a wide range in complexity. It is used on problems small
enough to be solved by a single programmer after a few hours' work to problems requiring
enormous systems consisting of tens of millions of lines of code developed and modified over
many years. The facilities we covered in the earlier parts of this book are equally useful across
this range of programming problems.

The language includes some features that are most useful on systems once problems get to be
more complex than those that an individual can manage. These featuresexception handling,
namespaces, and multiple inheritanceare the topic of this chapter.

Large-scale programming places greater demands on programming languages than do the
needs of systems that can be developed by small teams of programmers. Among the needs that
distinguish large-scale applications are:

Stricter up-time requirements and the need for more robust error detection and error
handling. Error handling often must span independently developed subsystems.

1.

The ability to structure programs that are composed of libraries developed more or less
independently.

2.

The need to deal with more complicated application concepts.3.

Three features in C++ are aimed at these needs: exception handling, namespaces, and multiple
inheritance. This chapter looks at these three facilities.

 



 

17.1. Exception Handling

Exception handling allows independently developed parts of a program to communicate about
and handle problems that arise during execution of the program. One part of the program can
detect a problem that that part of the program cannot resolve. The problem-detecting part can
pass the problem along to another part that is prepared to handle what went wrong.

Exceptions let us separate problem detection from problem
resolution. The part of the program that detects a problem need not
know how to deal with it.

In C++, exception handling relies on the problem-detecting part throwing an object to a
handler. The type and contents of that object allow the two parts to communicate about what
went wrong.

Section 6.13 (p. 215 ) introduced the basic concepts and mechanics of using exceptions in C++.
In that section, we hypothesized that a more complex bookstore application might use
exceptions to communicate about problems. For example, the Sales_item addition operator
might throw an exception if the isbn members of its operands didn't match:

[View full width]

     // throws exception if both objects do not refer to the same isbn
     Sales_item
     operator+(const Sales_item& lhs, const Sales_item& rhs)
     {
         if (!lhs.same_isbn(rhs))
             throw runtime_error("Data must refer to same ISBN");
         // ok, if we're still here the ISBNs are the same so it's okay to do the addition

         Sales_item ret(lhs);                   // copy lhs into a local object that we'll

 return
         ret += rhs;                            // add in the contents of rhs

         return ret;                            // return a copy of ret
     }

Those parts of the program that added Sales_item objects would use a TRy block in order to
catch an exception if one occured:

     // part of the application that interacts with the user
     Sales_item item1, item2, sum;
     while (cin >> item1 >> item2) {       // read two transactions
         try {
             sum = item1 + item2;         // calculate their sum

             // use sum



         } catch (const runtime_error &e) {
           cerr << e.what() << " Try again.\n"
                << endl;
         }
     }

In this section we'll expand our coverage of these basics and cover some additional exception-
handling facilities. Effective use of exception handling requires understanding what happens
when an exception is thrown, what happens when it is caught, and the meanings of the objects
used to communicate what went wrong.

17.1.1. Throwing an Exception of Class Type

An exception is raised by throwing an object. The type of that object determines which handler
will be invoked. The selected handler is the one nearest in the call chain that matches the type
of the object.

Exceptions are thrown and caught in ways that are similar to how arguments are passed to
functions. An exception can be an object of any type that can be passed to a nonreference
parameter, meaning that it must be possible to copy objects of that type.

Recall that when we pass an argument of array or function type, that argument is automatically
converted to an pointer. The same automatic conversion happens for objects that are thrown.
As a consequence, there are no exceptions of array or function types. Instead, if we throw an
array, the thrown object is converted to a pointer to the first element in the array. Similarly, if
we throw a function, the function is converted to a pointer to the function (Section 7.9 , p. 276
).

When a throw is executed, the statement(s) following the throw are not executed. Instead,
control is transferred from the tHRow to the matching catch . That catch might be local to the
same function or might be in a function that directly or indirectly called the function in which the
exception occurred. The fact that control passes from one location to another has two important
implications:

Functions along the call chain are prematurely exited. Section 17.1.2 (p. 691 ) discusses
what happens when functions are exited due to an exception.

1.

In general, the storage that is local to a block that throws an exception is not around when
the exception is handled.

2.

Because local storage is freed while handling an exception, the object that is thrown is not
stored locally. Instead, the throw expression is used to initialize a special object referred to as
the exception object . The exception object is managed by the compiler and is guaranteed to
reside in space that will be accessible to whatever catch is invoked. This object is created by a
throw , and is initialized as a copy of the expression that is thrown. The exception object is
passed to the corresponding catch and is destroyed after the exception is completely handled.



The exception object is created by copying the result of the thrown
expression; that result must be of a type that can be copied.

Exception Objects and Inheritance

In practice, many applications throw expressions whose type comes from an inheritance
hierarchy. As we'll see in Section 17.1.7 (p. 697 ), the standard exceptions (Section 6.13 , p.
215 ) are defined in an inheritance hierarchy. What's important to know at this point is how the
form of the tHRow expression interacts with types related by inheritance.

When an exception is thrown, the static, compile-time type of the
thrown object determines the type of the exception object.

Ordinarily, the fact that the object is thrown using its static type is not an issue. When we throw
an exception, we usually construct the object we are going to throw at the throw point. That
object represents what went wrong, so we know the precise exception type.

Exceptions and Pointers

The one case where it matters that a throw expression throws the static type is if we
dereference a pointer in a throw. The result of dereferencing a pointer is an object whose type
matches the type of the pointer. If the pointer points to a type from an inheritance hierarchy, it
is possible that the type of the object to which the pointer points is different from the type of
the pointer. Regardless of the object's actual type, the type of the exception object matches the
static type of the pointer. If that pointer is a base-class type pointer that points to a derived-
type object, then that object is sliced down (Section 15.3.1 , p. 577 ); only the base-class part
is thrown.

A problem more serious than slicing the object may arise if we throw the pointer itself. In
particular, it is always an error to throw a pointer to a local object for the same reasons as it is
an error to return a pointer to a local object (Section 7.3.2 , p. 249 ) from a function. When we
throw a pointer, we must be certain that the object to which the pointer points will exist when
the handler is entered.

If we throw a pointer to a local object and the handler is in another function, then the object to
which the pointer points will no longer exist when the handler is executed. Even if the handler is
in the same function, we must be sure that the object to which the pointer points exists at the
site of the catch . If the pointer points to an object in a block that is exited before the catch ,
then that local object will have been destroyed before the catch .



It is usually a bad idea to tHRow a pointer: Throwing a pointer
requires that the object to which the pointer points exist wherever
the corresponding handler resides.

Exercises Section 17.1.1

Exercise
17.1:

What is the type of the exception object in the following throw s:

     (a) range_error r("error");  (b) exception *p = &r;
         throw r;                     throw *p;

Exercise
17.2:

What would happen if the second throw were written as tHRow p ?

17.1.2. Stack Unwinding

When an exception is thrown, execution of the current function is suspended and the search
begins for a matching catch clause. The search starts by checking whether the tHRow itself is
located inside a try block. If so, the catch clauses associated with that try are examined to see
if one of them matches the thrown object. If a matching catch is found, the exception is
handled. If no catch is found, the current function is exitedits memory is freed and local objects
are destroyedand the search continues in the calling function.

If the call to the function that threw is in a try block, then the catch clauses associated with
that try are examined. If a matching catch is found, the exception is handled. If no matching
catch is found, the calling function is also exited, and the search continues in the function that
called this one.

This process, known as stack unwinding , continues up the chain of nested function calls until
a catch clause for the exception is found. As soon as a catch clause that can handle the
exception is found, that catch is entered, and execution continues within this handler. When the
catch completes, execution continues at the point immediately after the last catch clause
associated with that TRy block.

Destructors Are Called for Local Objects



During stack unwinding, the function containing the throw , and possibly other functions in the
call chain, are exited prematurely. In general, these functions will have created local objects
that ordinarily would be destroyed when the function exited. When a function is exited due to an
exception, the compiler guarantees that the local objects are properly destroyed. As each
function exits, its local storage is freed. Before releasing the memory, any local object that was
created before the exception occurred is destroyed. If the local object is of class type, the
destructor for this object is called automatically. As usual, the compiler does no work to destroy
an object of built-in type.

During stack unwinding, the memory used by local objects is freed
and destructors for local objects of class type are run.

If a block directly allocates a resource, and the exception occurs before that resource is freed,
that resource will not be freed during stack unwinding. For example, a block might dynamically
allocate memory through a call to new . If the block exits due to an exception, the compiler does
not delete the pointer. The allocated memory will not be freed.

Resources allocated by an object of class type generally will be properly freed. Destructors for
local objects are run; resources allocated by class-type objects ordinarily are freed by their
destructor. Section 17.1.8 (p. 700 ) describes a programming technique that uses classes to
manage resource allocation in the face of exceptions.

Destructors Should Never tHRow Exceptions

Destructors are often executed during stack unwinding. When destructors are executing, the
exception has been raised but not yet handled. It is unclear what should happen if a destructor
itself throws a new exception during this process. Should the new exception supersede the
earlier exception that has not yet been handled? Should the exception in the destructor be
ignored?

The answer is that while stack unwinding is in progress for an exception, a destructor that
throws another exception of its own that it does not also handle, causes the library terminate
function is called. Ordinarily, terminate calls abort , forcing an abnormal exit from the entire

program.

Because terminate ends the program, it is usually a very bad idea for a destructor to do
anything that might cause an exception. In practice, because destructors free resources, it is
unlikely that they throw exceptions. The standard library types all guarantee that their
destructors will not raise an exception.

Exceptions and Constructors

Unlike destructors, it is often the case that something done inside a constructor might throw an
exception. If an exception occurs while constructing an object, then the object might be only
partially constructed. Some of its members might have been initialized, and others might not



have been initialized before the exception occurs. Even if the object is only partially constructed,
we are guaranteed that the constructed members will be properly destroyed.

Similarly, an exception might occur when initializing the elements of an array or other container
type. Again, we are guaranteed that the constructed elements will be destroyed.

Uncaught Exceptions Terminate the Program

An exception cannot remain unhandled. An exception is an important enough event that the
program cannot continue executing normally. If no matching catch is found, then the program
calls the library terminate function.

17.1.3. Catching an Exception

The exception specifier in a catch clause looks like a parameter list that contains exactly one
parameter. The exception specifier is a type name followed by an optional parameter name.

The type of the specifier determines what kinds of exceptions the handler can catch . The type
must be a complete type: It must either be a built-in type or a programmer-defined type that
has already been defined. A forward declaration for the type is not sufficient.

An exception specifier can omit the parameter name when a catch needs to know only the type
of the exception in order to handle it. If the handler needs information beyond what type of
exception occurred, then its exception specifier will include a parameter name. The catch uses
the name to get access to the exception object.

Finding a Matching Handler

During the search for a matching catch , thecatch that is found is not necessarily the one that
matches the exception best. Instead, the catch that is selected is the first catch found that can
handle the exception. As a consequence, in a list of catch clauses, the most specialized catch
must appear first.

The rules for when an exception matches a catch exception specifier are much more restrictive
than the rules used for matching arguments with parameter types. Most conversions are not
allowedthe types of the exception and the catch specifier must match exactly with only a few
possible differences:

Conversions from nonconst to const are allowed. That is, a throw of a nonconst object can
match a catch specified to take a const reference.

Conversions from derived type to base type are allowed.

An array is converted to a pointer to the type of the array; a function is converted to the
appropriate pointer to function type.

No other conversions are allowed when looking for a matching catch . In particular, neither the
standard arithmetic conversions nor conversions defined for class types are permitted.

Exception Specifiers

When a catch is entered, the catch parameter is initialized from the exception object. As with a



function parameter, the exception-specifier type might be a reference. The exception object
itself is a copy of the object that was thrown. Whether the exception object is copied again into
the catch site depends on the exception-specifier type.

If the specifier is not a reference, then the exception object is copied into the catch parameter.
The catch operates on a local copy of the exception object. Any changes made to the catch
parameter are made to the copy, not to the exception object itself. If the specifier is a
reference, then like a reference parameter, there is no separate catch object; the catch
parameter is just another name for the exception object. Changes made to the catch parameter
are made to the exception object.

Exception Specifiers and Inheritance

Like a parameter declaration, an exception specifier for a base class can be used to catch an
exception object of a derived type. Again, like a parameter declaration, the static type of the
exception specifier determines the actions that the catch clause may perform. If the exception
object thrown is of derived-class type but is handled by a catch that takes a base-class type,
then the catch cannot use any members that are unique to the derived type.

Usually, a catch clause that handles an exception of a type
related by inheritance ought to define its parameter as a
reference.

If the catch parameter is a reference type, then the catch object accesses the exception object
directly. The static type of the catch object and the dynamic type of the exception object to
which it refers might differ. If the specifier is not a reference, then the catch object is a copy of
the exception object. If the catch object in an object of the base type and the exception object
has derived type, then the exception object is sliced down (Section 15.3.1 , p. 577 ) to its base-
class subobject.

Moreover, as we saw in Section 15.2.4 (p. 566 ), objects (as opposed to references) are not
polymorphic. When we use a virtual function on an object rather than through a reference, the
object's static and dynamic type are the same; the fact that the function is virtual makes no
difference. Dynamic binding happens only for calls through a reference or pointer, not calls on
an object.

Ordering of Catch Clauses Must Reflect Type Hierarchy

When exception types are organized in class hierarchies, users may choose the level of
granularity with which their applications will deal with an exception. For example, an application
that merely wants to do cleanup and exit might define a single try block that encloses the code
in main with a catch such as the following:

    catch(exception &e) {
        // do cleanup
        // print a message



        cerr << "Exiting: " << e.what() << endl;
        size_t status_indicator = 42;  // set and return an
        return(status_indicator);      // error indicator
    }

Other programs with more rigorous uptime requirements might need finer control over
exceptions. Such applications will clear whatever caused the exception and continue processing.

Because catch clauses are matched in the order in which they appear, programs that use
exceptions from an inheritance hierarchy must order their catch clauses so that handlers for a
derived type occurs before a catch for its base type.

Multiple catch clauses with types related by inheritance must be
ordered from most derived type to least derived.

Exercises Section 17.1.3

Exercise
17.3:

Explain why this try block is incorrect. Correct it.

          try {
              // use of the C++ standard library
          } catch(exception) {
              // ...
          } catch(const runtime_error &re) {
              // ...
          } catch(overflow_error eobj) { /* ... */ }

17.1.4. Rethrow

It is possible that a single catch cannot completely handle an exception. After some corrective
actions, a catch may decide that the exception must be handled by a function further up the
chain of function calls. A catch can pass the exception out to another catch further up the list of
function calls by rethrowing the exception. A rethrow is a throw that is not followed by a type
or an expression:

    throw;



An empty throw rethrows the exception object. An empty tHRow can appear only in a catch or in
a function called (directly or indirectly) from a catch . If an empty throw is encountered when a
handler is not active, terminate is called.

Although the rethrow does not specify its own exception, an exception object is still passed up
the chain. The exception that is thrown is the original exception object, not the catch
parameter. When a catch parameter is a base type, then we cannot know the actual type
thrown by a rethrow expression. That type depends on the dynamic type of the exception
object, not the static type of the catch parameter. For example, a rethrow from a catch with a
parameter of base type might actually tHRow an object of the derived type.

In general, a catch might change its parameter. If, after changing its parameter, the catch
rethrows the exception, then those changes will be propagated only if the exception specifier is
a reference:

    catch (my_error &eObj) {        // specifier is a reference type
        eObj.status = severeErr;    // modifies the exception object

        throw; // the status member of the exception object is severeErr
    } catch (other_error eObj) {    // specifier is a nonreference type
        eObj.status = badErr;       // modifies local copy only

        throw; // the status member of the exception rethrown is unchanged
    }

17.1.5. The Catch-All Handler

A function may want to perform some action before it exits with a thrown exception, even
though it cannot handle the exception that is thrown. Rather than provide a specific catch
clause for every possible exception, and because we can't know all the exceptions that might be
thrown, we can use a catch-all catch clause. A catch-all clause has the form (...) . For
example:

     // matches any exception that might be thrown
     catch (...) {
         // place our code here
     }

A catch-all clause matches any type of exception.

A catch(...) is often used in combination with a rethrow expression. The catch does whatever
local work can be done and then rethrows the exception:

    void manip() {
       try {
           // actions that cause an exception to be thrown
       }
       catch (...) {
           // work to partially handle the exception
           throw;



       }
    }

A catch(...) clause can be used by itself or as one of several catch clauses.

If a catch(...) is used in combination with other catch clauses, it
must be last; otherwise, any catch clause that followed it could
never be matched.

17.1.6. Function Try Blocks and Constructors

In general, exceptions can occur at any point in the program's execution. In particular, an
exception might occur in a constructor, or while processing a constructor initializer. Constructor
initializers are processed before the constructor body is entered. A catch clause inside the
constructor body cannot handle an exception that might occur while processing a constructor
initializer.

To handle an exception from a constructor initializer, we must write the constructor as a
function try block . A function try block lets us associate a group of catch clauses with the

function as a whole. As an example, we might wrap our Handle constructor from Chapter 16 in a
try block to detect a failure in new :

    template <class T> Handle<T>::Handle(T *p)
    try : ptr(p), use(new size_t(1))
    {
         // empty function body
    }  catch(const std::bad_alloc &e)
           { handle_out_of_memory(e); }



Exercises Section 17.1.5

Exercise
17.4:

Given a basic C++ program,

     int main() {
         // use of the C++ standard library
     }

modify main to catch any exception thrown by functions in the C++
standard library. The handlers should print the error message
associated with the exception before calling abort (defined in the
header cstdlib ) to terminate main .

Exercise
17.5:

Given the following exception types and catch clauses, write a
tHRow expression that creates an exception object that could be
caught by each catch clause.

    (a) class exceptionType { };
        catch(exceptionType *pet) { }
    (b) catch(...) { }
    (c) enum mathErr { overflow, underflow, zeroDivide };
        catch(mathErr &ref) { }
    (d) typedef int EXCPTYPE;
        catch(EXCPTYPE) { }

Notice that the keyword try precedes the member initialization list, and the compound
statement of the try block encompasses the constructor function body. The catch clause can
handle exceptions thrown either from within the member initialization list or from within the
constructor body.

The only way for a constructor to handle an exception from a
constructor initializer is to write the constructor as a function try
block.

17.1.7. Exception Class Hierarchies

Section 6.13 (p. 215 ) introduced the standard-library exception classes. What that section did



not cover is that these classes are related by inheritance. The inheritance hierarchy is portrayed
in Figure 17.1 on the following page.

Figure 17.1. Standard exception Class Hierarchy

The only operation the exception types define is a virtual member named what . That function
returns a const char* . It typically returns the message used when constructing the exception
object at the throw site. Because what is virtual if we catch a base-type reference, a call to the
what function will execute the version appropriate to the dynamic type of the exception object.

Exception Classes for a Bookstore Application

The standard exception classes can be used for quite a number of applications. In addition,
applications often extend the exception hierarchy by deriving additional types from exception or
one of the intermediate base classes. These newly derived classes can represent exception
types specific to the application domain.

If we were building a real bookstore application, our classes would have been much more
complex than the ones presented in this primer. One way in which they might be more
elaborate would be in their handling of exceptions. In fact, we probably would have defined our
own hierarchy of exceptions to represent application-specific problems that might arise. Our
design might include classes such as

    // hypothetical exception classes for a bookstore application
    class out_of_stock: public std::runtime_error {
    public:
        explicit out_of_stock(const std::string &s):
                           std::runtime_error(s) { }
    };
    class isbn_mismatch: public std::logic_error {



    public:
        explicit isbn_mismatch(const std::string &s):
                              std::logic_error(s) { }
        isbn_mismatch(const std::string &s,
            const std::string &lhs, const std::string &rhs):
            std::logic_error(s), left(lhs), right(rhs) { }
        const std::string left, right;
        // Section 17.1.10 (p. 706) explains the destructor and why we need one
        virtual ~isbn_mismatch() throw() { }
    };

Here we defined our application-specific exception types by deriving them from the standard
exception classes. As with any hierarchy, we can think of the exception classes as being
organized into layers. As the hierarchy becomes deeper, each layer becomes a more specific
exception. For example, the first and most general layer of the hierarchy is represented by class
exception . All we know when we catch an object of this type is that something has gone wrong.

The second layer specializes exception into two broad categories: run-time or logic errors. Our
bookstore exception classes represent an even more specialized layer. The class out_of_stock
represents something that can go wrong at run time that is particular to our application. It
would be used to signal that an order cannot be fulfilled. The isbn_mismatch exception is a more
particular form of logic_error . In principle, a program could detect that the ISBNs don't match
by calling same_isbn .

Using Programmer-Defined Exception Types

We use our own exception classes in the same way that we use one of the standard library
classes. One part of the program throws an object of one of these types, and another part
catches and handles the indicated problem. As an example, we might define the overloaded
addition operator for our Sales_item class to throw an error of type isbn_mismatch if it detected
that the ISBNs didn't match:

     // throws exception if both objects do not refer to the same isbn
     Sales_item
     operator+(const Sales_item& lhs, const Sales_item& rhs)
     {
         if (!lhs.same_isbn(rhs))
             throw isbn_mismatch("isbn mismatch",
                                 lhs.book(), rhs.book());

         Sales_item ret(lhs);  // copy lhs into a local object that we'll return

         ret += rhs;           // add in the contents of rhs

         return ret;           // return ret by value
     }

Code that uses the addition operator could then detect this error, write an appropriate error
message, and continue:

     // use hypothetical bookstore exceptions
     Sales_item item1, item2, sum;
     while (cin >> item1 >> item2) {    // read two transactions
         try {



             sum = item1 + item2;       // calculate their sum

             // use sum
         } catch (const isbn_mismatch &e) {
           cerr << e.what() << ": left isbn(" << e.left
                << ") right isbn(" << e.right << ")"
                << endl;
         }

17.1.8. Automatic Resource Deallocation

In Section 17.1.2 (p. 691 ) we saw that local objects are automatically destroyed when an
exception occurs. The fact that destructors are run has important implication for the design of
applications. It also is one (among many) reasons why we encourage the use of the standard
library classes. Consider the following function:

     void f()
     {

         vector<string> v;                   // local vector
         string s;
         while (cin >> s)

             v.push_back(s);                 // populate the vector
         string *p = new string[v.size()];   // dynamic array
         // remaining processing
         // it is possible that an exception occurs in this code
         // function cleanup is bypassed if an exception occurs
         delete [] p;

     }   // v destroyed automatically when the function exits

This function defines a local vector and dynamically allocates an array. Under normal execution,
both the array and the vector are destroyed before the function exits. The array is freed by the
last statement in the function, and the vector is automatically destroyed when the function
ends.

However, if an exception occurs inside the function, then the vector will be destroyed but the
array will not be freed. The problem is that the array is not freed automatically. An exception
that occurs after the new but before the corresponding delete leaves the array undestroyed. No
matter when an exception occurs, we are guaranteed that the vector destructor is run.

Using Classes to Manage Resource Allocation

The fact that destructors are run leads to an important programming technique that makes
programs more exception safe . By exception safe, we mean that the programs operate
correctly even if an exception occurs. In this case, the "safety" comes from ensuring that any
resouce that is allocated is properly freed if an exception occurs.

We can guarantee that resources are properly freed by defining a class to encapsulate the
acquisition and release of a resource. This technique is often referred to as "resource allocation
is initialization," often abreviated as RAII.

The resource-managing class should be designed so that the constructor acquires the resource
and the destructor frees it. When we want to allocate the resource, we define an object of that



class type. If no exception occurs, then the resource will be freed when the object that acquired
the resource goes out of scope. More importantly, if an exception occurs after the object is
created but before it goes out of scope, then the compiler ensures that the object is destroyed
as part of unwinding the scope in which the object was defined.

The following class is a prototypical example in which the constructor acquires a resource and
the destructor releases it:

    class Resource {
    public:
        Resource(parms p): r(allocate(p)) { }
        ~Resource() { release(r); }
        // also need to define copy and assignment
    private:
        resource_type *r;           // resource managed by this type
        resource_type *allocate(parms p);     // allocate this resource
        void release(resource_type*);         // free this resource
    };

The Resource class is a type that allocates and deallocates a resource. It holds data member(s)
that represent that resource. The constructor for Resource allocates the resource, and the
destructor frees it. When we use this class

    void fcn()
    {

       Resource res(args);   // allocates resource_type
       // code that might throw an exception

       // if exception occurs, destructor for res is run automatically
       // ...

    }  // res goes out of scope and is destroyed automatically

the resource is automatically freed. If the function terminates normally, then the resource is
freed when the Resource object goes out of scope. If the function is exited prematurely by an
exception, the destructor for Resource is run by the compiler as part of the exception handling
process.

Programs in which exceptions are possible and that
allocate resources should use classes to manage those
resources. As described in this section, using classes to
manage acquisition and deallocation ensures that
resources are freed if an exception occurs.



Exercises Section 17.1.8

Exercise
17.6:

Given the following function, explain what happens when the
exception occurs.

     void exercise(int *b, int *e)
     {
         vector<int> v(b, e);
         int *p = new int[v.size()];
         ifstream in("ints");
         // exception occurs here
         // ...
     }

Exercise
17.7:

There are two ways to make the previous code exception-safe.
Describe them and implement them.

17.1.9. The auto_ptr Class

The standard-library auto_ptr class is an example of the exception-safe "resource allocation is

initialization" technique described in the previous subsection. The auto_ptr class is a template
that takes a single type parameter. It provides exception safety for dynamically allocated
objects. The auto_ptr class is defined in the memory header.

auto_ptr can be used only to manage single objects returned from
new . It does not manage dynamically allocated arrays.

As we'll see, auto_ptr has unusual behavior when copied or assigned. As a result,
auto_ptrs may not be stored in the library container types.

An auto_ptr may hold only a pointer to an object and may not be used to point to a dynamically
allocated array. Using an auto_ptr to point to a dynamically allocated array results in undefined
run-time behavior.

Each auto_ptr is either unbound or it points to an object. When an auto_ptr points to an object,
it can be said to "own" that object. When the auto_ptr goes out of scope or is otherwise
destroyed, then the dynamically allocated object to which the auto_ptr points is automatically



deallocated.

Using auto_ptr for Exception-Safe Memory Allocation

If memory is acquired through a normal pointer and an exception occurs before a delete is
executed, then that memory won't be freed automatically:

     void f()
     {
        int *ip = new int(42);     // dynamically allocate a new object

        // code that throws an exception that is not caught inside f
        delete ip;                 // return the memory before exiting
     }

If an exception happens between the new and the delete , and if that exception is not caught
locally, then the delete will not be executed. The memory will never be returned.

If we use an auto_ptr instead, the memory will be freed automatically, even if the block is
exited prematurely:

     void f()
     {
        auto_ptr<int> ap(new int(42)); // allocate a new object

        // code that throws an exception that is not caught inside f
     }

              // auto_ptr freed automatically when function ends

In this case, the compiler ensures that the destructor for ap is run before the stack is unwound
past f .

Table 17.1. Class auto_ptr



auto_ptr<T> ap; Create an unbound auto_ptr named ap .

auto_ptr<T> ap(p); Create an auto_ptr named ap that owns the object
pointed to by the pointer p . This constructor is
explicit .

auto_ptr<T>
ap1(ap2);

Create an auto_ptr named ap1 that holds the pointer
originally stored in ap2 . TRansfers ownership to ap1
; ap2 becomes an unbound auto_ptr .

ap1 = ap2 Transfers ownership from ap2 to ap1 . Deletes the
object to which ap1 points and makes ap1 point to
the object to which ap2 points, making ap2 unbound.

~ap Destructor. Deletes the object to which ap points.

*ap Returns a reference to the object to which ap is
bound.

ap-> Returns the pointer that ap holds.

ap.reset(p) If the pointer p is not the same value as ap holds,
then it deletes the object to which ap points and
binds ap to p .

ap.release() Returns the pointer that ap had held and makes ap
unbound.

ap.get() Returns the pointer that ap holds.

auto_ptr Is a Template and Can Hold Pointers of Any Type

The auto_ptr class is a template taking a single type parameter. That type names the type of
the object to which the auto_ptr may be bound. Thus, we can create auto_ptrs of any type:

    auto_ptr<string> ap1(new string("Brontosaurus"));

Binding an auto_ptr to a Pointer

In the most common case, we initialize an auto_ptr to the address of an object returned by a
new expression:

    auto_ptr<int> pi(new int(1024));

This statement initializes pi to the address of the object created by the new expression. This new
expression initializes that int to the value 1,024.

The constructor that takes a pointer is an explicit (Section 12.4.4 , p. 462 ) constructor, so we
must use the direct form of initialization to create an auto_ptr:

    // error: constructor that takes a pointer is explicit and can't be used implicitly



    auto_ptr<int> pi = new int(1024);
    auto_ptr<int> pi(new int(1024)); // ok: uses direct initialization

The object created by the new expression to which pi refers is deleted automatically when pi
goes out of scope. If pi is a local object, the object to which pi refers is deleted at the end of
the block in which pi is defined. If an exception occurs, then pi also goes out of scope. The
destructor for pi will be run automatically as part of handling the exception. If pi is a global
object, the object to which pi refers is deleted at the end of the program.

Using an auto_ptr

Suppose we wish to access a string operation. With an ordinary string pointer, we'd do the
following:

    string *pstr_type = new string("Brontosaurus");
    if (pstr_type->empty())
        // oops, something wrong

The auto_ptr class defines overloaded versions of the dereference (* ) and arrow (-> ) operators
(Section 14.6 , p. 523 ). Because auto_ptr defines these operators, we can use an auto_ptr in
some ways that are similar to using a built-in pointer:

     // normal pointer operations for dereference and arrow

     *ap1 = "TRex";       // assigns a new value to the object to which ap1 points

     string s = *ap1;     // initializes s as a copy of the object to which ap1 points

     if (ap1->empty())    // runs empty on the string to which ap1 points

The primary purpose of auto_ptr is to support ordinary pointerlike behavior while ensuring that
the object to which an auto_ptr object refers is automatically deleted. As we'll see, the fact that
objects are automatically deleted leads to significant differences between auto_ptrs and
ordinary pointers with respect to how we copy and access their address value.

Copy and Assignment on auto_ptr Are Destructive Operations

There is a crucially important difference between how auto_ptr and
built-in pointers treat copy and assignment. When we copy an
auto_ptr or assign its value to another auto_ptr , ownership of the
underlying object is transferred from the original to the copy. The
original auto_ptr is reset to an unbound state.



Copying (or assigning) ordinary pointers copies (assigns) the address. After the copy
(assignment), both pointers point to the same object. After copying (or assigning) auto_ptrs ,
the original points to no object and the new auto_ptr (left-hand auto_ptr) owns the underlying
object:

     auto_ptr<string> ap1(new string("Stegosaurus"));

     // after the copy ap1 is unbound

     auto_ptr<string> ap2(ap1);  // ownership transferred from ap1 to ap2

When we copy or assign an auto_ptr , the right-hand auto_ptr relinquishes all responsibility for
the underlying object and is reset to be an unbound auto_ptr . In our example, it is ap2 that
deletes the string object, and not ap1 . After the copy, ap1 no longer refers to any object.

Unlike other copy or assignment operations, auto_ptr copy and assignment change the right-
hand operand. As a result, both the left- and right-hand operands to assignment must be
modifiable lvalues.

Assignment Deletes the Object Pointed To by the Left Operand

In addition to transferring ownership from the right-hand to the left-hand operand, assignment
also deletes the object to which the left-hand operand originally referredprovided that the two
objects are different. As usual, self-assignment has no effect.

     auto_ptr<string> ap3(new string("Pterodactyl"));

     // object pointed to by ap3 is deleted and ownership transferred from ap2 to ap3;

     ap3 = ap2;  // after the assignment, ap2 is unbound

After the assignment of ap2 to ap3 ,

the object to which ap3 had pointed is deleted;

ap3 is set to point to the object to which ap2 pointed; and

ap2 is an unbound auto_ptr .

Because copy and assignment are destructive operations, auto_ptrs
cannot be stored in the standard containers. The library container
classes require that two objects be equal after a copy or
assignment. This requirement is not met by auto_ptr . If we assign
ap2 to ap1 , then after the assignment ap1 != ap2 . Similarly for
copy.

The Default auto_ptr Constructor



If no initializer is given, the auto_ptr is unbound ; it doesn'trefertoanobject:

     auto_ptr<int> p_auto;  // p_autodoesn't refer to any object

By default, the internal pointer value of an auto_ptr is set to 0. Dereferencing an unbound
auto_ptr has the same effect as dereferencing an unbound pointerthe program is in error and
what happens is undefined:

    *p_auto = 1024;  // error: dereference auto_ptr that doesn't point to an object

Testing an auto_ptr

To check whether a pointer is unbound, we can test the pointer directly in a condition, which has
the effect of determining whether the pointer is 0. In contrast, we cannot test an auto_ptr
directly.

    // error: cannot use an auto_ptr as a condition
    if (p_auto)
        *p_auto = 1024;

The auto_ptr type does not define a conversion to a type that can be used as a condition.
Instead, to test the auto_ptr , we must use its get member, which returns the underlying
pointer contained in the auto_ptr:

    // revised test to guarantee p_auto refers to an object
    if (p_auto.get())
        *p_auto = 1024;

To determine whether the auto_ptr object refers to an object, we can compare the return from
get with 0.

get should be used only to interrogate an auto_ptr or to use the
returned pointer value. get should not be used as an argument to
create another auto_ptr .



Using get member to initialize another auto_ptr violates the class design principle that only one
auto_ptr holds a given pointer at any one time. If two auto_ptrs hold the same pointer, then
the pointer will be delete d twice.

The reset Operation

Another difference between auto_ptr and a built-in pointer is that we cannot assign an address
(or other pointer) directly to an auto_ptr:

     p_auto = new int(1024); // error: cannot assign a pointer to an auto_ptr

Instead, we must call reset to change the pointer:

     // revised test to guarantee p_auto refers to an object
     if (p_auto.get())
         *p_auto = 1024;
     else

         // reset p_auto to a new object
         p_auto.reset(new int(1024));

To unset the auto_ptr object, we could pass 0 to reset .

Calling reset on an auto_ptr deletes the object (if any) to which the
auto_ptr refers before binding the auto_ptr to another object.
However, just as self-assignment has no effect, if we call reset on
the same pointer that the auto_ptr already holds, then there is no
effect; the object is not deleted.

17.1.10. Exception Specifications

When looking at an ordinary function declaration, it is not possible to determine what exceptions
the function might throw. However, it can be useful to know whether and which exceptions a
function might throw in order to write appropriate catch clauses. An exception specification
specifies that if the function throws an exception, the exception it throws will be one of the
exceptions included in the specification, or it will be a type derived from one of the listed
exceptions.



Caution: Auto_ptr Pitfalls

The auto_ptr class template provides a measure of safety and convenience
for handling dynamically allocated memory. To use auto_ptr correctly, we

must adhere to the restrictions that the class imposes:

Do not use an auto_ptr to hold a pointer to a statically allocated object.
Otherwise, when the auto_ptr itself is destroyed, it will attempt to

delete a pointer to a nondynamically allocated object, resulting in
undefined behavior.

1.

Never use two auto_ptrs to refer to the same object. One obvious way
to make this mistake is to use the same pointer to initialize or to reset
two different auto_ptr objects. A more subtle way to make this mistake
would be to use the result from get on one auto_ptr to initialize or reset

another.

2.

Do not use an auto_ptr to hold a pointer to a dynamically allocated
array. When the auto_ptr is destroyed, it frees only a single objectit
uses the plain delete operator, not the array delete [] operator.

3.

Do not store an auto_ptr in a container. Containers require that the

types they hold define copy and assignment to behave similarly to how
those operations behave on the built-in types: After the copy (or
assignment), the two objects must have the same value. auto_ptr does

not meet this requirement.

4.

Exercises Section 17.1.9

Exercise
17.8:

Which of the following auto_ptr declarations are illegal or likely to result
in subsequent program error? Explain what the problem is with each
one.

     int ix = 1024, *pi = &ix, *pi2 = new int(2048);
     typedef auto_ptr<int> IntP;
     (a) IntP p0(ix);               (b) IntP p1(pi);
     (c) IntP p2(pi2);              (d) IntP p3(&ix);
     (e) IntP p4(new int(2048));    (f) IntP p5(p2.get());

Exercise
17.9:

Assuming ps is a pointer to string , what is the difference, if any,
between the following two invocations of assign (Section 9.6.2 , p. 339
)? Which do you think is preferable? Why?

     (a) ps.get()->assign("Danny");  (b) ps->assign("Danny");



Defining an Exception Specification

An exception specification follows the function parameter list. An exception specification is the
keyword throw followed by a (possibly empty) list of exception types enclosed in parentheses:

     void recoup(int) throw(runtime_error);

This declaration says that recoup is a function taking an int , and returningvoid . If recoup
throws an exception, that exception will be a runtime_error or an exception of a type derived
from runtime_error .

An empty specification list says that the function does not throw any exception:

     void no_problem() throw();

An exception specification is part of the function's interface. The function definition and any
declarations of the function must have the same specification.

If a function declaration does not specify an exception specification,
the function can throw exceptions of any type.

Violating the Exception Specification

Unfortunately, it is not possible to know at compile time whether or which exceptions a program
will throw. Violations of a function's exception specification can be detected only at run time.

If a function throws an exception not listed in its specification, the library function unexpected is

invoked. By default, unexpected calls terminate , which ordinarily aborts the program.



The compiler cannot and does not attempt to verify exception
specifications at compile time.

Even if a casual reading of a function's code indicates that it might throw an exception missing
from the specification, the compiler will not complain:

     void f() throw()          // promise not to throw any exception
     {
         throw exception();    // violates exception specification
     }

Instead, the compiler generates code to ensure that unexpected is called if an exception
violating the exception specification is thrown.

Specifying that the Function Does Not Throw

Because an exception specification cannot be checked at compile time, the practical utility of
exception specifications is often limited.

One important case when an exception specification is
useful is if a function can guarantee that it will not throw
any exceptions.

Specifying that a function will not throw any exceptions can be helpful both to users of the
function and to the compiler: Knowing that a function will not throw simplifies the task of writing
exception-safe code that calls that function. We can know that we need not worry about
exceptions when calling it. Moreover, if the compiler knows that no exceptions will be thrown, it
can perform optimizations that are suppressed for code that might throw.

Exception Specifications and Member Functions

As with nonmember functions, an exception specification on a member function declaration
follows the function parameter list. For example, the class bad_alloc from the C++ standard
library is defined so that all its member functions have an empty exception specification. These
members promise not to throw an exception:



     // ilustrative definition of library bad_alloc class
     class bad_alloc : public exception {
     public:
         bad_alloc() throw();
         bad_alloc(const bad_alloc &) throw();
         bad_alloc & operator=(const
         bad_alloc &) throw();
         virtual ~bad_alloc() throw();
         virtual const char* what() const throw();
     };

Notice that the exception specification follows the const qualifier in const member function
declarations.

Exception Specifications and Destructors

In Section 17.1.7 (p. 697 ) we showed two hypothetical bookstore application exception classes.
The isbn_mismatch class defines its destructor as

     class isbn_mismatch: public std::logic_error {
     public:
         virtual ~isbn_mismatch() throw() { }
     };

and said that we would explain this usage here.

The isbn_mismatch class inherits from logic_error , which is one of the standard exception
classes. The destructors for the standard exception classes include an empty throw() specifier;
they promise that they will not throw any exceptions. When we inherit from one of these
classes, then our destructor must also promise not to throw any exceptions.

Our out_of_stock class had no members, and so its synthesized destructor does nothing that
might throw an exception. Hence, the compiler can know that the synthesized destructor will
abide by the promise not to throw.

The isbn_mismatch class has two members of class string , which means that the synthesized
destructor for isbn_mismatch calls the string destructor. The C++ standard stipulates that
string destructor, like any other library class destructor, will not throw an exception. However,
the library destructors do not define exception specifications. In this case, we know, but the
compiler doesn't, that the string destructor won't throw. We must define our own destructor to
reinstate the promise that the destructor will not throw.

Exception Specifications and Virtual Functions

A virtual function in a base class may have an exception specification that differs from the
exception specification of the corresponding virtual in a derived class. However, the exception
specification of a derived-class virtual function must be either equally or more restrictive than
the exception specification of the corresponding base-class virtual function.

This restriction ensures that when a pointer to a base-class type is used to call a derived virtual



function, the exception specification of the derived class adds no new exceptions to those that
the base said could be thrown. For example,

     class Base {
     public:
         virtual double f1(double) throw ();
         virtual int f2(int) throw (std::logic_error);
         virtual std::string f3() throw
               (std::logic_error, std::runtime_error);
     };
     class Derived : public Base {
     public:

         // error: exception specification is less restrictive than Base::f1's
         double f1(double) throw (std::underflow_error);

         // ok: same exception specification as Base::f2
         int f2(int) throw (std::logic_error);

         // ok: Derived f3 is more restrictive
         std::string f3() throw ();
     };

The declaration of f1 in the derived class is an error because its exception specification adds an
exception to those listed in the version of f1 in the base class. The reason that the derived class
may not add to the specfication list is users of the hierarchy should be able to write code that
depends on the specification list. If a call is made through a base pointer or reference, then only
the exceptions specified in the base should be of concern to a user of these classes.

By restricting which exceptions the derived classes will throw to those listed by the base class,
we can write our code knowing what exceptions we must handle. Our code can rely on the fact
that the list of exceptions in the base class is a superset of the list of exceptions that a derived-
class version of the virtual might throw. As an example, when calling f3 , we know we need to
handle only logic_error or runtime_error:

     // guarantees not to throw exceptions
     void compute(Base *pb) throw()
     {
         try {

             // may throw exception of type std::logic_error

             // or std::runtime_error
             pb->f3();
         } catch (const logic_error &le)   { /* ... */ }
           catch (const runtime_error &re) { /* ... */ }
     }

The function compute uses the specification in the base class in deciding what exceptions it might
need to catch.

17.1.11. Function Pointer Exception Specifications

An exception specification is part of a function type. As such, exception specifications can be
provided in the definition of a pointer to function:



     void (*pf)(int) throw(runtime_error);

This declaration says that pf points to a function that takes an int , returns avoid , and that can
throw exceptions only of type runtime_error . If no specification is provided, then the pointer
may point at a function with matching type that could throw any kind of exception.

When a pointer to function with an exception specification is initialized from (or assigned to)
another pointer (or to the address of a function), the exception specifications of both pointers do
not have to be identical. However, the specification of the source pointer must be at least as
restrictive as the specification of the destination pointer

     void recoup(int) throw(runtime_error);

     // ok: recoup is as restrictive as pf1
     void (*pf1)(int) throw(runtime_error) = recoup;

     // ok: recoup is more restrictive than pf2
     void (*pf2)(int) throw(runtime_error, logic_error) = recoup;

     // error: recoup is less restrictive than pf3
     void (*pf3)(int) throw() = recoup;

     // ok: recoup is more restrictive than pf4
     void (*pf4)(int) = recoup;

The third initialization is an error. The pointer declaration says that pf3 points to a function that
will not throw any exceptions. However, recoup says it can throw exceptions of type
runtime_error . The recoup function throws exception types beyond those specified by pf3 . The
recoup function is not a valid initializer for pf3 , and a compile-time error is issued.

Exercises Section 17.1.11

Exercise
17.10:

What exceptions can a function throw if it has an exception
specification of the form tHRow() ? If it has no exception specification?

Exercise
17.11:

Which, if either, of the following initializations is in error? Why?

     void example() throw(string);
     (a) void (*pf1)() = example;
     (b) void (*pf2)() throw() = example;

Exercise
17.12:

Which exceptions might the following functions throw?

     (a) void operate() throw(logic_error);
     (b) int op(int) throw(underflow_error, overflow_error);
     (c) char manip(string) throw();
     (d) void process();



 



 

17.2. Namespaces

Every name defined in a given scope must be unique within that scope. This requirement can be
difficult to satisfy for large, complex applications. Such applications tend to have many names
defined in the global scope. Complex programs composed of independently developed libraries
are even more likely to encounter name collisionsthe same name is used in our own code or
(more often) in the code supplied to us by independent producers.

Libraries tend to define a large number of global namesprimarily names of templates, types and
functions. When writing an application using libraries from many different vendors, it is almost
inevitable that some of these names will clash. This name-clashing problem is known as the
namespace pollution problem.

Traditionally, programmers avoided namespace pollution by making names of global entities
very long, often prefixing the names in their program with specific character sequences:

     class cplusplus_primer_Query { ... };
     ifstream&
     cplusplus_primer_open_file(ifstream&, const string&);

This solution is far from ideal: It can be cumbersome for programmers to write and read
programs that use such long names. Namespaces provide a much more controlled mechanism
for preventing name collisions. Namespaces partition the global namespace, making it easier to
use independently produced libraries. A namespace is a scope. By defining a library's names
inside a namespace, library authors (and users) can avoid the limitations inherent in global
names.

17.2.1. Namespace Definitions

A namespace definition begins with the keyword namespace followed by the namespace name.

     namespace cplusplus_primer {
         class Sales_item { /* ... */};
         Sales_item operator+(const Sales_item&,
                              const Sales_item&);
         class Query {
         public:
             Query(const std::string&);
             std::ostream &display(std::ostream&) const;
             // ...
         };
         class Query_base { /* ... */};
     }

This code defines a namespace named cplusplus_primer with four members: two classes, an
overloaded + operator, and a function.



As with other names, the name of a namespace must be unique within the scope in which the
namespace is defined. Namespaces may be defined at global scope or inside another
namespace. They may not be defined inside a function or a class.

Following the namespace name is a block of declarations and definitions delimited by curly
braces. Any declaration that can appear at global scope can be put into a namespace: classes,
variables (with their initializations), functions (with their definitions), templates, and other
namespaces.

A namespace scope does not end with a semicolon.

Each Namespace Is a Scope

The entities defined in a namespace are called namespace members. Just as is the case for any
scope, each name in a namespace must refer to a unique entity within that namespace. Because
different namespaces introduce different scopes, different namespaces may have members with
the same name.

Names defined in a namespace may be accessed directly by other members of the namespace.
Code outside the namespace must indicate the namespace in which the name is defined:

     cplusplus_primer::Query q =
                     cplusplus_primer::Query("hello");
     q.display(cout);
     // ...

If another namespace (say, AddisonWesley ) also provides a TextQuery class and we want to use
that class instead of the one defined in cplusplus_primer , we can do so by modifying our code
as follows:

     AddisonWesley::Query q = AddisonWesley::Query("hello");
     q.display(cout);
     // ...

Using Namespace Members from Outside the Namespace

Of course, always referring to a namespace member using the qualified name

     namespace_name::member_name



can be cumbersome. Just as we've been doing for names defined in the std namespace, we can
write a using declaration (Section 3.1 , p. 78 ) to obtain direct access to names we know we'll
use frequently:

     using cplusplus_primer::Query;

After this using declaration, our program can use the name Query directly without the
cplusplus_primer qualifier. We'll see other ways to simplify access in Section 17.2.4 (p. 720 ).

Namespaces Can Be Discontiguous

Unlike other scopes, a namespace can be defined in several parts. A namespace is made up of
the sum of its separately defined parts; a namespace is cumulative. The separate parts of a
namespace can be spread over multiple files. Namespace definitions in different text files are
also cumulative. Of course, the usual restriction continues to apply that names are visible only
in the files in which they are declared. So, if one part of the namespace requires a name defined
in another file, that name must still be declared.

Writing a namespace definition

     namespace namespace_name {
     // declarations
     }

either defines a new namespace or adds to an existing one.

If the name namespace_name does not refer to a previously defined namespace, then a new
namespace with that name is created. Otherwise, this definition opens an existing namespace
and adds these new declarations to that namespace.

Separation of Interface and Implementation

The fact that namespace definitions can be discontiguous means that we can compose a
namespace from separate interface and implementation files. Thus, a namespace can be
organized in the same way that we manage our own class and function definitions:

Namespace members that define classes and declarations for the functions and objects
that are part of the class interface can be put into header files. These headers can be
included by files that use namespace members.

1.

The definitions of namepsace members can be put in separate source files.2.

Organizing our namespaces this way also satisfies the requirement that various entitiesnon-
inline functions, static data members, variables, and so forthmay be defined only once in a
program. This requirement applies equally to names defined in a namespace. By separating the
interface and implementation, we can ensure that the functions and other names we need are



defined only once, but the same declaration will be seen whenever the entity is used.

Namespaces that define multiple, unrelated types should
use separate files to represent each type that the
namespace defines.

Defining the Primer Namespace

Using this strategy for separating interface and implementation, we might define the
cplusplus_primer library in several separate files. The declarations for Sales_item and its related
functions that we built in Part I (p. 31 ) would be placed in Sales_item.h , those for the Query
classes of Chapter 15 (p. 557 ) in Query.h , and so on. The corresponding implementation files
would be in files such as Sales_item.cc and Query.cc:

     // ---- Sales_item.h ----
     namespace cplusplus_primer {
         class Sales_item { /* ... */};
         Sales_item operator+(const Sales_item&,
                              const Sales_item&);

         // declarations for remaining functions in the Sales_item interface
     }
     // ---- Query.h ----
     namespace cplusplus_primer {
         class Query {
         public:
             Query(const std::string&);
             std::ostream &display(std::ostream&) const;
             // ...
         };
         class Query_base { /* ... */};
     }
     // ---- Sales_item.cc ----
     #include "Sales_item.h"
     namespace cplusplus_primer {

     // definitions for Sales_item members and overloaded operators
     }
     // ---- Query.cc ----
     #include "Query.h"
     namespace cplusplus_primer {

         // definitions for Query members and related functions
     }

This program organization gives both the developers and users of our library the needed
modularity. Each class is still organized into its own interface and implementation files. A user of
one class need not compile names related to the others. We can hide the implementations from
our users, while allowing the files Sales_item.cc and user.cc to be compiled and linked into one



program without causing any compile-time or link-time error. Developers of the library can work
independently on the implementation of each type.

A program using our library would include whichever headers it needed. The names in those
headers are defined inside the cplusplus_primer namespace:

     // ---- user.cc ----

     // defines the cplusplus_primer::Sales_item class
     #include "Sales_item.h"
     int main()
     {
         // ...
         cplusplus_primer::Sales_item trans1, trans2;
         // ...
         return 0;
     }

Defining Namespace Members

Functions defined inside a namespace may use the short form for names defined in the same
namespace:

     namespace cplusplus_primer {
     // members defined inside the namespace may use unqualified names
     std::istream&
     operator>>(std::istream& in, Sales_item& s)
     {
         // ...
     }

It is also possible to define a namespace member outside its namespace definition. We do so in
ways that are similar to defining class members outside a class: The namespace declaration of
the name must be in scope, and the definition must specify the namespace to which the name
belongs:

     // namespace members defined outside the namespace must use qualified names
     cplusplus_primer::Sales_item
     cplusplus_primer::operator+(const Sales_item& lhs,
                                 const Sales_item& rhs)
     {
         Sales_item ret(lhs);
         // ...
     }

This definition should look similar to class member functions defined outside a class. The return
type and function name are qualified by the namespace name. Once the fully qualified function
name is seen, we are in the scope of the namespace. Thus, references to namespace members
in the parameter list and the function body can use unqualified names to reference Sales_item .



Members May Not Be Defined in Unrelated Namespaces

Although a namespace member can be defined outside its namespace definition, there are
restrictions on where this definition can appear. Only namespaces enclosing the member
declaration can contain its definition. For example, operator+ could be defined in either the
cplusplus_primer namespace or at global scope. It may not be defined in an unrelated
namespace.

The Global Namespace

Names defined at global scopenames declared outside any class, function, or namespaceare
defined inside the global namespace . The global namespace is implicitly declared and exists
in every program. Each file that defines entities at global scope adds those names to the global
namespace.

The scope operator can be used to refer to members of the global namespace. Because the
global namespace is implicit, it does not have a name; the notation

     ::member_name

refers to a member of the global namespace.

Exercises Section 17.2.1

Exercise
17.13:

Define the bookstore exception classes described in Section
17.1.7 (p. 697 ) as members of namespace named Bookstore .

Exercise
17.14:

Define Sales_item and its operators inside the Bookstore
namespace. Define the addition operator to throw an
exception.

Exercise
17.15:

Write a program that uses the Sales_item addition operator
and handles any exceptions. Make this program a member of
another namespace named MyApp . This program should use
the exception classes defined in the Bookstore namespace by
the previous exercise.

17.2.2. Nested Namespaces

A nested namespace is a nested scopeits scope is nested within the namespace that contains it.
Names in nested namespaces follow the normal rules: Names declared in an enclosing
namespace are hidden by declarations of the same name in a nested namespace. Names
defined inside a nested namespace are local to that namespace. Code in the outer parts of the
enclosing namespace may refer to a name in a nested namespace only through its qualified



name.

Nested namespaces can improve the organization of code in a library:

     namespace cplusplus_primer {
         // first nested namespace:

         // defines the Query portion of the library
         namespace QueryLib {
             class Query { /* ... */ };
             Query operator&(const Query&, const Query&);
             // ...
         }
         // second nested namespace:

         // defines the Sales_item portion of the library
         namespace Bookstore {
             class Item_base { /* ... */ };
             class Bulk_item : public Item_base { /* ... */ };
             // ...
         }
     }

The cplusplus_primer namespace now contains two nested namespaces: the namespaces
named QueryLib and Bookstore .

Nested namespaces are useful when a library provider needs to prevent names in each part of a
library from colliding with names in other parts of the library.

The name of a member in a nested namespace is formed from the names of the enclosing
namespace(s) and the name of the nested namespace. For example, the name of the class
declared in the nested namespace QueryLib is

     cplusplus_primer::QueryLib::Query

Exercises Section 17.2.2



Exercise
17.16:

Organize the programs you have written to answer the
questions in each chapter into its own namespace. That is,
namespace chapterrefinheritance would contain code for the
Query programs and chapterrefalgs would contain the
TextQuery code. Using this structure, compile the Query code
examples.

Exercise
17.17:

Over the course of this primer, we defined two different
classes named Sales_item: the initial simple class defined and
used in Part I , and the handle class defined in Section 15.8.1
that interfaced to the Item_base inheritance hierarchy. Define
two namespaces nested inside the cplusplus_primer
namespace that could be used to distinguish these two class
definitions.

17.2.3. Unnamed Namespaces

A namespace may be unnamed. An unnamed namespace is a namespace that is defined
without a name. An unnamed namespace begins with the keyword namespace . Following the
namespace keyword is a block of declarations delimited by curly braces.

Unnamed namespaces are not like other namespaces; the definition
of an unnamed namespace is local to a particular file and never
spans multiple text files.

An unnamed namespace may be discontiguous within a given file but does not span files. Each
file has its own unnamed namespace.

Unnamed namespaces are used to declare entities that are local to a file. Variables defined in an
unnamed namespace are created when the program is started and exist until the program ends.

Names defined in an unnamed namespace are used directly; after all, there is no namespace
name with which to qualify them. It is not possible to use the scope operator to refer to
members of unnamed namespaces.

Names defined in an unnamed namespace are visible only to the file containing the namespace.
If another file contains an unnamed namespace, the namespaces are unrelated. Both unnamed
namespaces could define the same name, and the definitions would refer to different entities.

Names defined in an unnamed namespace are found in the same scope as the scope at which
the namespace is defined. If an unnamed namespace is defined at the outermost scope in the
file, then names in the unnamed namespace must differ from names defined at global scope:

     int i;   // global declaration for i
     namespace {



         int i;
     }
     // error: ambiguous defined globally and in an unnested, unnamed namespace
     i = 10;

An unnamed namespace, like any other namespace, may be nested inside another namespace.
If the unnamed namespace is nested, then names in it are accessed in the normal way, using
the enclosing namespace name(s):

     namespace local {
        namespace {
            int i;
        }
     }

        // ok: i defined in a nested unnamed namespace is distinct from global i
        local::i = 42;

If a header defines an unnamed namespace then the names in that
namespace will define different local entities in each file that
includes the header.

In all other ways, the members of an unnamed namespace are normal program entities.

Unnamed Namespaces Replace File Statics

Prior to the introduction of namespaces in standard C++, programs had to
declare names as static to make them local to a file. The use of file statics
is inherited from C. In C, a global entity declared static is invisible outside

the file in which it is declared.

The use of file static declarations is deprecated by
the C++ standard. A deprecated feature is one that
may not be supported in future releases. File
statics should be avoided and unnamed
namespaces used instead.



Exercises Section 17.2.3

Exercise
17.18:

Why would you define your own namespace in your programs?
When might you use an unnamed namespace?

Exercise
17.19:

Suppose we have the following declaration of the operator*
that is a member of the nested namespace
cplusplus_primer::MatrixLib:

     namespace cplusplus_primer {
         namespace MatrixLib {
             class matrix { /* ... */ };
             matrix operator*
                    (const matrix &, const matrix &);
             // ...
         }
     }

How would you define this operator in global scope? Provide
only the prototype for the operator's definition.

17.2.4. Using Namespace Members

Referring to namespace members as namespace_name::member_name is admittedly cumbersome,
especially if the namespace name is long. Fortunately, there are ways to make it easier to use
namespace members. Our programs have used one of these ways, using declarations (Section
3.1 , p. 78 ). The others, namespace aliases and using directives, will be described in this
section.

Header files should not contain using directives or using
declarations except inside functions or other scopes. A
header that includes a using directive or declaration at its
top level scope has the effect of injecting that name into
the file that includes the header. Headers should define
only the names that are part of its interface, not names
used in its own implementation.



using Declarations, a Recap

The programs in this book that use names from the standard library generally assume that an
appropriate using declaration has been made:

     map<string, vector< pair<size_t, size_t> > > word_map;

assumes that the following using declarations have been made:

     using std::map;
     using std::pair;
     using std::size_t;
     using std::string;
     using std::vector;

A using declaration introduces only one namespace member at a time. It allows us to be very
specific regarding which names are used in our programs.

Scope of a using Declaration

Names introduced in a using declaration obey normal scope rules. The name is visible from the
point of the using declaration to the end of the scope in which the declaration is found. Entities
with the same name defined in an outer scope are hidden.

The shorthand name may be used only within the scope in which it is declared and in scopes
nested within that scope. Once the scope ends, the fully qualified name must be used.

A using declaration can appear in global, local, or namespace scope. A using declaration in class
scope is limited to names defined in a base class of the class being defined.

Namespace Aliases

A namespace alias can be used to associate a shorter synonym with a namespace name. For
example, a long namespace name such as

     namespace cplusplus_primer { /* ... */ };

can be associated with a shorter synonym as follows:

     namespace primer = cplusplus_primer;



A namespace alias declaration begins with the keyword namespace , followed by the (shorter)
name of the namespace alias, followed by the = sign, followed by the original namespace name
and a semicolon. It is an error if the original namespace name has not already been defined as a
namespace.

A namespace alias can also refer to a nested namespace. Rather than writing

     cplusplus_primer::QueryLib::Query tq;

we could define and use an alias for cplusplus_primer::QueryLib:

     namespace Qlib = cplusplus_primer::QueryLib;
     Qlib::Query tq;

A namespace can have many synonyms, or aliases. All the aliases
and the original namespace name can be used interchangeably.

using Directives

Like a using declaration, a using directive allows us to use the shorthand form of a namespace

name. Unlike a using declaration, we retain no control over which names are made visiblethey
all are.

The Form of a using Directive

A using directive begins with the keyword using , followed by the keyword namespace , followed
by a namespace name. It is an error if the name is not a previously defined namespace name.

A using directive makes all the names from a specific namespace visible without qualification.
The short form names can be used from the point of the using directive to the end of the scope
in which the using directive appears.

A using directive may appear in namespace, function, or block scope. It may not appear in a
class scope.



It can be tempting to write programs with using directives, but
doing so reintroduces all the problems inherent in name collisions
when using multiple libraries.

using Directives and Scope

The scope of names introduced by a using directive is more complicated than those for using
declarations. A using declaration puts the name directly in the same scope in which the using
declaration itself appears. It is as if the using declaration is a local alias for the namespace
member. Because the declaration is localized, the chance of collisions is minimized.

A using directive does not declare local aliases for the namespace
member names. Rather, it has the effect of lifting the namespace
members into the nearest scope that contains both the namespace
itself and the using directive.

In the simplest case, assume we have a namespace A and a function f , both defined at global
scope. If f has a using directive for A , then in f it will be as if the names in A appeared in the
global scope prior to the definition of f :

    // namespace A and function f are defined at global scope
    namespace A {
        int i, j;
    }
    void f()
    {

        using namespace A;      // injects names from A into the global scope

        cout << i * j << endl; // uses i and j from namespace A
        //...
    }

One place where using directives are useful is in the
implementation files for the namespace itself.



using Directives Example

Let's look at an example:

    namespace blip {
        int bi = 16, bj = 15, bk = 23;
        // other declarations
    }

    int bj = 0; // ok: bj inside blip is hidden inside a namespace
    void manip()
    {

         // using directive - names in blip "added" to global scope
         using namespace blip;

                         // clash between ::bj and blip::bj

                         // detected only if bj is used

         ++bi;           // sets blip::bi to 17
         ++bj;           // error: ambiguous

                         // global bj or blip::bj?

         ++::bj;         // ok: sets global bj to 1

         ++blip::bj;     // ok: sets blip::bj to 16

         int bk = 97;    // local bk hides blip::bk

         ++bk;           // sets local bk to 98
    }

The using directive in manip makes all the names in blip directly accessible to manip : The
function can refer to the names of these members, using their short form.

The members of blip appear as if they were defined in the scope in which both blip and manip
are defined. Given that blip is defined at global scope, then the members of blip appear as if
they were declared in global scope. Because the names are in different scopes, local
declarations within manip may hide some of the namespace member names. The local variable
bk hides the namespace member blip::bk . Referring to bk within manip is not ambiguous; it
refers to the local variable bk .

It is possible for names in the namespace to conflict with other names defined in the enclosing
scope. For example, the blip member bj appears to manip as if it were declared at global scope.
However, there is another object named bj in global scope. Such conflicts are permitted; but to
use the name, we must explicitly indicate which version is wanted. Therefore, the use of bj
within manip is ambiguous: The name refers both to the global variable and to the member of
namespace blip .

To use a name such as bj , we must use the scope operator to indicate which name is wanted.
We would write ::bj to obtain the variable defined in global scope. To use the bj defined in blip
, we must use its qualified name, blip::bj .



Exercises Section 17.2.4

Exercise
17.20:

Explain the differences between using declarations and using
directives.

Exercise
17.21:

Consider the following code sample:

    namespace Exercise {
        int ivar = 0;
        double dvar = 0;
        const int limit = 1000;
    }
    int ivar = 0;
    // position 1
    void manip() {
         // position 2
         double dvar = 3.1416;
         int iobj = limit + 1;
         ++ivar;
         ++::ivar;
    }

What are the effects of the declarations and expressions in this
code sample if using declarations for all the members of
namespace Exercise are located at the location labeled
position 1 ? At position 2 instead? Now answer the same
question but replace the using declarations with a using
directive for namespace Exercise .

Caution: Avoid Using Directives

using directives , which inject all the names from a namespace, are

deceptively simple to use: With only a single statement, all the member
names of a namespace are suddenly visible. Although this approach may
seem simple, it can introduce its own problems. If an application uses many
libraries, and if the names within these libraries are made visible with using

directives, then we are back to square one, and the global namespace
pollution problem reappears.

Moreover, it is possible that a working program will fail to compile when a
new version of the library is introduced. This problem can arise if a new
version introduces a name that conflicts with a name that the application is
using.

Another problem is that ambiguity errors caused by using directives are

detected only at the point of use. This late detection means that conflicts



can arise long after introducing a particular library. If the program begins
using a new part of the library, previously undetected collisions may arise.

Rather than relying on a using directive, it is better to use a using

declaration for each namespace name used in the program. Doing so
reduces the number of names injected into the namespace. Ambiguity
errors caused by using declarations are detected at the point of declaration,

not use, and so are easier to find and fix.

17.2.5. Classes, Namespaces, and Scope

As we've noted, namespaces are scopes. As in any other scope, names are visible from the
point of their declaration. Names remain visible through any nested scopes until the end of the
block in which they were introduced.

Name lookup for names used inside a namespace follows the normal C++ lookup rules: When
looking for a name, we look outward through the enclosing scopes. An enclosing scope for a
name used inside a namespace might be one or more nested namespaces ending finally with
the all-encompassing global namespace. Only names that have been declared before the point
of use that are in blocks that are still open are considered:

    namespace A {
        int i;
        namespace B {

            int i;        // hides A::i within B
            int j;
            int f1()
            {

                int j;    // j is local to f1 and hides A::B::j

                return i; // returns B::i
            }

        } // namespace B is closed and names in it are no longer visible
        int f2() {

           return j;     // error: j is not defined
        }

        int j = i;      // initialized from A::i
    }

Names used in a class member definition are resolved in much the same way, with one
important difference: If the name is not local to the member function, we first try to resolve the
name to a class member before looking in the outer scopes.

As we saw in Section 12.3 (p. 444 ), members defined inside a class may use names that
appear textually after the definition. For example, a constructor defined inside the class body
may initialize the data members even if the declaration of those members appears after the
constructor definition. When a name is used in a class scope, we look first in the member itself,
then in the class, including any base classes. Only after exhausting the class(es) do we examine
the enclosing scopes. When a class is wrapped in a namespace, the same lookup happens: Look
first in the member, then the class (including base classes), then look in the enclosing scopes,
one or more of which might be a namespace:

    namespace A {



        int i;
        int k;
        class C1 {
        public:

            C1(): i(0), j(0) { }   // ok: initializes C1::i and C1::j
            int f1()
            {

                 return k;        // returns A::k
            }
            int f2()
            {

                return h;        // error: h is not defined
            }
            int f3();
        private:

           int i;                // hides A::i within C1
           int j;
        };

        int h = i;               // initialized from A::i
     }

     // member f3 is defined outside class C1 and outside namespace A
     int A::C1::f3()
     {

         return h;               // ok: returns A::h
     }

With the exception of member definitions, scopes are always searched upward: A name must be
declared before it can be used. Hence, the return in f2 will not compile. It attempts to reference
the name h from namespace A , but h has not yet been defined. Had that name been defined in
A before the definition of C1 , the use of h would be legal. Similarly, the use of h inside f3 is
okay, because f3 is defined after A::h has been defined.

The order in which scopes are examined to find a name can be
inferred from the qualified name of a function. The qualified
name indicates, in reverse order, the scopes that are searched.

The qualifiers A::C1::f3 indicate the reverse order in which the class scopes and namespace
scopes are to be searched. The first scope searched is that of the function f3 . Then the class
scope of its enclosing class C1 is searched. The scope of the namespace A is searched last before
the scope containing the definition of f3 is examined.

Argument-Dependent Lookup and Class Type Parameters

Consider the following simple program:

    std::string s;



    // ok: calls std::getline(std::istream&, const std::string&)
    getline(std::cin, s);

The program uses the std::string type, yet it refers without qualification to the getline
function. Why can we use this function without a specific std:: qualifier or a using declaration?

It turns out that there is an important exception to the rule that namespace names are hidden.

Functions, including overloaded operators, that take
parameters of a class type (or pointer or reference to a class
type), and that are defined in the same namespace as the class
itself, are visible when an object of (or reference or pointer to)
the class type is used as an argument.

When the compiler sees the use of the getline function

    getline(std::cin, s);

it looks for a matching function in the current scope, the scopes enclosing the call to getline ,
and in the namespace(s) in which the type of cin and the string type are defined . Hence, it
looks in the namespace std and finds the getline function defined by the string type.

The reason that functions are made visible if they have a parameter of the class type is to allow
nonmember functions that are conceptually part of a class' interface to be used without
requiring a separate using declaration. Being able to use nonmember operations is particularly
useful for operator functions.

For example, consider the following simple program:

    std::string s;
    cin >> s;

In absence of this exception to the lookup rules, we would have to write either:

    using std::operator>>;        // need to allow cin >> s

    std::operator>>(std::cin, s); // ok: explicitly use std::>>

Either of these declarations is awkward and would make simple uses of string s and the IO
library more complicated.



Implicit Friend Declarations and Namespaces

Recall that when a class declares a friend function (Section 12.5 , p. 465 ), a declaration for the
function need not be visible. If there isn't a declaration already visible, then the friend
declaration has the effect of putting a declaration for that function or class into the surrounding
scope. If a class is defined inside a namespace, then an otherwise undeclared friend function is
declared in the same namespace:

    namespace A {
        class C {

            friend void f(const C&); // makes f a member of namespace A
        };
    }

Because the friend takes an argument of a class type and is implicitly declared in the same
namespace as the class, it can be used without using an explicit name-space qualifier:

    // f2 defined at global scope
    void f2()
    {
         A::C cobj;

         f(cobj); // calls A::f
    }

17.2.6. Overloading and Namespaces

As we've seen, each namespace maintains its own scope. As a consequence, functions that are
members of two distinct namespaces do not overload one another. However, a given namespace
can contain a set of overloaded function members.

In general, function matching (Section 7.8.2 , p. 269 ) within a namespace happens in the same
manner as we've already seen:

Find the set of candidate functions. A function is a candidate if a declaration for it is visible
at the time of the call and if it has the same name as the called function.

1.

Select the viable functions from the set of candidates. A function is viable if it has the same
number of parameters as the call has arguments and if each parameter could be matched
by the corresponding argument.

2.

Select the single best match from the viable set and generate code to call that function. If
the viable set is empty, then the call is in error, having no match. If the viable set is
nonempty and there is no best match, then the call is ambiguous.

3.

Candidate Functions and Namespaces

Namespaces can have two impacts on function matching. One of these should be obvious: A
using declaration or directive can add functions to the candidate set. The other is much more



subtle.

As we saw in the previous section, name lookup for functions that have one or more class-type
parameters includes the namespace in which each parameter's class is defined. This rule also
impacts how we determine the candidate set. Each namespace that defines a class used as a
parameter (and those that define its base class(es)) is searched for candidate functions. Any
functions in those namespaces that have the same name as the called function are added to the
candidate set. These functions are added even though they otherwise are not visible at the point
of the call. Functions with the matching name in those namespaces are added to the candidate
set:

    namespace NS {
        class Item_base { /* ... */ };
        void display(const Item_base&) { }
    }

    // Bulk_item's base class is declared in namespace NS
    class Bulk_item : public NS::Item_base { };
    int main() {
        Bulk_item book1;
        display(book1);
        return 0;
    }

The argument, book1 , to the display function has class type Bulk_item . The candidate
functions for the call to display are not only the functions with declarations that are visible
where the function display is called, but also the functions in the namespace where the class
Bulk_item and its base class Item_base are declared. The function display(const Item_base&)
declared in namespace NS is added to the set of candidate functions.

Overloading and using Declarations

A using declaration declares a name. As we saw in Section 15.5.3 (p. 592 ), there is no way to
write a using declaration to refer to a specific function declaration:

    using NS::print(int); // error: cannot specify parameter list

    using NS::print;      // ok: using declarations specify names only

If a function is overloaded within a namespace, then a using declaration for the name of that
function declares all the functions with that name. If there are print functions for int and
double in the namespace NS, then a using declaration for NS::print makes both functions
visible in the current scope.

A using declaration incorporates all versions of an overloaded function to ensure that the
interface of the namespace is not violated. The author of a library provided different functions
for a reason. Allowing users to selectively ignore some but not all of the functions from a set of
overloaded functions could lead to surprising program behavior.

The functions introduced by a using declaration overload any other declarations of the functions
with the same name already present in the scope where the using declaration appears.

If the using declaration introduces a function in a scope that already has a function of the same



name with the same parameter list, then the using declaration is in error. Otherwise, the using
declaration defines additional overloaded instances of the given name. The effect is to increase
the set of candidate functions.

Overloading and using Directives

A using directive lifts the namespace members into the enclosing scope. If a namespace
function has the same name as a function declared in the scope at which the namespace is
placed, then the namespace member is added to the overload set:

    namespace libs_R_us {
        extern void print(int);
        extern void print(double);
    }
    void print(const std::string &);

    // using directive:
    using namespace libs_R_us;

    // using directive added names to the candidate set for calls to print:

    // print(int) from libs_R_us

    // print(double) from libs_R_us

    // print(const std::string &) declared explicitly
    void fooBar(int ival)
    {

         print("Value: "); // calls global print(const string &)

         print(ival);      // calls libs_R_us::print(int)
    }

Overloading across Multiple using Directives

If many using directives are present, then the names from each namespace become part of the
candidate set:

    namespace AW {
        int print(int);
    }
    namespace Primer {
        double print(double);
    }

    // using directives:
    // form an overload set of functions from different namespaces
    using namespace AW;
    using namespace Primer;
    long double print(long double);
    int main() {

        print(1);   // calls AW::print(int)

        print(3.1); // calls Primer::print(double)
        return 0;
    }

The overload set for the function print in global scope contains the functions print(int),



print(double) , and print(long double) . These functions are all part of the overload set
considered for the function calls in main , even though these functions were originally declared in
different namespace scopes.

Exercises Section 17.2.6

Exercise
17.22:

Given the following code, determine which function, if any,
matches the call to compute . List the candidate and viable
functions. What type conversion sequence, if any, is applied to
the argument to match the parameter in each viable function?

    namespace primerLib {
        void compute();
        void compute(const void *);
    }
    using primerLib::compute;
    void compute(int);
    void compute(double, double = 3.4);
    void compute(char*, char* = 0);

    int main()
    {
        compute(0);
        return 0;
    }

What would happen if the using declaration were located in
main before the call to compute ? Answer the same questions
as before.

17.2.7. Namespaces and Templates

Declaring a template within a namespace impacts how template specializations (Section 16.6 ,
p. 671 ) are declared: An explicit specialization of a template must be declared in the
namespace in which the generic template is defined. Otherwise, the specialization would have a
different name than the template it specialized.

There are two ways to define a specialization: One is to reopen the namespace and add the
definition of the specialization, which we can do because namespace definitions are
discontiguous, Alternatively, we could define the specialization in the same way that we can
define any namespace member outside its namespace definition: by defining the specialization
using the template name qualified by the name of the namespace.



To provide our own specializations of templates defined in a
namespace, we must ensure that the specialization definition is
defined as being in the namespace containing the original template
definition.

 



 

17.3. Multiple and Virtual Inheritance

Most C++ applications use public inheritance from a single base class. In some cases, however,
single inheritance is inadequate, either because it fails to model the problem domain or the model
it imposes is unnecessarily complex.

In these cases, multiple inheritance may model the application more directly. Multiple
inheritance is the ability to derive a class from more than one immediate base class. A multiply
derived class inherits the properties of all its parents. Although simple in concept, the details of
intertwining multiple base classes can present tricky design-level and implementation-level
problems.

17.3.1. Multiple Inheritance

This section uses a pedagogical example of a zoo animal hierarchy. Our zoo animals exist at
different levels of abstraction. There are the individual animals, distinguished by their names, such
as Ling-ling, Mowgli , and Balou . Each animal belongs to a species; Ling-Ling, for example, is a
giant panda. Species, in turn, are members of families. A giant panda is a member of the bear
family. Each family, in turn, is a member of the animal kingdomin this case, the more limited
kingdom of a particular zoo.

Each level of abstraction contains data and operations that support a wider category of users.
We'll define an abstract ZooAnimal class to hold information that is common to all the zoo animals
and provides the public interface. The Bear class will contain information that is unique to the Bear
family, and so on.

In addition to the actual zoo-animal classes, there are auxiliary classes that encapsulate various
abstractions such as endangered animals. In our implementation of a Panda class, for example, a
Panda is multiply derived from Bear and Endangered .

Defining Multiple Classes

To support multiple inheritance, the derivation list

    class Bear : public ZooAnimal {
    };

is extended to support a comma-separated list of base classes:

    class Panda : public Bear, public Endangered {
    };

The derived class specifies (either explicitly or implicitly) the access level public, protected , or
private for each of its base classes. As with single inheritance, a class may be used as a base
class under multiple inheritance only after it has been defined. There is no language-imposed limit
on the number of base classes from which a class can be derived. A base class may appear only



once in a given derivation list.

Multiply Derived Classes Inherit State from Each Base Class

Under multiple inheritance, objects of a derived class contain a base-class subobject (Section
15.2.3 , p. 565 ) for each of its base classes. When we write

Panda ying_yang("ying_yang");

the object ying_yang is composed of a Bear class subobject (which itself contains a ZooAnimal
base-class subobject), an Endangered class subobject, and the nonstatic data members, if any,
declared within the Panda class (see Figure 17.2 ).

Figure 17.2. Multiple Inheritance Panda Hierarchy

Derived Constructors Initialize All Base Classes

Constructing an object of derived type involves constructing and initializing all its base subobjects.
As is the case for inheriting from a single base class (Section 15.4.1 , p. 580 ), derived
constructors may pass values to zero or more of their base classes in the constructor initializer:

    // explicitly initialize both base classes
    Panda::Panda(std::string name, bool onExhibit)
          : Bear(name, onExhibit, "Panda"),
            Endangered(Endangered::critical) { }

    // implicitly use Bear default constructor to initialize the Bear subobject
    Panda::Panda()
          : Endangered(Endangered::critical) { }

Order of Construction



The constructor initializer controls only the values that are used to initialize the base classes, not
the order in which the base classes are constructed. The base-class constructors are invoked in
the order in which they appear in the class derivation list. For Panda , the order of base-class
initialization is:

ZooAnimal , the ultimate base class up the hierarchy from Panda 's immediate base class Bear1.

Bear , the first immediate base class2.

Endangered , the second immediate base, which itself has no base class3.

Panda ; the members of Panda itself are initialized, and then the body of its constructor is run.4.

The order of constructor invocation is not affected by whether the
base class appears in the constructor initializer list or the order in
which base classes appear within that list.

For example, in Panda 's default constructor, the Bear default constructor is invoked implicitly; it
does not appear in the constructor initializer list. Even so, Bear 's default constructor is invoked
prior to the explicitly listed constructor of Endangered .

Order of Destruction

Destructors are always invoked in the reverse order from which the constructors are run. In our
example, the order in which the destructors are called is ~Panda, ~Endangered, ~Bear, ~ZooAnimal
.

Exercises Section 17.3.1



Exercise
17.23:

Which, if any, of the following declarations are in error. Explain why.

    (a) class CADVehicle : public CAD, Vehicle { ... };
    (b) class DoublyLinkedList:
              public List, public List { ... };
    (c) class iostream: public istream, public ostream { ... };

Exercise
17.24:

Given the following class hierarchy, in which each class defines a default
constructor,

    class A { ... };
    class B : public A { ... };
    class C : public B { ... };
    class X { ... };
    class Y { ... };
    class Z : public X, public Y { ... };
    class MI : public C, public Z { ... };

what is the order of constructor execution for the following definition?

    MI mi;

17.3.2. Conversions and Multiple Base Classes

Under single inheritance, a pointer or a reference to a derived class can be converted
automatically to a pointer or a reference to a base class. The same holds true with multiple
inheritance. A pointer or reference to a derived class can be converted to a pointer or reference to
any of its base classes. For example, a Panda pointer or reference could be converted to a pointer
or a reference to ZooAnimal, Bear , or Endangered:

    // operations that take references to base classes of type Panda
    void print(const Bear&);
    void highlight(const Endangered&);
    ostream& operator<<(ostream&, const ZooAnimal&);

    Panda ying_yang("ying_yang");    // create a Panda object

    print(ying_yang);      // passes Panda as reference to Bear

    highlight(ying_yang);  // passes Panda as reference to Endangered

    cout << ying_yang << endl;  // passes Panda as reference to ZooAnimal

Under multiple inheritance, there is a greater possibility of encountering an ambiguous conversion.
The compiler makes no attempt to distinguish between base classes in terms of a derived-class



conversion. Converting to each base class is equally good. For example, if there was an
overloaded version of print

    void print(const Bear&);
    void print(const Endangered&);

an unqualified invocation of print with a Panda object

    Panda ying_yang("ying_yang");
    print(ying_yang);              // error: ambiguous

results in a compile-time error that the call is ambiguous.

Exercises Section 17.3.2

Exercise
17.25:

Given the following class hierarchy, in which each class defines a
default constructor,

    class X { ... };
    class A { ... };
    class B : public A { ... };
    class C : private B { ... };
    class D : public X, public C { ... };

which, if any, of the following conversions are not permitted?

    D *pd = new D;
    (a) X *px = pd; (c) B *pb = pd;
    (b) A *pa = pd; (d) C *pc = pd;

Virtual Functions under Multiple Inheritance

To see how the virtual function mechanism is affected by multiple inheritance, let's assume that
our classes define the virtual members listed in Table 17.2 .

Table 17.2. Virtual Function in the ZooAnimal/Endangered
Classes



Function Class Defining Own Version

print ZooAnimal::ZooAnimal

  Bear::Bear

  Endangered::Endangered

  Panda::Panda

highlight Endangered::Endangered

  Panda::Panda

toes Bear::Bear

  Panda::Panda

cuddle Panda::Panda

destructor ZooAnimal::ZooAnimal

  Endangered::Endangered

Lookup Based on Type of Pointer or Reference

As with single inheritance, a pointer or reference to a base class can be used to access only
members defined (or inherited) in the base. It cannot access members introduced in the derived
class.

When a class inherits from multiple base classes, there is no implied relationship between those
base classes. Using a pointer to one base does not allow access to members of another base.

As an example, we could use a pointer or reference to a Bear, ZooAnimal, Endangered , or Panda
to access a Panda object. The type of the pointer we use determines which operations are
accessible. If we use a ZooAnimal pointer, only the operations defined in that class are usable. The
Bear -specific, Panda -specific, and Endangered portions of the Panda interface are inaccessible.
Similarly, a Bear pointer or reference knows only about the Bear and ZooAnimal members; an
Endangered pointer or reference is limited to the Endangered members:

    Bear *pb = new Panda("ying_yang");

    pb->print(cout); // ok: Panda::print(ostream&)

    pb->cuddle();    // error: not part of Bear interface

    pb->highlight(); // error: not part of Bear interface

    delete pb;       // ok: Panda::~Panda()

If the Panda object had been assigned to a ZooAnimal pointer, this set of calls would resolve exactly
the same way.

When a Panda is used via an Endangered pointer or reference, the Panda-specific and Bear portions
of the Panda interface are inaccessible:

    Endangered *pe = new Panda("ying_yang");

    pe->print(cout);  // ok: Panda::print(ostream&)



    pe->toes();       // error: not part of Endangered interface

    pe->cuddle();     // error: not part of Endangered interface

    pe->highlight();  // ok: Endangered::highlight()

    delete pe;        // ok: Panda::~Panda()

Determining Which Virtual Destructor to Use

Assuming all the root base classes properly define their destructors as virtual, then the handling of
the virtual destructor is consistent regardless of the pointer type through which we delete the
object:

    // each pointer points to a Panda

    delete pz; // pz is a ZooAnimal*

    delete pb; // pb is a Bear*

    delete pp; // pp is a Panda*

    delete pe; // pe is a Endangered*

Assuming each of these pointers points to a Panda object, the exact same order of destructor
invocations occurs in each case. The order of destructor invocations is the reverse of the
constructor order: The Panda destructor is invoked through the virtual mechanism. Following
execution of the Panda destructor, the Endangered, Bear , then ZooAnimal destructors are invoked
in turn.

Exercises Section 17.3.2

Exercise
17.26:

On page 735 we presented a series of calls made through a Bear
pointer that pointed to a Panda object. We noted that if the pointer
had been a ZooAnimal pointer the calls would resolve the same
way. Explain why.

Exercise
17.27:

Assume we have two base classes, Base1 and Base2 , each of which
defines a virtual member named print and a virtual destructor.
From these base classes we derive the following classes each of
which redefines the print function:

    class D1 : public Base1 { /* ... */ };
    class D2 : public Base2 { /* ... */ };
    class MI : public D1, public D2 { /* ... */ };

Using the following pointers determine which function is used in
each call:

    Base1 *pb1 = new MI; Base2 *pb2 = new MI;
    D1 *pd1 = new MI; D2 *pd2 = new MI;



    (a) pb1->print(); (b) pd1->print(); (c) pd2->print();
    (d) delete pb2;   (e) delete pd1;   (f) delete pd2;

Exercise
17.28:

Write the class definitions that correspond to Table 17.2 (p. 735 ).

17.3.3. Copy Control for Multiply Derived Classes

The memberwise initialization, assignment and destruction (Chapter 13 ) of a multiply derived
class behaves in the same way as under single inheritance. Each base class is implicitly
constructed, assigned or destroyed, using that base class' own copy constructor, assignment
operator or destructor.

Let's assume that Panda uses the default copy control members. Using the default copy
constructor, the initialization of ling_ling

    Panda ying_yang("ying_yang");  // create a Panda object
    Panda ling_ling = ying_yang;   // uses copy constructor

invokes the Bear copy constructor, which in turn runs the ZooAnimal copy constructor prior to
executing the Bear copy constructor. Once the Bear portion of ling_ling is constructed, the
Endangered copy constructor is run to create that part of the object. Finally, the Panda copy
constructor is run.

The synthesized assignment operator behaves similarly to the copy constructor. It assigns the
Bear (and through Bear , the ZooAnimal ) parts of the object first. Next, it assigns the Endangered
part, and finally the Panda part.

The synthesized destructor destroys each member of the Panda object and calls the destructors for
the base class parts, in reverse order from construction.

As is the case for single inheritance (Section 15.4.3 , p. 584 ), if a
class with multiple bases defines its own destructor, that
destructor is responsible only for cleaning up the derived class. If
the derived class defines its own copy constructor or assignment
operator, then the class is responsible for copying (assigning) all
the base class subparts. The base parts are automatically copied
or assigned only if the derived class uses the synthesized
versions of these members.

17.3.4. Class Scope under Multiple Inheritance



Class scope (Section 15.5 , p. 590 ) is more complicated in multiple inheritance because a derived
scope may be enclosed by multiple base class scopes. As usual, name lookup for a name used in a
member function starts in the function itself. If the name is not found locally, then lookup
continues in the member's class and then searches each base class in turn. Under multiple
inheritance, the search simultaneously examines all the base-class inheritance subtreesin our
example, both the Endangered and the Bear /ZooAnimal subtrees are examined in parallel. If the
name is found in more than one subtree, then the use of that name must explicitly specify which
base class to use. Otherwise, the use of the name is ambiguous.

When a class has multiple base classes, name lookup happens
simultaneously through all the immediate base classes. It is possible
for a multiply derived class to inherit a member with the same name
from two or more base classes. Unqualified uses of that name are
ambiguous.

Multiple Base Classes Can Lead to Ambiguities

Assume both Bear and Endangered define a member named print . If Panda does not define that
member, then a statement such as the following

    ying_yang.print(cout);

results in a compile-time error.

The derivation of Panda , which results in Panda having two members named print , is perfectly
legal. The derivation results in only a potential ambiguity. That ambiguity is avoided if no Panda
object ever calls print . The error would also be avoided if each call to print specifically indicated
which version of print was wantedBear::print or Endangered::print . An error is issued only if
there is an ambiguous attempt to use the member.

If a declaration is found only in one base-class subtree, then the identifier is resolved and the
lookup algorithm concludes. For example, class Endangered might have an operation to return the
given estimated population of its object. If so, the following call

    ying_yang.population();

would compile without complaint. The name population would be found in the Endangered base
class and does not appear in Bear or any of its base classes.

Name Lookup Happens First

Although the ambiguity of the two inherited print members is reasonably obvious, it might be
more surprising to learn that an error would be generated even if the two inherited functions had
different parameter lists. Similarly, it would be an error even if the print function were private in



one class and public or protected in the other. Finally, if print were defined in ZooAnimal and not
Bear , the call would still be in error.

As always, name lookup happens in two steps (Section 7.8.1 , p. 268 ): First the compiler finds a
matching declaration (or, in this case, two matching declarations, which causes the ambiguity).
Only then does the compiler decide whether the declaration it found is legal.

Avoiding User-Level Ambiguities

We could resolve the print ambiguity by specifying which class to use:

    ying_yang.Endangered::print(cout);

The best way to avoid potential ambiguities is to define a version of the function in the derived
class that resolves the ambiguity. For example, we should give our Panda class a print function
that chooses which version of print to use:

    std::ostream& Panda::print(std::ostream &os) const

    {

        Bear::print(os);        // print the Bear part

        Endangered::print(os);  // print the Endangered part
        return os;
    }

Code for Exercises to Section 17.3.4

   struct Base1 {
       void print(int) const;
    protected:
       int    ival;
       double dval;
       char   cval;
    private:
        int   *id;
    };
    struct Base2 {
        void print(double) const;
    protected:
        double fval;
    private:
        double dval;
    };
    struct Derived : public Base1 {
        void print(std::string) const;
    protected:
        std::string sval;
        double      dval;



    };
    struct MI : public Derived, public Base2 {
        void print(std::vector<double>);
    protected:
        int                  *ival;
        std::vector<double>  dvec;
    };

Exercises Section 17.3.4

Exercise
17.29:

Given the class hierarchy in the box on this page and the
following MI::foo member function skeleton,

    int ival;
    double dval;

    void MI::foo(double dval) { int id; /* ... */ }

identify the member names visible from within MI . Are
there any names visible from more than one base class?

a.

identify the set of members visible from within MI::foo .b.

Exercise
17.30:

Given the hierarchy in the box on page 739 , why is this call to
print an error?

    MI mi;
    mi.print(42);

Revise MI to allow this call to print to compile and execute
correctly.

Exercise
17.31:

Using the class hierarchy in the box on page 739 , identify which
of the following assignments, if any, are in error:

    void MI::bar() {
        int sval;
        // exercise questions occur here ...
    }
    (a) dval = 3.14159;   (d) fval = 0;
    (b) cval = 'a';       (e) sval = *ival; (c) id = 1;



Exercise
17.32:

Using the class hierarchy defined in the box on page 739 and the
following skeleton of the MI::foobar member function

    void MI::foobar(double cval)
    {
        int dval;
        // exercise questions occur here ...
    }

assign to the local instance of dval the sum of the dval
member of Base1 and the dval member of Derived .

a.

assign the value of the last element in MI::dvec to
Base2::fval .

b.

assign cval from Base1 to the first character in sval from
Derived .

c.

17.3.5. Virtual Inheritance

Under multiple inheritance, a base class can occur multiple times in the derivation hierarchy. In
fact, our programs have already used a class that inherits from the same base class more than
once through its inheritance hierarchy.

Each of the IO library classes inherits from a common abstract base class. That abstract class
manages the condition state of the stream and holds the buffer that the stream reads or writes.
The istream and ostream classes inherit directly from this common base class. The library defines
another class, named iostream , that inherits from both istream and ostream . The iostream class
can both read and write a stream. A simplified version of the IO inheritance hierarchy is illustrated
in Figure 17.3 on the facing page.

Figure 17.3. Virtual Inheritance iostream Hierarchy (Simplified)



As we know, a multiply inherited class inherits state and action from each of its parents. If the IO
types used normal inheritance, then each iostream object would contain two ios subobjects: one
instance contained within its istream subobject and the other within its ostream subobject. From a
design perspective, this implementation is just wrong: The iostream class wants to read to and
write from a single buffer; it wants the condition state to be shared across input and output
operations. If there are two separate ios objects, this sharing is not possible.

In C++ we solve this kind of problem by using virtual inheritance . Virtual inheritance is a
mechanism whereby a class specifies that it is willing to share the state of its virtual base class.
Under virtual inheritance, only one, shared base-class subobject is inherited for a given virtual
base regardless of how many times the class occurs as a virtual base within the derivation
hierarchy. The shared base-class subobject is called a virtual base class .

The istream and ostream classes inherit virtually from their base class. By making their base class
virtual, istream and ostream specify that if some other class, such as iostream , inherits from both
of them, then only one copy of their common base class will be present in the derived class. We
make a base class virtual by including the keyword virtual in the derivation list:

    class istream : public virtual ios { ... };
    class ostream : virtual public ios { ... };

    // iostream inherits only one copy of its ios base class
    class iostream: public istream, public ostream { ... };

A Different Panda Class

For the purposes of illustrating virtual inheritance, we'll continue to use the Panda class as a
pedagogical example. Within zoological circles, for more than 100 years there has been an
occasionally fierce debate as to whether the Panda belongs to the Raccoon or the Bear family.
Because software design is primarily a service industry, our most practical solution is to derive
Panda from both:

    class Panda : public Bear,
                  public Raccoon, public Endangered {
    };

Our virtual inheritance Panda hierarchy is pictured in Figure 17.4 . If we examine that hierarchy,
we notice a nonintuitive aspect of virtual inheritance: The virtual derivation (in our case, of Bear
and Raccoon ) has to be made prior to any actual need for it to be present. Virtual inheritance
becomes necessary only with the declaration of Panda , but if Bear and Raccoon are not already
virtually derived, the designer of the Panda class is out of luck.

Figure 17.4. Virtual Inheritance Panda Hierarchy



In practice, the requirement that an intermediate base class specify its inheritance as virtual rarely
causes any problems. Ordinarily, a class hierarachy that uses virtual inheritance is designed at one
time by either one individual or a project design group. It is exceedingly rare for a class to be
developed independently that needs a virtual base in one of its base classes and in which the
developer of the new base class cannot change the existing hierarchy.

17.3.6. Virtual Base Class Declaration

A base class is specified as being derived through virtual inheritance by modifying its declaration
with the keyword virtual . For example, the following declarations make ZooAnimal a virtual base
class of both Bear and Raccoon :

    // the order of the keywords public and virtual is not significant
    class Raccoon : public virtual ZooAnimal { /* ... */ };
    class Bear : virtual public ZooAnimal { /* ... */ };

Specifying virtual derivation has an impact only in classes derived
from the class that specifies a virtual base. Rather than affecting
objects of the derived class' own type, it is a statement about the
derived class' relationship to its own, future derived class.

The virtual specifier states a willingness to share a single instance of the named base class within
a subsequently derived class.

Any class that can be specified as a base class also could be specified as a virtual base class. A
virtual base may contain any class element normally supported by a nonvirtual base class.

Normal Conversions to Base Are Supported

An object of the derived class can be manipulated as usual through a pointer or a reference to a
base-class type even though the base class is virtual. For example, all of the following Panda base



class conversions execute correctly even though Panda inherits its ZooAnimal part as a virtual base:

    void dance(const Bear*);
    void rummage(const Raccoon*);
    ostream& operator<<(ostream&, const ZooAnimal&);
    Panda ying_yang;

    dance(&ying_yang);   // ok: converts address to pointer to Bear

    rummage(&ying_yang); // ok: converts address to pointer to Raccoon

    cout << ying_yang;   // ok: passes ying_yang as a ZooAnimal

Visibility of Virtual Base-Class Members

Multiple-inheritance hierarchies using virtual bases pose fewer ambiguity problems than do those
without virtual inheritance.

Members in the shared virtual base can be accessed unambiguously
and directly. Similarly, if a member from the virtual base is redefined
along only one derivation path, then that redefined member can be
accessed directly. Under a nonvirtual derivation, both kinds of access
would be ambiguous.

Assume a member named X is inherited through more than one derivation path. There are three
possibilities:

If in each path X represents the same virtual base class member, then there is no ambiguity
because a single instance of the member is shared.

1.

If in one path X is a member of the virtual base class member and in another path X is a
member of a subsequently derived class, there is also no ambiguitythe specialized derived
class instance is given precedence over the shared virtual base class instance.

2.

If along each inheritance path X represents a different member of a subsequently derived
class, then the direct access of the member is ambiguous.

3.

As in a nonvirtual multiple inheritance hierarchy, ambiguities of this sort are best resolved by the
class providing an overriding instance in the derived class.



Exercises Section 17.3.6

Exercise
17.33:

Given the following class hierarchy, which inherited members
can be accessed without qualification from within the VMI class?
Which require qualification? Explain your reasoning.

    class Base {
    public:
        bar(int);
    protected:
        int ival;
    };
    class Derived1 : virtual public Base {
    public:
        bar(char);
        foo(char);
    protected:
        char cval;
    };
    class Derived2 : virtual public Base {
    public:
        foo(int);
    protected:
        int ival;
        char cval;
    };
    class VMI : public Derived1, public Derived2 { };

17.3.7. Special Initialization Semantics

Ordinarily each class initializes only its own direct base class(es). This initialization strategy fails
when applied to a virtual base class. If the normal rules were used, then the virtual base might be
initialized multiple times. The class would be initialized along each inheritance path that contains
the virtual base. In our ZooAnimal example, using normal initialization rules would result in both
Bear and Raccoon attempting to initialize the ZooAnimal part of a Panda object.

To solve this duplicate-initialization problem, classes that inherit from a class that has a virtual
base have special handling for initialization. In a virtual derivation, the virtual base is initialized by
the most derived constructor . In our example, when we create a Panda object, the Panda
constructor alone controls how the ZooAnimal base class is initialized.

Although the virtual base is initialized by the most derived class, any classes that inherit
immediately or indirectly from the virtual base usually also have to provide their own initializers
for that base. As long as we can create independent objects of a type derived from a virtual base,
that class must initialize its virtual base. These initializers are used only when we create objects of
the intermediate type.

In our hierarchy, we could have objects of type Bear, Raccoon , or Panda . When a Panda is



created, it is the most derived type and controls initialization of the shared ZooAnimal base. When
a Bear (or a Raccoon ) is created, there is no further derived type involved. In this case, the Bear
(or Raccoon ) constructors directly initialize their ZooAnimal base as usual:

    Bear::Bear(std::string name, bool onExhibit):
             ZooAnimal(name, onExhibit, "Bear") { }
    Raccoon::Raccoon(std::string name, bool onExhibit)
           : ZooAnimal(name, onExhibit, "Raccoon") { }

The Panda constructor also initializes the ZooAnimal base, even though it is not an immediate base
class:

    Panda::Panda(std::string name, bool onExhibit)
          : ZooAnimal(name, onExhibit, "Panda"),
            Bear(name, onExhibit),
            Raccoon(name, onExhibit),
            Endangered(Endangered::critical),
            sleeping_flag(false) { }

When a Panda is created, it is this constructor that initializes the ZooAnimal part of the Panda
object.

How a Virtually Inherited Object Is Constructed

Let's look at how objects under virtual inheritance are constructed.

Bear winnie("pooh");    // Bear constructor initializes ZooAnimal

Raccoon meeko("meeko"); // Raccoon constructor initializes ZooAnimal

Panda yolo("yolo");     // Panda constructor initializes ZooAnimal

When a Panda object is created,

The ZooAnimal part is constructed first, using the initializers specified in the Panda constructor
initializer list.

1.

Next, the Bear part is constructed. The initializers for ZooAnimal Bear 's constructor initializer
list are ignored.

2.

Then the Raccoon part is constructed, again ignoring the ZooAnimal initializers.3.

Finally, the Panda part is constructed.4.

If the Panda constructor does not explicitly initialize the ZooAnimal base class, then the ZooAnimal
default constructor is used. If ZooAnimal doesn't have a default constructor, then the code is in
error. The compiler will issue an error message when the definition of Panda 's constructor is
compiled.



Constructor and Destructor Order

Virtual base classes are always constructed prior to nonvirtual base
classes regardless of where they appear in the inheritance hierarchy.

For example, in the following whimsical TeddyBear derivation, there are two virtual base classes:
the ToyAnimal base class and the indirect ZooAnimal base class from which Bear is derived:

   class Character { /* ... */ };
   class BookCharacter : public Character { /* ... */ };
   class ToyAnimal { /* ... */ };
   class TeddyBear : public BookCharacter,
                     public Bear, public virtual ToyAnimal
                     { /* ... */ };

Figure 17.5. Virtual Inheritance TeddyBear Hierarchy

The immediate base classes are examined in declaration order to determine whether there are any
virtual base classes. In our example, the inheritance subtree of BookCharacter is examined first,
then that of Bear , and finally that of ToyAnimal . Each subtree is examined starting at the root
class down to the most derived class.

The order in which the virtual base classes are constructed for TeddyBear is ZooAnimal followed by
ToyAnimal . Once the virtual base classes are constructed, the nonvirtual base-class constructors
are invoked in declaration order: BookCharacter , which causes the Character constructor to be
invoked, and then Bear . Thus, to create a TeddyBear , the constructors are invoked in the
following order:

    ZooAnimal();           // Bear's virtual base class



    ToyAnimal();           // immediate virtual base class

    Character();           // BookCharacter's nonvirtual base class
    BookCharacter();       // immediate nonvirtual base class
    Bear();                // immediate nonvirtual base class
    TeddyBear();           // most derived class

where the initializers used for ZooAnimal and ToyAnimal are specified by the most derived class
TeddyBear .

The same construction order is used in the synthesized copy constructor; the base classes also are
assigned in this order in the synthesized assignment operator. The order of base-class destructor
calls is guaranteed to be the reverse order of constructor invocation.

Exercises Section 17.3.7

Exercise
17.34:

There is one case in which a derived class need not supply
initializers for its virtual base class(es). What is this case?

Exercise
17.35:

Given the following class hierarchy,

    class Class { ... };
    class Base : public Class { ... };
    class Derived1 : virtual public Base { ... };
    class Derived2 : virtual public Base { ... };
    class MI : public Derived1,
               public Derived2 { ... };
    class Final : public MI, public Class { ... };

What is the order of constructor and destructor for the
definition of a Final object?

a.

How many Base subobjects are in a Final object? How
many Class subobjects?

b.

Which of the following assignments is a compile-time error?c.

    Base     *pb;      Class     *pc;
    MI       *pmi;     Derived2  *pd2;

    (a) pb = new Class;           (c) pmi = pb;
    (b) pc = new Final;           (d) pd2 = pmi;

Exercise
17.36:

Given the previous hierarchy, and assuming that Base defines
the following three constructors, define the classes that inherit
from Base , giving each class the same three constructors. Each
constructor should use its argument to initialize its Base part.



    struct Base {
        Base();
        Base(std::string);
        Base(const Base&);
    protected:
        std::string name;
    };

 



 

Chapter Summary

Most of C++ is applicable to a wide range of problemsfrom those solvable in a few hour's time
to those that take years of development by large teams. Some features in C++ are most
applicable in the context of large-scale problems: exception handling, namespaces, and multiple
or virtual inheritance.

Exception handling lets us separate the error-detection part of the program from the error-
handling part. Section 6.13 (p. 215 ) introduced exception handling and this chapter completes
our coverage of exceptions. When an exception is thrown, the current executing function is
suspended and a search is started to find the nearest catch clause. Local variables defined
inside functions that are exited while searching for a catch clause are destroyed as part of
handling the exception. The fact that objects are destroyed gives rise to an important
programming technique known as "resource allocation is initialization" (RAII).

Namespaces are a mechanism for managing large complex applications built from code
produced by independent suppliers. A namespace is a scope in which objects, types, functions,
template, and other namespaces may be defined. The standard library is defined inside the
namespace named std .

Names in a namespace may be made available to the current scope one at a time via a using
declaration. Alternatively, but much less safely, all the names in a namespace may be brought
into the current scope via a using directive.

Conceptually, multiple inheritance is a simple notion: A derived class may inherit from more
than one direct base class. The derived object consists of the derived part and a base part
contributed by each of its base classes. Although conceptually simple, the details can be more
complicated. In particular, inheriting from multiple base classes introduces new possiblities for
name collisions and resulting ambiguous references to names from the base part of an object.

When a class inherits from more than one immediate base class, it is possible that those classes
may themselves share another base class. In cases such as this, the intermediate classes can
opt to make their inheritance virtual, which states a willingness to share its virtual base class
with other classes in the hierarchy that inherit virtually from that same base class. In this way
there is only one copy of the shared virtual base in a subsequently derived class.

 



 

Defined Terms

abort

Library function that abnormally terminates a program's execution. Ordinarily, abort is
called by terminate . Programs may also call abort directly. It is defined in the cstdlib
header.

auto_ptr

Library class template that provides exception-safe access to dynamically allocated
objects. An auto_ptr cannot be bound to an array or a pointer to a variable. Copying and
assigning an auto_ptr is a destructive operation: Ownership of the object is transferred
from the right-hand operand to the left. Assigning to an auto_ptr deletes the object in the
left-hand operand. As a result, auto_ptrs may not be stored in containers.

catch-all

A catch clause in which the exception specifier is (...) . A catch-all clause catches an
exception of any type. It is typically used to catch an exception that is detected locally in
order to do local cleanup. The exception is then rethrown to another part of the program
to deal with the under-lying cause of the problem.

catch clause

The part of the program that handles an exception. A catch clause consists of the keyword
catch followed by an exception specifier and a block of statements. The code inside a
catch does whatever is necessary to handle an exception of the type defined in its
exception specifier.

constructor order

Ordinarily, base classes are constructed in the order in which they are named in the class
derivation list. A derived constructor should explicitly initialize each base class through the
constructor initializer list. The order in which base classes are named in the constructor
initializer list does not affect the order in which the base classes are constructed. In a
virtual inheritance, the virtual base class(es) are constructed before any other bases. They
are constructed in the order in which they appear (directly or indirectly) in the derivation
list of the derived type. Only the most derived type may initialize a virtual base;
constructor initializers for that base that appear in the intermediate base classes are
ignored.

destructor order



Derived objects are destroyed in the reverse order from which they were constructedthe
derived part is destroyed first, then the classes named in the class derivation list are
destroyed, starting with the last base class. Classes that serve as base classes in a
multiple-inheritance hierarchy ordinarily should define their destructors to be virtual.

exception handler

Another way to refer to a catch clause.

exception handling

Language-level support for managing run-time anomalies. One independently developed
section of code can detect and "raise" an exception that another independently developed
part of the program can "handle." The error-detecting part of the program throws an
exception; the error-handling part handles the exception in a catch clause of a try block.

exception object

Object used to communicate between the throw and catch sides of an exception. The
object is created at the point of the throw and is a copy of the thrown expression. The
exception object exists until the last handler for the exception completes. The type of the
object is the type of the thrown expression.

exception safe

Term used to describe programs that behave correctly when exceptions are thrown.

exception specification

Used on a function declaration to indicate what (if any) exception types a function throws.
Exception types are named in a parenthesized, comma-separated list following the
keyword throw , which appears after a function's parameter list. An empty list means that
the function throws no exceptions. A function that has no exception specification may
throw any exception.

exception specifier

Specifies the types of exceptions that a given catch clause will handle. An exception
specifier acts like a parameter list, whose single parameter is initialized by the exception
object. Like parameter passing, if the exception specifier is a nonreference type, then the
exception object is copied to the catch .

file static

Name local to a file that is declared with the static keyword. In C and pre-Standard
versions of C++, file statics were used to declare objects that could be used in a single file



only. File statics are deprecated in C++, having been replaced by the use of unnamed
namespaces.

function try block

A try block that is a function body. The keyword try occurs before the opening curly of
the function body and closes with catch clause(s) that appear after the close curly of the
function body. Function try blocks are used most often to wrap constructor definitions in
order to catch exceptions thrown by constructor initializers.

global namespace

The (implicit) name-space in each program that holds all global definitions.

multiple inheritance

Inheritance in which a class has more than one immediate base class. The derived class
inherits the members of all its base classes. Multiple base classes are defined by naming
more than one base class in the class derivation list. A separate access label is required
for each base class.

namespace

Mechanism for gathering all the names defined by a library or other collection of programs
into a single scope. Unlike other scopes in C++, a namespace scope may be defined in
several parts. The namepsace may be opened and closed and reopened again in disparate
parts of the program.

namespace alias

Mechanism for defining a synonym for a given namespace:

namespace N1 = N;

defines N1 as another name for the name-space named N . A namespace can have multiple
aliases, and the namespace name or one of its aliases may be used interchangeably.

namespace pollution

Term used to describe what happens when all the names of classes and functions are
placed in the global namespace. Large programs that use code written by multiple
independent parties often encounter collisions among names if these names are global.

raise



Often used as a synonym for throw. C++ programmers speak of "throwing" or "raising"
an exception interchangably.

rethrow

An empty throw a throw that does not specify an expression. A rethrow is valid only from
inside a catch clause, or in a function called directly or indirectly from a catch . Its effect
is to rethrow the exception object that it received.

scope operator

Operator used to access names from a namespace or a class.

stack unwinding

Term used to describe the process whereby the functions leading to a thown exception are
exited in the search for a catch . Local objects constructed before the exception are
destroyed before entering the corresponding catch .

terminate

Library function that is called if an exception is not caught or if an exception occurs while
a handler is in process. Usually calls abort to end the program.

throw e

Expression that interrupts the current execution path. Each throw TRansfers control to the
nearest enclosing catch clause that can handle the type of exception that is thrown. The
expression e is copied into the exception object.

try block

A block of statements enclosed by the keyword try and one or more catch clauses. If the
code inside the try block raises an exception and one of the catch clauses matches the
type of the exception, then the exception is handled by that catch. Otherwise, the
exception is passed out of the try to a catch further up the call chain.

unexpected

Library function that is called if an exception is thrown that violates the exception
specification of a function.

unnamed namespace



A namespace that is defined without a name. Names defined in an unnamed namespace
may be accessed directly without use of the scope operator. Each file has its own unique
unnamed namespace. Names in the file are not visible outside that file.

using declaration

Mechanism to inject a single name from a namespace into the current scope:

using std::cout;

makes the name cout from the namespace std available in the current scope. The name cout
can be used without the std:: qualifier.

using directive

Mechanism for making all the names in a namespace available in the nearest scope
containing both the using directive and the namespace itself.

virtual base class

A base class that was inherited using the virtual keyword. A virtual base part occurs only
once in a derived object even if the same class appears as a virtual base more than once
in the hierarchy. In nonvirtual inheritance a constructor may only initialize its immediate
base class(es). When a class is inherited virtually, that class is initialized by the most
derived class, which therefore should include an initializer for all of its virtual parent(s).

virtual inheritance

Form of multiple inheritance in which derived classes share a single copy of a base that is
included in the hierarchy more than once.
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The first four parts of this book discussed how to use those parts of C++ that are generally
useful. Those features are likely to be used at some point by almost all C++ programmers. In
addition, C++ defines some features that are more specialized. Many programmers will never
(or only rarely) need to use these features presented in this chapter.

 



 

18.1. Optimizing Memory Allocation

Memory allocation in C++ is a typed operation: new (Section 5.11 , p. 174 ) allocates memory
for a specified type and constructs an object of that type in the newly allocated memory. A new
expression automatically runs the appropriate constructor to initialize each dynamically
allocated object of class type.

The fact that new allocates memory on a per-object basis can impose unacceptable run-time
overhead on some classes. Such classes might need to make user-level allocation of objects of
the class type faster. A common strategy such classes use is to preallocate memory to be used
when new objects are created, constructing each new object in preallocated memory as needed.

Other classes want to minimize allocations needed for their own data members. For example,
the library vector class preallocates (Section 9.4 , p. 330 ) extra memory to hold additional
elements if and when they are added. New elements are added in this reserved capacity.
Preallocating elements allows vector to efficiently add elements while keeping the elements in
contiguous memory.

In each of these casespreallocating memory to hold user-level objects or to hold the internal
data for a classthere is the need to decouple memory allocation from object construction. The
obvious reason to decouple allocation and construction is that constructing objects in
preallocated memory is wasteful. Objects may be created that are never used. Those objects
that are used must be reassigned new values when the preallocated object is actually used.
More subtly, some classes could not use preallocated memory if it had to be constructed. As an
example, consider vector , which uses a preallocation strategy. If objects in preallocated
memory had to be constructed, then it would not be possible to have vector s of types that do
not have a default constructorthere would be no way for vector to know how to construct these
objects.

The techniques presented in this section are not guaranteed to
make all programs faster. Even when they do improve
performance, they may carry other costs such as space usage or
difficulty of debugging. It is always best to defer optimization until
the program is known to work and when run-time measurements
indicate that improving memory allocation will solve known
performance problems.

18.1.1. Memory Allocation in C++

In C++ memory allocation and object construction are closely intertwined, as are object
destruction and memory deallocation. When we use a new expression, memory is allocated, and
an object is constructed in that memory. When we use a delete expression, a destructor is
called to destroy the object and the memory used by the object is returned to the system.

When we take over memory allocation, we must deal with both these tasks. When we allocate
raw memory, we must construct object(s) in that memory. Before freeing that memory, we



must ensure that the objects are properly destroyed.

Assigning to an object in unconstructed memory rather than
initializing it is undefined. For many classes, doing so causes a
crash at run time. Assignment involves obliterating the existing
object. If there is no existing object, then the actions in the
assignment operator can have disastrous effects.

C++ provides two ways to allocate and free unconstructed, raw memory:

The allocator class , which provides type-aware memory allocation. This class supports

an abstract interface to allocating memory and subsequently using that memory to hold
objects.

1.

The library operator new and operator delete functions, which allocate and free raw,
untyped memory of a requested size.

2.

C++ also provides various ways to construct and destroy objects in raw memory:

The allocator class defines members named construct and destroy , which operate as
their names suggest. The construct member initializes objects in unconstructed memory;
the destroy member runs the appropriate destructor on objects.

1.

The placement new expression takes a pointer to unconstructed memory and initializes an
object or an array in that space.

2.

We can directly call an object's destructor to destroy the object. Running the destructor
does not free the memory in which the object resides.

3.

The algorithms uninitialized_fill and uninitialized_copy execute like the fill and copy
algorithms except that they construct objects in their destination rather than assigning to
them.

4.

Modern C++ programs ordinarily ought to use the allocator class
to allocate memory. It is safer and more flexible. However, when
constructing objects, the placement new expression is more flexible
than the allocator::construct member. There are some cases
where placement new must be used.

18.1.2. The allocator Class



The allocator class is a template that provides typed memory allocation and object
construction and destruction. Table 18.1 on the following page outlines the operations that
allocator supports.

Table 18.1. Standard allocator Class and Customized
Algorithms

allocator<T> a; Defines an allocator object named a that
can allocate memory or construct objects of
type T .

a.allocate(n) Allocates raw, unconstructed memory to hold
n objects of type T .

a.deallocate(p, n) Deallocates memory that held n objects of
type T starting at address contained in the T*
pointer named p . It is the user's
responsibility to run destroy on any objects
that were constructed in this memory before
calling deallocate .

a.construct(p, t) Constructs a new element in the memory
pointed to by the T* pointer p . The copy
constructor of type T is run to initialize the
object from t .

a.destroy(p) Runs the destructor on the object pointed to
by the T* pointer p .

uninitialized_copy(b, e, b2)

  Copies elements from the input range
denoted by iterators b and e into
unconstructed, raw memory beginning at
iterator b2 . The function constructs elements
in the destination, rather than assigning
them. The destination denoted by b2 is
assumed large enough to hold a copy of the
elements in the input range.

uninitialized_fill(b, e, t)

  Initializes objects in the range denoted by
iterators b and e as a copy of t . The range is
assumed to be unconstructed, raw memory.
The objects are constructed using the copy
constructor.

uninitialized_fill_n(b, e, t, n)

  Initializes at most an integral number n
objects in the range denoted by iterators b
and e as a copy of t . The range is assumed
to be at least n elements in size. The objects
are constructed using the copy constructor.



The allocator class separates allocation and object construction. When an allocator object
allocates memory, it allocates space that is appropriately sized and aligned to hold objects of
the given type. However, the memory it allocates is unconstructed. Users of allocator must
separately construct and destroy objects placed in the memory it allocates.

Using allocator to Manage Class Member Data

To understand how we might use a preallocation strategy and the allocator class to manage
the internal data needs of a class, let's think a bit more about how memory allocation in the
vector class might work.

Recall that the vector class stores its elements in contiguous storage. To obtain acceptable
performance, vector preallocates more elements than are needed (Section 9.4 , p. 330 ). Each
vector member that adds elements to the container checks whether there is space available for
another element. If so, then the member initializes an object in the next available spot in
preallocated memory. If there isn't a free element, then the vector is reallocated: The vector
obtains new space, copies the existing elements into that space, adds the new element, and
frees the old space.

The storage that vector uses starts out as unconstructed memory; it does not yet hold any
objects. When the elements are copied to or added in this preallocated space, they must be
constructed using the construct member of allocator .

To illustrate these concepts we'll implement a small portion of vector . We'll name our class
Vector to distinguish it from the standard vector class:

     // pseudo-implementation of memory allocation strategy for a vector-like class
     template <class T> class Vector {
     public:
         Vector(): elements(0), first_free(0), end(0) { }
         void push_back(const T&);
          // ...
     private:
         static std::allocator<T> alloc; // object to get raw memory
         void reallocate(); // get more space and copy existing elements
         T* elements;       // pointer to first element in the array
         T* first_free;     // pointer to first free element in the array
         T* end;            // pointer to one past the end of the array
         // ...
     };

Each Vector<T> type defines a static data member of type allocator<T> to allocate and
construct the elements in Vector s of the given type. Each Vector object keeps its elements in a
built-in array of the indicated type and maintains three pointers into that array:

elements , which points to the first element in the array

first_free , which points just after the last actual element

end , which points just after the end of the array itself

Figure 18.1 illustrates the meaning of these pointers.



Figure 18.1. Vector Memory Allocation Strategy

We can use these pointers to determine the size and capacity of the Vector :

The size of a Vector (the number of elements actually in use) is equal to first_free
elements .

The capacity of a Vector (the total number of elements that could be defined before the
Vector has to be reallocated) is equal to end elements .

The free capacity (the number of elements that can be added before a reallocation is
necessary) is end first_free .

Using construct

The push_back member uses these pointers to add a new element to the end of the Vector :

     template <class T>
     void Vector<T>::push_back(const T& t)
     {
         // are we out of space?
         if (first_free == end)
           reallocate(); // gets more space and copies existing elements to it
         alloc.construct(first_free, t);
         ++first_free;
     }

The push_back function starts by determining whether there is space available. If not, it calls
reallocate . That member allocates new space and copies the existing elements. It resets the
pointers to point to the newly allocated space.

Once push_back knows that there is room for the new element, it asks the allocator object to
construct a new last element. The construct function uses the copy constructor for type T to
copy the value t into the element denoted by first_free . It then increments first_free to
indicate that one more element is in use.

Reallocating and Copying Elements

The reallocate function has the most work to do:

     template <class T> void Vector<T>::reallocate()
     {



         // compute size of current array and allocate space for twice as many elements
         std::ptrdiff_t size = first_free - elements;
         std::ptrdiff_t newcapacity = 2 * max(size, 1);

         // allocate space to hold newcapacity number of elements of type T
         T* newelements = alloc.allocate(newcapacity);

         // construct copies of the existing elements in the new space
         uninitialized_copy(elements, first_free, newelements);
         // destroy the old elements in reverse order
         for (T *p = first_free; p != elements; /* empty */ )
            alloc.destroy(--p);

         // deallocate cannot be called on a 0 pointer
         if (elements)
             // return the memory that held the elements
             alloc.deallocate(elements, end - elements);
         // make our data structure point to the new elements
         elements = newelements;
         first_free = elements + size;
         end = elements + newcapacity;
     }

We use a simple but surprisingly effective strategy of allocating twice as much memory each
time we reallocate. The function starts by calculating the current number of elements in use,
doubling that number, and asking the allocator object to obtain the desired amount of space. If
the Vector is empty, we allocate two elements.

If Vector holds int s, the call to allocate allocates space for newcapacity number of int s. If it
holds string s, then it allocates that space for the given number of string s.

The call to uninitialized_copy uses a specialized version of the standard copy algorithm. This
version expects its destination to be raw, unconstructed memory. Rather than assigning
elements from the input range to the destination, it copy-constructs each element in the
destination. The copy constructor for T is used to copy each element from the input range to the
destination.

The for loop calls the allocator member destroy on each object in the old array. It destroys
the elements in reverse order, starting with the last element in the array and finishing with the
first. The destroy function runs the destructor for type T to free any resources used by the old
elements.

Once the elements have been copied and destroyed, we free the space used by the original
array. We must check that elements actually pointed to an array before calling deallocate .

deallocate expects a pointer that points to space that was allocated
by allocate . It is not legal to pass deallocate a zero pointer.

Finally, we have to reset the pointers to address the newly allocated and initialized array. The



first_free and end pointers are set to denote one past the last constructed element and one
past the end of the allocated space, respectively.

Exercises Section 18.1.2

Exercise
18.1:

Implement your own version of the Vector class including
versions of the vector members reserve (Section 9.4 , p. 330
), resize (Section 9.3.5 , p. 323 ), and the const and nonconst
subscript operators (Section 14.5 , p. 522 ).

Exercise
18.2:

Define a typedef that uses the corresponding pointer type as
the iterator for your Vector .

Exercise
18.3:

To test your Vector class, reimplement earlier programs you
wrote using vector to use Vector instead.

18.1.3. operator new and operator delete Functions

The previous subsection used the vector class to show how we could use the allocator class to
manage a pool of memory for a class' internal data storage. In the next three subsections we'll
look at how we might implement the same strategy using the more primitive library facilities.

First, we need to understand a bit more about how new and delete expressions work. When we
use a new expression

     // new expression
     string * sp = new string("initialized");

three steps actually take place. First, the expression calls a library function named operator new

to allocate raw, untyped memory large enough to hold an object of the specified type. Next, a
constructor for the type is run to construct the object from the specified initializers. Finally, a
pointer to the newly allocated and constructed object is returned.

When we use a delete expression to delete a dynamically allocated object:

     delete sp;

two steps happen. First, the appropriate destructor is run on the object to which sp points.
Then, the memory used by the object is freed by calling a library function named operator
delete .



Terminology: new Expression versus operator new Function

The library functions operator new and operator delete are misleadingly
named. Unlike other operator functions, such as operator= , these functions
do not overload the new or delete expressions. In fact, we cannot redefine
the behavior of the new and delete expressions.

A new expression executes by calling an operator new function to obtain
memory and then constructs an object in that memory. A delete expression
executes by destroying an object and then calls an operator delete function

to free the memory used by the object.

Because the new (or delete ) expressions and the

underlying library functions have the same name,
it is easy to confuse the two.

The operator new and operator delete Interface

There are two overloaded versions of operator new and operator delete functions. Each version
supports the related new and delete expression:

     void *operator new(size_t);       // allocate an object
     void *operator new[](size_t);     // allocate an array

     void *operator delete(void*);     // free an object
     void *operator delete[](void*);   // free an array

Using the Allocation Operator Functions

Although the operator new and operator delete functions are intended to be used by new
expressions, they are generally available functions in the library. We can use them to obtain
unconstructed memory. They are somewhat analogous to the allocate and deallocate
members of the allocator class. For example, instead of using an allocator , we could have
used the operator new and operator delete functions in our Vector class. When we allocated
new space we wrote

     // allocate space to hold newcapacity number of elements of type T
     T* newelements = alloc.allocate(newcapacity);



which could be rewritten as

     // allocate unconstructed memory to hold newcapacity elements of type T
     T* newelements = static_cast<T*>
                    (operator new[](newcapacity * sizeof(T)));

Similarly, when we deallocated the old space pointed to be the Vector member elements we
wrote

     // return the memory that held the elements
     alloc.deallocate(elements, end - elements);

which could be rewritten as

     // deallocate the memory that they occupied
     operator delete[](elements);

These functions behave similarly to the allocate and deallocate members of the allocator
class. However, they differ in one important respect: They operate on void* pointers rather than
typed pointers.

In general, it is more type-safe to use an allocator rather
than using the operator new and operator delete functions
directly.

The allocate member allocates typed memory, so programs that use it can avoid the necessity
of calculating the byte-count amount of memory needed. They also can avoid casting (Section
5.12.4 , p. 183 ) the return from operator new . Similarly, deallocate frees memory of a specific
type, again avoiding the necessity for converting to void* .

18.1.4. Placement new Expressions

The library functions operator new and operator delete are lower-level versions of the
allocator members allocate and deallocate . Each allocates but does not initialize memory.

There are also lower-level alternatives to the allocator members construct and destroy . These
members initialize and destroy objects in space allocated by an allocator object.



Analogous to the construct member, there is a third kind of new expression, referred to as
placement new . The placement new expression initializes an object in raw memory that was

already allocated. It differs from other versions of new in that it does not allocate memory.
Instead, it takes a pointer to allocated but unconstructed memory and initializes an object in
that memory. In effect, placement new allows us to construct an object at a specific,
preallocated memory address.

The form of a placement new expression is:

     new (place_address) type

     new (place_address) type (initializer-list)

where place_address must be a pointer and the initializer-list provides (a possibly empty) list of
initializers to use when constructing the newly allocated object.

We could use a placement new expression to replace the call to construct in our Vector
implementation. The original code

     // construct a copy t in the element to which first_free points
     alloc.construct (first_free, t);

would be replaced by the equivalent placement new expression

     // copy t into element addressed by first_free
     new (first_free) T(t);

Placement new expressions are more flexible than the construct member of class allocator .
When placement new initializes an object, it can use any constructor, and builds the object
directly. The construct function always uses the copy constructor.

For example, we could initialize an allocated but unconstructed string from a pair of iterators in
either of these two ways:

     allocator<string> alloc;

     string *sp = alloc.allocate(2); // allocate space to hold 2 strings
     // two ways to construct a string from a pair of iterators
     new (sp) string(b, e);                    // construct directly in place
     alloc.construct(sp + 1, string(b, e));   // build and copy a temporary

The placement new expression uses the string constructor that takes a pair of iterators to
construct the string directly in the space to which sp points. When we call construct , we must
first construct the string from the iterators to get a string object to pass to construct . That
function then uses the string copy constructor to copy that unnamed, temporary string into the
object to which sp points.

Often the difference is irrelevant: For valuelike classes, there is no observable difference



between constructing the object directly in place and constructing a temporary and copying it.
And the performance difference is rarely meaningful. But for some classes, using the copy
constructor is either impossible (because the copy constructor is private) or should be avoided.
In these cases, use of placement new may be necessary.

18.1.5. Explicit Destructor Invocation

Just as placement new is a lower-level alternative to using the allocate member of the
allocator class, we can use an explicit call to a destructor as the lower-level alternative to
calling destroy .

Exercises Section 18.1.4

Exercise
18.4:

Why do you think construct is limited to using only the copy
constructor for the element type?

Exercise
18.5:

Why can placement new expressions be more flexible?

In the version of Vector that used an allocator , we clean up each element by calling destroy :

     // destroy the old elements in reverse order
     for (T *p = first_free; p != elements; /* empty */ )
         alloc.destroy(--p);

For programs that use a placement new expression to construct the object, we call the
destructor explicitly:

     for (T *p = first_free; p != elements; /* empty */ )
         p->~T(); // call the destructor

Here we invoke a destructor directly. The arrow operator dereferences the iterator p to obtain
the object to which p points. We then call the destructor, which is the name of the type
preceded by a tilde (~ ).

The effect of calling the destructor explicitly is that the object itself is properly cleaned up.
However, the memory in which the object resided is not freed. We can reuse the space if
desired.



Calling the operator delete function does not run the destructor; it
only frees the indicated memory.

Exercises Section 18.1.5

Exercise
18.6:

Reimplement your Vector class to use operator new, operator
delete , placement new , and direct calls to the destructor.

Exercise
18.7:

Test your new version by running the same programs that you
ran against your initial Vector implementation.

Exercise
18.8:

Which version do you think is better, and why?

18.1.6. Class Specific new and delete

The previous subsections looked at how a class can take over memory management for its own
internal data structure. Another way to optimize memory allocation involves optimizing the
behavior of new expressions. As an example, consider the Queue class from Chapter 16 . That
class doesn't hold its elements directly. Instead, it uses new expressions to allocate objects of
type QueueItem .

It might be possible to improve the performance of Queue by preallocating a block of raw
memory to hold QueueItem objects. When a new QueueItem object is created, it could be
constructed in this preallocated space. When QueueItem objects are freed, we'd put them back in
the block of preallocated objects rather than actually returning memory to the system.

The difference between this problem and our Vector implementation is that in this case, we
want to optimize the behavior of new and delete expressions when applied to objects of a
particular type. By default, new expressions allocate memory by calling the version of operator
new that is defined by the library. A class may manage the memory used for objects of its type
by defining its own members named operator new and operator delete .

When the compiler sees a new or delete expression for a class type, it looks to see if the class
has a member operator new or operator delete . If the class defines (or inherits) its own
member new and delete functions, then those functions are used to allocate and free the
memory for the object. Otherwise, the standard library versions of these functions are called.

When we optimize the behavior of new and delete , we need only define new versions of the
operator new and operator delete . The new and delete expressions themselves take care of
constructing and destroying the objects.

Member new and delete Functions



If a class defines either of these members, it should define both of
them.

A class member operator new function must have a return type of void* and take a parameter
of type size_t . The function's size_t parameter is initialized by the new expression with the
size, in bytes, of the amount of memory to allocate.

A class member operator delete function must have a void return type. It can be defined to
take a single parameter of type void* or to take two parameters, a void* and a size_t . The
void* parameter is initialized by the delete expression with the pointer that was delete d. That
pointer might be a null pointer. If present, the size_t parameter is initialized automatically by
the compiler with the size in bytes of the object addressed by the first parameter.

The size_t parameter is unnecessary unless the class is part of an inheritance hierarchy. When
we delete a pointer to a type in an inheritance hierarchy, the pointer might point to a base-class
object or an object of a derived class. In general, the size of a derived-type object is larger than
the size of a base-class object. If the base class has a virtual destructor (Section 15.4.4 , p.
587 ), then the size passed to operator delete will vary depending on the dynamic type of the
object to which the deleted pointer points. If the base class does not have a virtual destructor,
then, as usual, the behavior of deleting a pointer to a derived object through a base-class
pointer is undefined.

These functions are implicitly static members (Section 12.6.1 , p. 469 ). There is no need to
declare them static explicitly, although it is legal to do so. The member new and delete
functions must be static because they are used either before the object is constructed (operator
new ) or after it has been destroyed (operator delete ). There are, therefore, no member data
for these functions to manipulate. As with any other static member function, new and delete
may access only static members of their class directly.

Array Operator new[] and Operator delete[]

We can also define member operator new[] and operator delete[] to manage arrays of the
class type. If these operator functions exist, the compiler uses them in place of the global
versions.

A class member operator new[] must have a return type of void* and take a first parameter of
type size_t . The operator's size_t parameter is initialized automatically with a value that
represents the number of bytes required to store an array of the given number of elements of
the specified type.

The member operator delete[] must have a void return type and a first parameter of type
void* . The operator's void* parameter is initialized automatically with a value that represents
the beginning of the storage in which the array is stored.

The operator delete[] for a class may also have two parameters instead of one, the second
parameter being a size_t . If present, the additional parameter is initialized automatically by



the compiler with the size in bytes of the storage required to store the array.

Overriding Class-Specific Memory Allocation

A user of a class that defines its own member new and delete can force a new or delete
expression to use the global library functions through the use of the global scope resolution
operator. If the user writes

     Type *p = ::new Type; // uses global operator new

     ::delete p;           // uses global operator delete

then new invokes the global operator new even if class Type defines its own class-specific
operator new ; similarly for delete .

If storage was allocated with a new expression invoking the global
operator new function, then the delete expression should also
invoke the global operator delete function.

Exercises Section 18.1.6

Exercise
18.9:

Declare members new and delete for the QueueItem class.

18.1.7. A Memory-Allocator Base Class

Like the generic handle class (Section 16.5 , p. 666 ) this example
represents a fairly sophisticated use of C++. Understanding this
example requires (and demonstrates) a good grasp of both
inheritance and templates. It may be useful to delay studying this
example until you are comfortable with these features.



Having seen how to declare class-specific member new and delete , we might next implement
those members for QueueItem . Before doing so, we need to decide how we'll improve over the
built-in library new and delete functions. One common strategy is to preallocate a block of raw
memory to hold unconstructed objects. When new elements are created, they could be
constructed in one of these preallocated objects. When elements are freed, we'd put them back
in the block of preallocated objects rather than actually returning memory to the system. This
kind of strategy is often known as maintaining a freelist . The freelist might be implemented as
a linked list of objects that have been allocated but not constructed.

Rather than implementing a freelist-based allocation strategy for QueueItem , we'll observe that
QueueItem is not unique in wanting to optimize allocation of objects of its type. Many classes
might have the same need. Because this behavior might be generally useful, we'll define a new
class that we'll name CachedObj to handle the freelist. A class, such as QueueItem , that wants to
opimize allocation of objects of its type could use the CachedObj class rather than implementing
its own new and delete members directly.

The CachedObj class will have a simple interface: Its only job is to allocate and manage a freelist
of allocated but unconstructed objects. This class will define a member operator new that will
return the next element from the freelist, removing it from the freelist. The operator new will
allocate new raw memory whenever the freelist becomes empty. The class will also define
operator delete to put an element back on the freelist when an object is destroyed.

Classes that wish to use a freelist allocation strategy for their own types will inherit from
CachedObj . Through inheritance, these classes can use the CachedObj definition of operator new
and operator delete along with the data members needed to represent the freelist. Because the
CachedObj class is intended as a base class, we'll give it a public virtual destructor.

As we'll see, CachedObj may be used only for types that are not
involved in an inheritance hierarchy. Unlike the member new and
delete operations, CachedObj has no way to allocate different sized
objects depending on the actual type of the object: Its freelist holds
objects of a single size. Hence, it may be used only for classes,
such as QueueItem , that do not serve as base classes.

The data members defined by the CachedObj class, and inherited by its derived classes, are:

A static pointer to the head of the freelist

A member named next that points from one CachedObj to the next

The next pointer chains the elements together onto the freelist. Each type that we derive from
CachedObj will contain its own type-specific data plus a single pointer inherited from the
CachedObj base class. Each object has an extra pointer used by the memory allocator but not by
the inherited type itself. When the object is in use, this pointer is meaningless and not used.
When the object is available for use and is on the freelist, then the next pointer is used to point
to the next available object.

If we used CachedObj to optimize allocation of our Screen class, objects of type Screen



(conceptually) would look like the illustration in Figure 18.2 .

Figure 18.2. Illustration of a CachedObj Derived Class

The CachedObj Class

The only remaining question is what types to use for the pointers in CachedObj . We'd like to use
the freelist approach for any type, so the class will be a template. The pointers will point to an
object of the template type:

     /* memory allocation class: Pre-allocates objects and
      * maintains a freelist of objects that are unused
      * When an object is freed, it is put back on the freelist
      * The memory is only returned when the program exits
      */
     template <class T> class CachedObj {
     public:
         void *operator new(std::size_t);
         void operator delete(void *, std::size_t);
         virtual ~CachedObj() { }
     protected:
         T *next;
     private:
         static void add_to_freelist(T*);
         static std::allocator<T> alloc_mem;
         static T *freeStore;
         static const std::size_t chunk;
     };

The class is quite simple. It provides only three public members: operator new, operator
delete , and a virtual destructor. The new and delete members take objects off and return
objects to the freelist.

The static members manage the freelist. These members are declared as static because there
is only one freelist maintained for all the objects of a given type. The freeStore pointer points to
the head of the freelist. The member named chunk specifies the number of objects that will be
allocated each time the freelist is empty. Finally, add_to_freelist puts objects on the freelist.
This function is used by operator new to put newly allocated objects onto the freelist. It is also
used by operator delete to put an object back on the free list when an object is deleted.



Using CachedObj

The only really tricky part in using CachedObj is understanding the template parameter: When
we inherit from CachedObj , the template type we use to instantiate CachedObj will be the derived
type itself. We inherit from CachedObj in order to reuse its freelist management. However,
CachedObj holds a pointer to the object type it manages. The type of that pointer is pointer to a
type derived from CachedObj .

For example, to optimize memory management for our Screen class we would declare Screen as

     class Screen: public CachedObj<Screen> {

         // interface and implementation members of class Screen are unchanged
     };

This declaration gives Screen a new base class, the instance of CachedObj that is parameterized
by type Screen . Each Screen now includes an additional inherited member named next in
addition to its other members defined inside the Screen class.

Because QueueItem is a template type, deriving it from CachedObj is a bit complicated:

     template <class Type>
     class QueueItem: public CachedObj< QueueItem<Type> > {
          // remainder of class declaration and all member definitions unchanged
     };

This declaration says that QueueItem is a class template that is derived from the instantiation of
CachedObj that holds objects of type QueueItem<Type> . For example, if we define a Queue of int
s, then the QueueItem<int> class is derived from CachedObj< QueueItem<int> > .

No other changes are needed in our class. QueueItem now has
automatic memory allocation that uses a freelist to reduce the
number of allocations required when creating new Queue elements.

How Allocation Works

Because we derived QueueItem from CachedObj , any allocation using a new expression, such as
the call from Queue::push:

     // allocate a new QueueItem object
     QueueItem<Type> *pt =
         new QueueItem<Type>(val);



allocates and constructs a new QueueItem . Each new expression:

Uses the QueueItem<T>::operator new function to allocate an object from the freelist1.

Uses the element type copy constructor for type T to construct an object in that storage2.

Similarly, when we delete a QueueItem pointer such as

     delete pt;

the QueueItem destructor is run to clean up the object to which pt points and the class operator
delete is called. That operator puts the memory the element used back on the freelist.

Defining operator new

The operator new member returns an object from the freelist. If the freelist is empty, new must
first allocate a new chunk of memory:

         template <class T>
         void *CachedObj<T>::operator new(size_t sz)
         {

              // new should only be asked to build a T, not an object

              // derived from T; check that right size is requested
              if (sz != sizeof(T))
                  throw std::runtime_error
                   ("CachedObj: wrong size object in operator new");
              if (!freeStore) {
                  // the list is empty: grab a new chunk of memory

                  // allocate allocates chunk number of objects of type T
                  T * array = alloc_mem.allocate(chunk);

                  // now set the next pointers in each object in the allocated memory
                  for (size_t i = 0; i != chunk; ++i)
                        add_to_freelist(&array[i]);
              }
              T *p = freeStore;
              freeStore = freeStore->CachedObj<T>::next;
              return p;   // constructor of T will construct the T part of the object
         }

The function begins by verifying that it is being asked to allocate the right amount of space.

This check enforces our design intent that CachedObj should be used only for classes that are not
base classes. The fact that CachedObj allocates objects on its freelist that have a fixed size
means that it cannot be used to handle memory allocation for classes in an inheritance
hierarchy. Classes related by inheritance almost always define objects of different sizes. A single
allocator would have to be much more sophisticated than the one we implement here to handle



such classes.

The operator new function next checks whether there are any objects on the freelist. If not, it
asks the allocator member to allocate chunk new, unconstructed objects. It then iterates
through the newly allocated objects, setting the next pointer. After the call to add_to_freelist ,
each object on the freelist will be unconstructed, except for its next pointer, which will hold the
address of the next available object. The freelist looks something like the picture in Figure 18.3 .

Figure 18.3. Illustration CachedObj Freelist

Having ensured that there are available objects to allocate, operator new returns the address of
the first object on the freelist, resetting the freeStore pointer to address the next element on
the freelist. The object returned is unconstructed. Because operator new is called from a new
expression, the new expression will take care of constructing the object.

Defining operator delete

The member operator delete is responsible only for managing the memory. The object itself
was already cleaned up in the destructor, which the delete expression calls before calling
operator delete . The operator delete member is trivial:

     template <class T>
     void CachedObj<T>::operator delete(void *p, size_t)
     {
        if (p != 0)
            // put the "deleted" object back at head of freelist
            add_to_freelist(static_cast<T*>(p));
     }

It calls add_to_freelist to put the deleted object back onto the freelist.

The interesting part is the cast (Section 5.12.4 , p. 183 ). operator delete is called when a
dynamically allocated object of the class type is delete d. The compiler passes the address of
that object to operator delete . However, the parameter type for the pointer must be void* .
Before calling add_to_freelist , we have to cast the pointer from void* back to its actual type.
In this case, that type is pointer to T , which in turn is a pointer to an object of a type derived
from CachedObj .

The add_to_freelist Member



The job of this member is to set the next pointer and update the freeStore pointer when an
object is added to the freelist:

     // puts object at head of the freelist
     template <class T>
     void CachedObj<T>::add_to_freelist(T *p)
     {
        p->CachedObj<T>::next = freeStore;
        freeStore = p;
     }

The only tricky part is the use of the next member. Recall that CachedObj is intended to be used
as a base class. The objects that are allocated aren't of type CachedObj . Instead, those objects
are of a type derived from CachedObj . The type of T , therefore, will be the derived type. The
pointer p is a pointer to T , not a pointer to CachedObj . If the derived class has its own member
named next , then writing

     p->next

would fetch the next member of the derived class! But we want to set the next in the base,
CachedObj class.

To avoid any possible collision with a member defined in the derived
class, we explicitly specify that we are assigning to the base class
member next .

Defining the Static Data Members

What remains is to define the static data members:

     template <class T> allocator< T > CachedObj< T >::alloc_mem;
     template <class T> T *CachedObj< T >::freeStore = 0;
     template <class T> const size_t CachedObj< T >::chunk = 24;

As usual, with static members of a class template there is a different static member for each
type used to instantiate CachedObj . We initialize chunk to an arbitrary valuein this case, 24. We
initialize the freeStore pointer to 0, indicating that the freelist starts out empty. There is no
initialization required for the alloc_mem member, but we do have to remember to define it.



Exercises Section 18.1.7

Exercise
18.10:

Explain each of the following initializations. Indicate if any are
errors, and if so, why.

     class iStack {
     public:
         iStack(int capacity): stack(capacity), top(0) { }
     private:
         int top;
         vector<int> stack;
     };
     (a) iStack *ps = new iStack(20);
     (b) iStack *ps2 = new const iStack(15);
     (c) iStack *ps3 = new iStack[ 100 ];

Exercise
18.11:

Explain what happens in the following new and delete expressions:

     struct Exercise {
         Exercise();
         ~Exercise();
     };
     Exercise *pe = new Exercise[20];
     delete[] pe;

Exercise
18.12:

Implement a class-specific memory allocator for Queue or another
class of your choice. Measure the change in performace to see how
much it helps, if at all.

 



 

18.2. Run-Time Type Identification

Run-time Type Identification (RTTI) allows programs that use pointers or references to base
classes to retrieve the actual derived types of the objects to which these pointers or references
refer.

RTTI is provided through two operators:

The typeid operator, which returns the actual type of the object referred to by a pointer or
a reference

1.

The dynamic_cast operator, which safely converts from a pointer or reference to a base
type to a pointer or reference to a derived type

2.

These operators return dynamic type information only for classes
with one or more virtual functions. For all other types, information
for the static (i.e., compile-time) type is returned.

The RTTI operators execute at run time for classes with virtual functions, but are evaluated at
compile time for all other types.

Dynamic casts are needed when we have a reference or pointer to a base class but need to
perform operations from the derived class that are not part of the base class. Ordinarily, the
best way to get derived behavior from a pointer to base is to do so through a virtual function.
When we use virtual functions, the compiler automatically selects the right function according to
the actual type of the object.

In some situations however, the use of virtual functions is not possible. In these cases, RTTI
offers an alternate mechanism. However, this mechanism is more error-prone than using virtual
member functions: The programmer must know to which type the object should be cast and
must check that the cast was performed successfully.

Dynamic casts should be used with caution. Whenever possible, it is
much better to define and use a virtual function rather than to take
over managing the types directly.



18.2.1. The dynamic_cast Operator

The dynamic_cast operator can be used to convert a reference or pointer to an object of base

type to a reference or pointer to another type in the same hierarchy. The pointer used with a
dynamic_cast must be validit must either be 0 or point to an object.

Unlike other casts, a dynamic_cast involves a run-time type check. If the object bound to the
reference or pointer is not an object of the target type, then the dynamic_cast fails. If a
dynamic_cast to a pointer type fails, the result of the dynamic_cast is the value 0. If a
dynamic_cast to a reference type fails, then an exception of type bad_cast is thrown.

The dynamic_cast operator therefore performs two operations at once. It begins by verifying
that the requested cast is valid. Only if the cast is valid does the operator actually do the cast.
In general, the type of the object to which the reference or pointer is bound isn't known at
compile-time. A pointer to base can be assigned to point to a derived object. Similarly, a
reference to base can be initialized by a derived object. As a result, the verification that the
dynamic_cast operator performs must be done at run time.

Using the dynamic_cast Operator

As a simple example, assume that Base is a class with at least one virtual function and that class
Derived is derived from Base . If we have a pointer to Base named basePtr , we can cast it at run
time to a pointer to Derived as follows:

     if (Derived *derivedPtr = dynamic_cast<Derived*>(basePtr))
     {

         // use the Derived object to which derivedPtr points

     } else { // BasePtr points at a Base object

         // use the Base object to which basePtr points
     }

At run time, if basePtr actually points to a Derived object, then the cast will be successful, and
derivedPtr will be initialized to point to the Derived object to which basePtr points. Otherwise,
the result of the cast is 0, meaning that derivedPtr is set to 0, and the condition in the if fails.

We can apply a dynamic_cast to a pointer whose value is 0. The
result of doing so is 0.

By checking the value of derivedPtr , the code inside the if knows that it is operating on a
Derived object. It is safe for that code to use Derived operations. If the dynamic_cast fails
because basePtr refers to a Base object, then the else clause does processing appropriate to
Base instead. The other advantage of doing the check inside the if condition is that it is not



possible to insert code between the dynamic_cast and testing the result of the cast. It is,
therefore, not possible to use the derivedPtr inadvertently before testing that the cast was
successful. A third advantage is that the pointer is not accessible outside the if . If the cast
fails, then the unbound pointer is not available for use in later cases where the test might be
forgotten.

Performing a dynamic_cast in a condition ensures that the
cast and test of its result are done in a single expression.

Using a dynamic_cast and Reference Types

In the previous example, we used a dynamic_cast to convert a pointer to base to a pointer to
derived. A dynamic_cast can also be used to convert a reference to base to a reference to
derived. The form for this a dynamic_cast operation is the following,

     dynamic_cast< Type& >(val)

where Type is the target type of the conversion, and val is an object of base class type.

The dynamic_cast operation converts the operand val to the desired type Type& only if val
actually refers to an object of the type Type or is an object of a type derived from Type .

Because there is no such thing as a null reference, it is not possible to use the same checking
strategy for references that is used for pointer casts. Instead, when a cast fails, it throws a
std::bad_cast exception. This exception is defined in the typeinfo library header.

We might rewrite the previous example to use references as follows:

     void f(const Base &b)
     {
        try {
            const Derived &d = dynamic_cast<const Derived&>(b);

        // use the Derived object to which b referred
        } catch (bad_cast) {
            // handle the fact that the cast failed
        }
     }



Exercises Section 18.2.1

Exercise
18.13:

Given the following class hierarchy in which each class defines
a public default constructor and virtual destructor,

     class A { /* ... */ };
     class B : public A { /* ... */ };
     class C : public B { /* ... */ };
     class D : public B, public A { /* ... */ };

which, if any, of the following dynamic_casts fail?

     (a) A *pa = new C;
         B *pb = dynamic_cast< B* >(pa);

     (b) B *pb = new B;
         C *pc = dynamic_cast< C* >(pb);

     (c) A *pa = new D;
         B *pb = dynamic_cast< B* >(pa);

Exercise
18.14:

What would happen in the last conversion in the previous
exercise if both D and B inherited from A as a virtual base
class?

Exercise
18.15:

Using the class hierarchy defined in the previous exercise,
rewrite the following piece of code to perform a reference
dynamic_cast to convert the expression *pa to the type C& :

     if (C *pc = dynamic_cast< C* >(pa))
         // use C's members
     } else {
         // use A's members
     }

Exercise
18.16:

Explain when you would use dynamic_cast instead of a virtual
function.

18.2.2. The typeid Operator

The second operator provided for RTTI is the typeid operator . The typeid operator allows a



program to ask of an expression: What type are you?

A typeid expression has the form

     typeid(e)

where e is any expression or a type name.

If the type of the expression is a class type and that class contains one or more virtual
functions, then the dynamic type of the expression may differ from its static compile-time type.
For example, if the expression dereferences a pointer to a base class, then the static compile-
time type of that expression is the base type. However, if the pointer actually addresses a
derived object, then the typeid operator will say that the type of the expression is the derived
type.

The typeid operator can be used with expressions of any type. Expressions of built-in type as
well as constants can be used as operands for the typeid operator. When the operand is not of
class type or is a class without virtual functions, then the typeid operator indicates the static
type of the operand. When the operand has a class-type that defines at least one virtual
function, then the type is evaluated at run time.

The result of a typeid operation is a reference to an object of a library type named type_info .
Section 18.2.4 (p. 779 ) covers this type in more detail. To use the type_info class, the library
header typeinfo must be included.

Using the typeid Operator

The most common use of typeid is to compare the types of two expressions or to compare the
type of an expression to a specified type:

     Base *bp;
     Derived *dp;
     // compare type at run time of two objects
     if (typeid(*bp) == typeid(*dp)) {

         // bp and dp point to objects of the same type
     }
     // test whether run time type is a specific type
     if (typeid(*bp) == typeid(Derived)) {

         // bp actually points to a Derived
     }

In the first if , we compare the actual types of the objects to which bp and dp point. If they both
point to the same type, then the test succeeds. Similarly, the second if succeeds if bp currently
points to a Derived object.

Note that the operands to the typeid are expressions that are objectswe tested *bp , not bp:

     // test always fails: The type of bp is pointer to Base
     if (typeid(bp) == typeid(Derived)) {
          // code never executed
     }



This test compares the type Base* to type Derived . These types are unequal, so this test will
always fail regardless of the type of the object to which bp points .

Dynamic type information is returned only if the operand to typeid
is an object of a class type with virtual functions. Testing a pointer
(as opposed to the object to which the pointer points) returns the
static, compile-time type of the pointer.

If the value of a pointer p is 0, then typeid(*p) throws a bad_typeid exception if the type of p is
a type with virtual functions. If the type of p does not define any virtuals, then the value of p is
irrelevant. As when evaluating a sizeof expression (Section 5.8 , p. 167 ) the compiler does not
evaluate *p . It uses the static type of p , which does not require that p itself be a valid pointer.

Exercises Section 18.2.2

Exercise
18.17:

Write an expression to dynamically cast a pointer to a
Query_base to a pointer to an AndQuery . Test the cast by using
objects of AndQuery and of another query type. Print a
statement indicating whether the cast works and be sure that
the output matches your expectations.

Exercise
18.18:

Write the same cast, but cast a Query_base object to a
reference to AndQuery . Repeat the test to ensure that your
cast works correctly.

Exercise
18.19:

Write a typeid expression to see whether two Query_base
pointers point to the same type. Now check whether that type
is an AndQuery .

18.2.3. Using RTTI

As an example of when RTTI might be useful, consider a class hierarchy for which we'd like to
implement the equality operator. Two objects are equal if they have the same value for a given
set of their data members. Each derived type may add its own data, which we will want to
include when testing for equality.

Because the values considered in determining equality for a derived type might differ from those



considered for the base type, we'll (potentially) need a different equality operator for each pair
of types in the hierarchy. Moreover, we'd like to be able to use a given type as either the left-
hand or right-hand operand, so we'll actually need two operators for each pair of types.

If our hierarchy has only two types, we need four functions:

     bool operator==(const Base&, const Base&)
     bool operator==(const Derived&, const Derived&)
     bool operator==(const Derived&, const Base&);
     bool operator==(const Base&, const Derived&);

But if our hierarchy has several types, the number of operators we must define expands
rapidlyfor only 3 types we'd need 9 operators. If the hierarchy has 4 types, we'd need 16, and
so on.

We might think we could solve this problem by defining a set of virtual functions that would
perform the equality test at each level in the hierarchy. Given those virtuals, we could define a
single equality operator that operates on references to the base type. That operator could
delegate its work to a virtual equal operation that would do the real work.

Unfortunately, virtual functions are not a good match to this problem. The trouble is deciding on
the type for the parameter to the equal operation. Virtual functions must have the same
parameter type(s) in both the base and derived classes. That implies that a virtual equal
operation must have a parameter that is a reference to the base class.

However, when we compare two derived objects, we want to compare data members that might
be particular to that derived class. If the parameter is a reference to base, we can use only
members that are present in the base class. We cannot access members that are in the derived
class but not in the base.

Thinking about the problem in this detail, we see that we want to return false if we attempt to
compare objects of different types. Given this observation, we can now use RTTI to solve our
problem.

We'll define a single equality operator. Each class will define a virtual equal function that first
casts its operand to the right type. If the cast succeeds, then the real comparison will be
performed. If the cast fails, then the equal operation will return false .

The Class Hierarchy

To make the concept a bit more concrete, let's assume that our classes look something like:

     class Base {
         friend bool operator==(const Base&, const Base&);
     public:

         // interface members for Base
     protected:
         virtual bool equal(const Base&) const;

         // data and other implementation members of Base
     };
     class Derived: public Base {
         friend bool operator==(const Base&, const Base&);
     public:

         // other interface members for Derived



     private:
         bool equal(const Base&) const;

         // data and other implementation members of Derived
     };

A Type-Sensitive Equality Operator

Next let's look at how we might define the overall equality operator:

     bool operator==(const Base &lhs, const Base &rhs)
     {
        // returns false if typeids are different otherwise
        // returns lhs.equal(rhs)
        return typeid(lhs) == typeid(rhs) && lhs.equal(rhs);
     }

This operator returns false if the operands are different types. If they are the same type, then it
delegates the real work of comparing the operands to the appropriate virtual equal function. If
the operands are Base objects, then Base::equal will be called. If they are Derived objects,
Derived::equal is called.

The Virtual equal Functions

Each class in the hierarchy must define its own version of equal . The functions in the derived
classes will all start the same way: They'll cast their argument to the type of the class itself:

     bool Derived::equal(const Base &rhs) const
     {
        if (const Derived *dp
                   = dynamic_cast<const Derived*>(&rhs)) {

           // do work to compare two Derived objects and return result
        } else
           return false;
     }

The cast should always succeedafter all, the function is called from the equality operator only
after testing that the two operands are the same type. However, the cast is necessary so that
the function can access the derived members of the right-hand operand. The operand is a Base&
, so if we want to access members of the Derived , we must first do the cast.

The Base-Class equal Function

This operation is a bit simpler than the others:

     bool Base::equal(const Base &rhs) const
     {



          // do whatever is required to compare to Base objects
     }

There is no need to cast the parameter before using it. Both *this and the parameter are Base
objects, so all the operations available for this object are also defined for the parameter type.

18.2.4. The type_info Class

The exact definition of the type_info class varies by compiler, but the standard guarantees that
all implementations will provide at least the operations listed in Table 18.2

Table 18.2. Operations on type_info

t1 == t2 Returns true if the two type_info objects t1 and t2
refer to the same type; false otherwise.

t1 != t2 Returns TRue if the two type_info objects t1 and t2
refer to different types; false otherwise.

t.name() Returns a C-style character string that is a printable
version of the type name. Type names are generated
in a system-dependent way.

t1.before(t2) Returns a bool that indicates whether t1 comes
before t2 . The ordering imposed by before is
compiler-dependent.

The class also provides a public virtual destructor, because it is intended to serve as a base
class. If the compiler wants to provide additional type information, it should do so in a class
derived from type_info .

The default and copy constructors and the assignment operator are all defined as private , so
we cannot define or copy objects of type type_info . The only way to create type_info objects in
a program is to use the typeid operator.

The name function returns a C-style character string for the name of the type represented by the
type_info object. The value used for a given type depends on the compiler and in particular is
not required to match the type names as used in a program. The only guarantee we have about
the return from name is that it returns a unique string for each type. Nonetheless, the name
member can be used to print the name of a type_info object:

     int iobj;
     cout << typeid(iobj).name() << endl
          << typeid(8.16).name() << endl
          << typeid(std::string).name() << endl
          << typeid(Base).name() << endl
          << typeid(Derived).name() << endl;



The format and value returned by name varies by compiler. This program, when executed on our
machine, generates the following output:

     i
     d
     Ss
     4Base
     7Derived

The type_info class varies by compiler. Some compilers provide
additional member functions that provide additional information
about types used in a program. You should consult the reference
manual for your compiler to understand the exact type_info support
provided.

 



 

18.3. Pointer to Class Member

We know that, given a pointer to an object, we can fetch a given member from that object using
the arrow (-> ) operator. Sometimes it is useful to start from the member. That is, we may want
to obtain a pointer to a specific member and then fetch that member from one or another
object.

We can do so by using a special kind of pointer known as a pointer to member . A pointer to
member embodies the type of the class as well as the type of the member. This fact impacts
how pointers to member are defined, how they are bound to a function or data member, and
how they are used.

Pointers to member apply only to nonstatic members of a class. static class members are not
part of any object, so no special syntax is needed to point to a static member. Pointers to
static members are ordinary pointers.

Exercises Section 18.2.4

Exercise
18.20:

Given the following class hierarchy in which each class defines
a public default constructor and virtual destructor, which type
name do the following statements print?

     class A { /* ... */ };
     class B : public  A { /* ... */ };
     class C : public  B { /* ... */ };

     (a) A *pa = new C;
         cout << typeid(pa).name() << endl;

     (b) C cobj;
         A& ra = cobj;
         cout << typeid(&ra).name() << endl;

     (c) B *px = new B;
         A& ra = *px;
         cout << typeid(ra).name() << endl;

18.3.1. Declaring a Pointer to Member

In exploring pointers to members, we'll use a simplified version of the Screen class from Chapter
12 .



     class Screen {
     public:
         typedef std::string::size_type index;
         char get() const;
         char get(index ht, index wd) const;
     private:
         std::string contents;
         index cursor;
         index height, width;
     };

Defining a Pointer to Data Member

The contents member of Screen has type std::string . The complete type of contents is
"member of class Screen , whose type is std::string." Consequently, the complete type of a
pointer that could point to contents is "pointer to member of class Screen of type std::string."
This type is written as

     string Screen::*

We can define a pointer to a string member of class Screen as

     string Screen::*ps_Screen;

ps_Screen could be initialized with the address of contents by writing

     string Screen::*ps_Screen = &Screen::contents;

We could also define a pointer that might address the height, width , or cursor members as

     Screen::index Screen::*pindex;

which says that pindex is a pointer to a member of class Screen with type Screen::index . We
could assign the address of width to this pointer as follows:

     pindex = &Screen::width;

The pointer pindex can be set to any of width, height , or cursor because all three are Screen
class data members of type index .



Defining a Pointer to Member Function

A pointer to a member function must match the type of the function to which it points, in three
ways:

The type and number of the function parameters, including whether the member is const1.

The return type2.

The class type of which it is a member3.

A pointer to member function is defined by specifying the function return type, parameter list,
and a class. For example, a pointer to a Screen member function capable of referring to the
version of get that takes no parameters has the following type:

     char (Screen::*)() const

This type specifies a pointer to a const member function of class Screen , taking no parameters
and returning a value of type char . A pointer to this version of get can be defined and initialized
as follows:

     // pmf points to the Screen get member that takes no arguments
     char (Screen::*pmf)() const = &Screen::get;

We might also define a pointer to the two-parameter version of get as

     char (Screen::*pmf2)(Screen::index, Screen::index) const;
     pmf2 = &Screen::get;

The precedence of the call operator is higher than that of the
pointer-to-member operators. Therefore, the parentheses around
Screen::* are essential. Without them, the compiler treats the
following as an (invalid) function declaration:

     // error: non-member function p cannot have const qualifier
     char Screen::*p() const;

Using Typedefs for Member Pointers



Typedefs can make pointers to members easier to read. For example, the following typedef
defines Action to be an alternative name for the type of the two-parameter version of get :

     // Action is a type name
     typedef
     char (Screen::*Action)(Screen::index, Screen::index) const;

Action is the name of the type "pointer to a const member function of class Screen taking two
parameters of type index and returning char ." Using the typedef, we can simplify the definition
of a pointer to get as follows:

Action get = &Screen::get;

A pointer-to-member function type may be used to declare function parameters and function
return types:

     // action takes a reference to a Screen and a pointer to Screen member function
     Screen& action(Screen&, Action = &Screen::get);

This function is declared as taking two parameters: a reference to a Screen object and a pointer
to a member function of class Screen taking two index parameters and returning a char . We
could call action either by passing it a pointer or the address of an appropriate member function
in Screen :

     Screen myScreen;
     // equivalent calls:
     action(myScreen);       // uses the default argument

     action(myScreen, get);  // uses the variable get that we previously defined
     action(myScreen, &Screen::get);     // pass address explicitly



Exercises Section 18.3.1

Exercise
18.21:

What is the difference between an ordinary data or function
pointer and a pointer to data or function member?

Exercise
18.22:

Define the type that could represent a pointer to the isbn
member of the Sales_item class.

Exercise
18.23:

Define a pointer that could point to the same_isbn member.

Exercise
18.24:

Write a typedef that is a synonym for a pointer that could
point to the avg_price member of Sales_item .

18.3.2. Using a Pointer to Class Member

Analogous to the member access operators, operators. and -> , are two new operators, .* and
.-> , that let us bind a pointer to member to an actual object. The left-hand operand of these
operators must be an object of or pointer to the class type, respectively. The right-hand
operand is a pointer to a member of that type:

The pointer-to-member dereference operator (.* ) fetches the member from an object or
reference.

The pointer-to-member arrow operator (->* ) fetches the member through a pointer to an
object.

Using a Pointer to Member Function

Using a pointer to member, we could call the version of get that takes no parameters as follows:

     // pmf points to the Screen get member that takes no arguments
     char (Screen::*pmf)() const = &Screen::get;
     Screen myScreen;

     char c1 = myScreen.get();      // call get on myScreen

     char c2 = (myScreen.*pmf)();   // equivalent call to get
     Screen *pScreen = &myScreen;

     c1 = pScreen->get();     // call get on object to which pScreen points

     c2 = (pScreen->*pmf)();  // equivalent call to get



The calls (myScreen.*pmf)() and (pScreen->*pmf)() require the
parentheses because the precedence of the call operator() is higher
than the precedence of the pointer to member operators.

Without the parentheses,

     myScreen.*pmf()

would be interpreted to mean

     myScreen.*(pmf())

This code says to call the function named pmf and bind its return value to the pointer to member
object operator (.* ). Of course, the type of pmf does not support such a use, and a compile-
time error would be generated.

As with any other function call, we can also pass arguments in a call made through a pointer to
member function:

     char (Screen::*pmf2)(Screen::index, Screen::index) const;
     pmf2 = &Screen::get;
     Screen myScreen;

     char c1 = myScreen.get(0,0);     // call two-parameter version of get

     char c2 = (myScreen.*pmf2)(0,0); // equivalent call to get

Using a Pointer to Data Member

The same pointer-to-member operators are used to access data members:

     Screen::index Screen::*pindex = &Screen::width;
     Screen myScreen;

     // equivalent ways to fetch width member of myScreen
     Screen::index ind1 = myScreen.width;      // directly

     Screen::index ind2 = myScreen.*pindex;    // dereference to get width
     Screen *pScreen;

     // equivalent ways to fetch width member of *pScreen
     ind1 = pScreen->width;        // directly

     ind2 = pScreen->*pindex;      // dereference pindex to get width

Pointer-to-Member Function Tables



One common use for function pointers and for pointers to member functions is to store them in
a function table. A function table is a collection of function pointers from which a given call is
selected at run time.

For a class that has several members of the same type, such a table can be used to select one
from the set of these members. Let's assume that our Screen class is extended to contain
several member functions, each of which moves the cursor in a particular direction:

     class Screen {
     public:
         // other interface and implementation members as before
         Screen& home();         // cursor movement functions
         Screen& forward();
         Screen& back();
         Screen& up();
         Screen& down();
     };

Each of these new functions takes no parameters and returns a reference to the Screen on which
it was invoked.

Using the Function-Pointer Table

We might want to define a move function that could call any one of these functions and perform
the indicated action. To support this new function, we'll add a static member to Screen that will
be an array of pointers to the cursor movement functions:

     class Screen {
     public:
         // other interface and implementation members as before

         // Action is pointer that can be assigned any of the cursor movement members
         typedef Screen& (Screen::*Action)();
         static Action Menu[];        // function table
     public:
         // specify which direction to move
         enum Directions { HOME, FORWARD, BACK, UP, DOWN };
         Screen& move(Directions);
     };

The array named Menu will hold pointers to each of the cursor movement functions. Those
functions will be stored at the offsets corresponding to the enumerators in Directions . The move
function takes an enumerator and calls the appropriate function:

     Screen& Screen::move(Directions cm)
     {

          // fetch the element in Menu indexed by cm

          // run that member on behalf of this object
          (this->*Menu[cm])();
          return *this;
     }



The call inside move is evaluated as follows: The Menu element indexed by cm is fetched. That
element is a pointer to a member function of the Screen class. We call the member function to
which that element points on behalf of the object to which this points.

When we call move , we pass it an enumerator that indicates which direction to move the cursor:

     Screen myScreen;

     myScreen.move(Screen::HOME);    // invokes myScreen.home

     myScreen.move(Screen::DOWN);    // invokes myScreen.down

Defining a Table of Member Function Pointers

What's left is to define and initialize the table itself:

     Screen::Action Screen::Menu[] = { &Screen::home,
                                       &Screen::forward,
                                       &Screen::back,
                                       &Screen::up,
                                       &Screen::down,
                                     };

 



 

18.4. Nested Classes

A class can be defined within another class. Such a class is a nested class , also referred to as
a nested type . Nested classes are most often used to define implementation classes, such as
the QueueItem class from Chapter 16 .

Nested classes are independent classes and are largely unrelated to their enclosing class.
Objects of the enclosing and nested classes are, therefore, independent from one another. An
object of the nested type does not have members defined by the enclosing class. Similarly, an
object of the enclosing class does not have members defined by the nested class.

The name of a nested class is visible in its enclosing class scope but not in other class scopes or
in the scope in which the enclosing class is defined. The name of a nested class will not collide
with the same name declared in another scope.

Exercises Section 18.3.2

Exercise
18.25:

What is the type of the Screen class members screen and
cursor ?

Exercise
18.26:

Define a pointer to member that could point to the cursor
member of class Screen . Fetch the value of Screen::cursor
through that pointer.

Exercise
18.27:

Define a typedef for each distinct type of Screen member
function.

Exercise
18.28:

Pointers to members may also be declared as class data
members. Modify the Screen class definition to contain a
pointer to a Screen member function of the same type as home
and end .

Exercise
18.29:

Write a Screen constructor that takes a parameter of type
pointer to Screen member function whose parameter list and
return type are the same as those for the member functions
home and end .

Exercise
18.30:

Provide a default argument for this parameter. Use this
parameter to initialize the data member introduced in the
previous exercise.

Exercise
18.31:

Provide a Screen member function to set this member.

A nested class can have the same kinds of members as a nonnested class. Just like any other



class, a nested class controls access to its own members using access labels. Members may be
declared public, private , or protected . The enclosing class has no special access to the
members of a nested class and the nested class has no special access to members of its
enclosing class.

A nested class defines a type member in its enclosing class. As with any other member, the
enclosing class determines access to this type. A nested class defined in the public part of the
enclosing class defines a type that may be used anywhere. A nested class defined in the
protected section defines a type that is accessible only by the enclosing class, its friends, or its
derived classes. A private nested class defines a type that is accessible only to the members of
the enclosing class or its friends.

18.4.1. A Nested-Class Implementation

The Queue class that we implemented in Chapter 16 defined a companion implementation class
named QueueItem . That class was a private classit had only private membersbut it was defined
at the global scope. General user code cannot use objects of class QueueItem : All its members,
including constructors, are private . However, the name QueueItem is visible globally. We cannot
define our own type or other entity named QueueItem .

A better design would be to make the QueueItem class a private member of class Queue . That
way, the Queue class (and its friends) could use QueueItem , but the QueueItem class type would
not be visible to general user code. Once the class itself is private , we can make its members
public only Queue or the friends of Queue can access the QueueItem type, so there is no need to
protect its members from general program access. We make the members public by defining
QueueItem using the keyword struct .

Our new design looks like:

     template <class Type> class Queue {

         // interface functions to Queue are unchanged
     private:

         // public members are ok: QueueItem is a private member of Queue

         // only Queue and its friends may access the members of QueueItem
         struct QueueItem {
             QueueItem(const Type &);
             Type item;            // value stored in this element

             QueueItem *next;      // pointer to next element in the Queue
         };

         QueueItem *head;      // pointer to first element in Queue

         QueueItem *tail;      // pointer to last element in Queue
     };

Because the class is a private member, only members and friends of the Queue class can use
the QueueItem type. Having made the class a private member, we can make the QueueItem
members public . Doing so lets us eliminate the friend declarations in QueueItem .

Classes Nested Inside a Class Template Are Templates

Because Queue is a template, its members are implicitly templates as well. In particular, the
nested class QueueItem is implicitly a class template. Again, like any other member in Queue , the
template parameter for QueueItem is the same as the template parameter of its enclosing class:



class Queue .

Each instantiation of Queue generates its own QueueItem class with the appropriate template
argument for Type . The mapping between an instantiation for the QueueItem class template
and an instantiation of the enclosing Queue class template is one to one.

Defining the Members of a Nested Class

In this version of QueueItem , we chose not to define the QueueItem constructor inside the class.
Instead, we'll define it separately. The only trick is where to define it and how to name it.

A nested-class member defined outside its own class must be
defined in the same scope as the scope in which the enclosing class
is defined. A member of a nested class defined outside its own class
may not be defined inside the enclosing class itself. A member of a
nested class is not a member of the enclosing class.

The constructor for QueueItem is not a member of class Queue . Therefore, it cannot be defined
elsewhere in the body of class Queue . It must be defined at the same scope as the Queue class
but outside that class. To define a member outside the nested-class body, we must remember
that its name is not visible outside the class. To define the constructor, we must indicate that
QueueItem is a nested class within the scope of class Queue . We do so by qualifying the class
name QueueItem with the name of its enclosing class Queue :

     // defines the QueueItem constructor

     // for class QueueItem nested inside class Queue<Type>
     template <class Type>
     Queue<Type>::QueueItem::QueueItem(const Type &t):
                              item(t), next(0) { }

Of course, both Queue and QueueItem are class templates. The constructor, therefore, is also a
template.

This code defines a function template, parameterized by a single type parameter named Type .
Reading the name of the function from right to left, this function is the constructor for class
QueueItem , which is a nested in the scope of class Queue<Type> .

Defining the Nested Class Outside the Enclosing Class

Nested classes often support implementation details for the enclosing class. We might want to
prevent users of the enclosing class from seeing the code that implements the nested class.

For example, we might want to put the definition of class QueueItem in its own file, which we
would include in those files containing the implementation of the Queue class and its members.
Just as we can define the members of a nested class outside the class body, we can define the
entire class outside the body of the enclosing class:



     template <class Type> class Queue {

         // interface functions to Queue are unchanged
     private:

         struct QueueItem; // forward declaration of nested type QueueItem

         QueueItem *head;  // pointer to first element in Queue

         QueueItem *tail;  // pointer to last element in Queue
     };
     template <class Type>
     struct Queue<Type>::QueueItem {
         QueueItem(const Type &t): item(t), next(0) { }
         Type item;        // value stored in this element

         QueueItem *next; // pointer to next element in the Queue
     };

To define the class body outside its enclosing class, we must qualify the name of the nested
class by the name of its enclosing class. Note that we must still declare QueueItem in the body of
class Queue .

A nested class also can be declared and then later defined in the body of the enclosing class. As
with other forward declarations, a forward declaration of a nested class allows for nested classes
that have members that refer to one another.

Until the actual definition of a nested class that is defined outside
the class body is seen, that class is an incomplete type (Section
12.1.4 , p. 437 ). All the normal retrictions on using an incomplete
type apply.

Nested-Class Static Member Definitions

If QueueItem had declared a static member, its definition would also need to be defined in the
outer scope. Assuming QueueItem had a static member, its definition would look somthing like:

     // defines an int static member of QueueItem,

     // which is a type nested inside Queue<Type>
     template <class Type>
     int Queue<Type>::QueueItem::static_mem = 1024;

Using Members of the Enclosing Class



There is no connection between the objects of an enclosing scope
and objects of its nested type(s).

Nonstatic functions in the nested class have an implicit this pointer that points to an object of
the nested type. A nested-type object contains only the members of the nested type. The this
pointer may not be used to fetch members of the enclosing class. Similarly, the nonstatic
member functions in the enclosing class have a this pointer that points to an object of the
enclosing type. That object has only the members defined in the enclosing class.

Any use of a nonstatic data or function member of the enclosing class requires that it be done
through a pointer, reference, or object of the enclosing class. The pop function in class Queue
may not use item or next directly:

     template <class Type>
     void Queue<Type>::pop()
     {

          // pop is unchecked: popping off an empty Queue is undefined
          QueueItem* p = head;        // keep pointer to head so can delete it
          head = head->next;          // head now points to next element
          delete p;                   // delete old head element
     }

Objects of type Queue do not have members named item or next . Function members of Queue
can use the head and tail members, which are pointers to QueueItem objects, to fetch those
QueueItem members.

Using Static or Other Type Members

A nested class may refer to the static members, type names, and enumerators (Section 2.7 , p.
62 ) of the enclosing class directly. Of course, referring to a type name or static member outside
the scope of the enclosing class requires the scope-resolution operator.

Instantiation for Nested Templates

A nested class of a class template is not instantiated automatically when the enclosing class
template is instantiated. Like any member function, the nested class is instantiated only if it is
itself used in a context that requires a complete class type. For example, a definition such as

     Queue<int> qi; // instantiates Queue<int> but not QueueItem<int>

instantiates the template Queue with type int but does not yet instantiate the type
QueueItem<int> . The Queue members head and tail are pointers to QueueItem<int> . There is no
need to instantiate QueueItem<int> to define pointers to that class.



Making QueueItem a nested class of the class template Queue does not change the instantiation of
QueueItem . The QueueItem<int> class will be instantiated only when QueueItem is usedin this
case, only when head or tail is dereferenced from a member function of class Queue<int> .

18.4.2. Name Lookup in Nested Class Scope

Name lookup (Section 12.3.1 , p. 447 ) for names used in a nested class proceeds in the same
manner as for a normal class, the only difference being that now there may be one or more
enclosing class scopes to search.

When processing the declarations of the class members, any name
used must appear prior to its use. When processing definitions, the
entire nested and enclosing class(es) are in scope.

As an example of name lookup in a nested class, consider the following class declarations:

     class Outer {
     public:
         struct Inner {
             // ok: reference to incomplete class
             void process(const Outer&);

             Inner2 val; // error: Outer::Inner2 not in scope
         };
         class Inner2 {
         public:

             // ok: Inner2::val used in definition
             Inner2(int i = 0): val(i) { }

             // ok: definition of process compiled after enclosing class is complete
             void process(const Outer &out) { out.handle(); }
         private:
             int val;
         };

         void handle() const; // member of class Outer
     };

The compiler first processes the declarations of the members of classes Outer, Outer::Inner ,
and Outer::Inner2 .

The use of the name Outer as a parameter to Inner::process is bound to the enclosing class.
That class is still incomplete when the declaration of process is seen, but the parameter is a
reference, so this usage is okay.

The declaration of the data member Inner::val is an error. The type Inner2 has not yet been
seen.

The declarations in Inner2 pose no problemsmostly they just use the built-in type int . The only



exception is the process member function. Its parameter resolves to the incomplete type Outer .
Because the parameter is a reference, the fact that Outer is an incomplete type doesn't matter.

The definitions of the constructor and process member are not processed by the compiler until
the remaining declarations in the enclosing class have been seen. Completing the declarations of
class Outer puts the declaration of the function handle in scope.

When the compiler looks up the names used in the definitions in class Inner2 , all the names in
class Inner2 and class Outer are in scope. The use of val , which appears before the declaration
of val , is okay: That reference is bound to the data member in class Inner2 . Similarly, the use
of handle from class Outer in the body of the Inner2::process member is okay. The entire Outer
class is in scope when the members of class Inner2 are compiled.

Using the Scope Operator to Control Name Lookup

The global version of handle can be accessed using the scope operator:

     class Inner2 {
     public:
         // ...

         // ok: programmer explicitly specifies which handle to call
         void process(const Outer &out) { ::handle(out); }
     };

Exercises Section 18.4.2

Exercise
18.32:

Reimplement the Queue and QueueItem classes from Chapter 16
making QueueItem a nested class inside Queue .

Exercise
18.33:

Explain the pros and cons of the original and the nested-class
version of the Queue design.

 



 

18.5. Union: A Space-Saving Class

A union is a special kind of class. A union may have multiple data members, but at any point in
time, only one of the members may have a value. When a value is assigned to one member of
the union , all other members become undefined.

The amount of storage allocated for a union is at least as much as the amount necessary to
contain its largest data member. Like any class, a union defines a new type.

Defining a Union

Unions offer a convenient way to represent a set of mutually exclusive values that may have
different types. As an example, we might have a process that handles different kinds of numeric
or character data. That process might define a union to hold these values:

     // objects of type TokenValue have a single member,
     // which could be of any of the listed types
     union TokenValue {
         char   cval;
         int    ival;
         double dval;
     };

A union is defined starting with the keyword union , followed by an (optional) name for the
union and a set of member declarations enclosed in curly braces. This code defines a union
named TokenValue that can hold a value that is either a char , an int , a pointer to char , or a
double . Section 18.5 (p. 795 ) will look at what it means to omit the union name.

Like any class, a union type defines how much storage is associated with objects of its type. The
size of each union object is fixed at compile time: It is at least as large as the size of the union
's largest data member.

No Static, Reference, or Class Data Members

Some, but not all, class features apply equally to union s. For example, like any class, a union
can specify protection labels to make members public, private, or protected. By default, union s
behave like struct s: Unless otherwise specified, the members of a union are public .

A union may also define member functions, including constructors and destructors. However, a
union may not serve as a base class, so a member function may not be virtual.

A union cannot have a static data member or a member that is a reference. Moreover, union s
cannot have a member of a class type that defines a constructor, destructor, or assignment
operator:

     union illegal_members {



         Screen s;      // error: has constructor
         static int is; // error: static member
         int &rfi;      // error: reference member
         Screen *ps;    // ok: ordinary built-in pointer type
     };

This restriction includes classes with members that have a constructor, destructor, or
assignment operator.

Using a Union Type

The name of a union is a type name:

     TokenValue first_token = {'a'};  // initialized TokenValue

     TokenValue last_token;           // uninitialized TokenValue object

     TokenValue *pt = new TokenValue; // pointer to a TokenValue object

Like other built-in types, by default union s are uninitialized. We can explicitly initialize a union
in the same way that we can explicitly initialize (Section 12.4.5 , p. 464 ) simple classes.
However, we can provide an initializer only for the first member. The initializer must be enclosed
in a pair of curly braces. The initialization of first_token gives a value to its cval member.

Using Members of a Union

The members of an object of union type are accessed using the normal member access
operators (. and -> ):

     last_token.cval = 'z';
     pt->ival = 42;

Giving a value to a data member of a union object makes the other data members undefined.
When using a union , we must always know what type of value is currently stored in the union .
Retrieving the value stored in the union through the wrong data member can lead to a crash or
other incorrect program behavior.

The best way to avoid accessing the union value through
the wrong member is to define a separate object that
keeps track of what value is stored in the union . This
additional object is referred to as the discriminant of the
union .



Nested Unions

Most often union s are used as nested types, where the discriminant is a member of the
enclosing class:

     class Token {
     public:

         // indicates which kind of value is in val
         enum TokenKind {INT, CHAR, DBL};
         TokenKind tok;
         union {             // unnamed union
             char   cval;
             int    ival;
             double dval;

         } val;              // member val is a union of the 3 listed types
     };

In this class, the enumeration object tok serves to indicate which kind of value is stored in the
val member. That member is an (unnamed) union that holds either a char, int , or double .

We often use a switch statement (Section 6.6 , p. 199 ) to test the discriminant and then do
processing dependent on which value is currently stored in the union :

     Token token;
     switch (token.tok) {
     case Token::INT:
         token.val.ival = 42; break;
     case Token::CHAR:
         token.val.cval = 'a'; break;
     case Token::DBL:
         token.val.dval = 3.14; break;
     }

Anonymous Unions

An unnamed union that is not used to define an object is referred to as an anonymous union .

The names of the members of an anonymous union appear in the enclosing scope. For example,
here is our Token class rewritten to use an anonymous union :

     class Token {
     public:

         // indicates which kind of token value is in val
         enum TokenKind {INT, CHAR, DBL};
         TokenKind tok;
         union {                 // anonymous union
             char   cval;
             int    ival;
             double dval;
         };



     };

Because an anonymous union provides no way to access its members, the members are directly
accessible as part of the scope where the anonymous union is defined. Rewriting our previous
switch to use the anonymous-union version of our class would look like:

     Token token;
     switch (token.tok) {
     case Token::INT:
         token.ival = 42; break;
     case Token::CHAR:
         token.cval = 'a'; break;
     case Token::DBL:
         token.dval = 3.14; break;
     }

An anonymous union cannot have private or protected members,
nor can an anonymous union define member functions.

 



 

18.6. Local Classes

A class can be defined inside a function body. Such a class is called a local class . A local class
defines a type that is visible only in the local scope in which it is defined. Unlike nested classes,
the members of a local class are severely restricted.

All members, including functions, of a local class must be
completely defined inside the class body. As a result, local classes
are much less useful than nested classes.

In practice, the requirement that members be fully defined within the class limits the complexity
of the member functions of a local class. Functions in local classes are rarely more than a few
lines of code. Beyond that, the code becomes difficult for the reader to understand.

Similarly, a local class is not permitted to declare static data members, there being no way to
define them.

Local Classes May Not Use Variables from the Function's Scope

The names from the enclosing scope that a local class can access are limited. A local class can
access only type names, static variables (Section 7.5.2 , p. 255 ), and enumerators defined
within the enclosing local scopes. A local class may not use the ordinary local variables of the
function in which the class is defined:

     int a, val;
     void foo(int val)
     {
        static int si;
        enum Loc { a = 1024, b };

        // Bar is local to foo
        class Bar {
        public:
            Loc locVal; // ok: uses local type name
            int barVal;

            void fooBar(Loc l = a)         // ok: default argument is Loc::a
            {

               barVal = val;      // error: val is local to foo
               barVal = ::val;    // ok: uses global object
               barVal = si;       // ok: uses static local object
               locVal = b;        // ok: uses enumerator
            }
        };
        // ...



     }

Normal Protection Rules Apply to Local Classes

The enclosing function has no special access privileges to the private members of the local class.
Of course, the local class could make the enclosing function a friend.

In practice, private members are hardly ever necessary in
a local class. Often all members of a local class are public
.

The portion of a program that can access a local class is very limited. A local class is
encapsulated within its local scope. Further encapsulation through information hiding is often
overkill.

Name Lookup within a Local Class

Name lookup within the body of a local class happens in the same manner as for other classes.
Names used in the declarations of the members of the class must be in scope before the use of
the name. Names used in definitions of the members can appear anywhere in the scope of the
local class. Names not resolved to class members are searched first in the enclosing local scope
and then out to the scope enclosing the function itself.

Nested Local Classes

It is possible to nest a class inside a local class. In this case, the nested class definition can
appear outside the local-class body. However, the nested class must be defined in the same
local scope as that in which the local class is defined. As usual, the name of the nested class
must be qualified by the name of the enclosing class and a declaration of the nested class must
appear in the definition of the local class:

     void foo()
     {
        class Bar {
        public:
            // ...

            class Nested;    // declares class Nested
        };

        //  definition of Nested
        class Bar::Nested {
            // ...
        };



     }

A class nested in a local class is itself a local class, with all the attendant restrictions. All
members of the nested class must be defined inside the body of the nested class itself.

 



 

18.7. Inherently Nonportable Features

One of the hallmarks of the C programming language is the ability to write low-level programs
that can be readily moved from one machine to another. The process of moving a program to a
new machine is referred to as "porting," so C programs are said to be portable .

To support low-level programming, C defines some features that are inherently nonportable.
The fact that the size of the arithmetic types vary across machines (Section 2.1 , p. 34 ) is one
such nonportable feature that we have already encountered. In this section we'll cover two
additional nonportable features that C++ inherits from C: bit-fields and the volatile qualifier.
These features make it easier to interface directly to hardware.

C++ adds another nonportable feature to those that it inherits from C: linkage directives, which
make it possible to link to programs written in other languages.

18.7.1. Bit-fields

A special class data member, referred to as a bit-field, can be declared to hold a specified
number of bits. Bit-fields are normally used when a program needs to pass binary data to
another program or hardware device.

The layout in memory of a bit-field is machine-dependent.

A bit-field must be an integral data type. It can be either signed or unsigned . We indicate that a
member is a bit-field by following the member name with a colon and a constant expression
specifying the number of bits:

     typedef unsigned int Bit;

     class File {
         Bit mode: 2;
         Bit modified: 1;
         Bit prot_owner: 3;
         Bit prot_group: 3;
         Bit prot_world: 3;
         // ...
     };

The mode bit-field has two bits, modified only one, and the other members each have three bits.



Bit-fields defined in consecutive order within the class body are, if possible, packed within
adjacent bits of the same integer, thereby providing for storage compaction. For example, in the
preceding declaration, the five bit-fields will be stored in the single unsigned int first associated
with the bit-field mode . Whether and how the bits are packed into the integer is machine-
dependent.

Ordinarily it is best to make a bit-field an unsigned type. The
behavior of bit-fields stored in a signed type is implementation-
defined.

Using Bit-fields

A bit-field is accessed in much the same manner as the other data members of a class. For
example, a bit-field that is a private member of its class can be accessed only from within the
definitions of the member functions and friends of its class:

     void File::write()
     {
         modified = 1;
         // ...
     }

     void File::close()
     {
         if (modified)
             // ... save contents
     }

Bit-fields with more than one bit are usually manipulated using the built-in bitwise operators
(Section 5.3 , p. 154 ):

     enum { READ = 01, WRITE = 02 }; // File modes

     int main() {
         File myFile;

         myFile.mode |= READ; // set the READ bit

         if (myFile.mode & READ) // if the READ bit is on
             cout << "myFile.mode READ is set\n";
     }



Classes that define bit-field members also usually define a set of inline member functions to test
and set the value of the bit-field. For example, the class File might define the members isRead
and isWrite :

     inline int File::isRead() { return mode & READ; }
     inline int File::isWrite() { return mode & WRITE; }

     if (myFile.isRead()) /* ... */

With these member functions, the bit-fields can now be declared as private members of class
File .

The address-of operator (& ) cannot be applied to a bit-field, so there can be no pointers
referring to class bit-fields. Nor can a bit-field be a static member of its class.

18.7.2. volatile Qualifier

The precise meaning of volatile is inherently machine-dependent
and can be understood only by reading the compiler
documentation. Programs that use volatile usually must be
changed when they are moved to new machines or compilers.

Programs that deal directly with hardware often have data elements whose value is controlled
by processes outside the direct control of the program itself. For example, a program might
contain a variable updated by the system clock. An object should be declared volatile when its

value might be changed in ways outside either the control or detection of the compiler. The
volatile keyword is a directive to the compiler that it should not perform optimizations on such
objects.

The volatile qualifier is used in much the same way as is the const qualifier. It is an additional
modifier to a type:

     volatile int display_register;
     volatile Task *curr_task;
     volatile int ixa[max_size];
     volatile Screen bitmap_buf;

display_register is a volatile object of type int . curr_task is a pointer to a volatile Task
object. ixa is a volatile array of integers. Each element of the array is considered to be
volatile . bitmap_buf is a volatile Screen object. Each of its data members is considered to be
volatile .



In the same way that a class may define const member functions, it can also define member
functions as volatile . Only volatile member functions may be called on volatile objects.

Section 4.2.5 (p. 126 ) described the interactions between the const qualifier and pointers. The
same interactions exist between the volatile qualifier and pointers. We can declare pointers
that are volatile , pointers to volatile objects, and pointers that are volatile that point to
volatile objects:

     volatile int v;     // v is a volatile int

     int *volatile vip;  // vip is a volatile pointer to int

     volatile int *ivp;  // ivp is a pointer to volatile int

     // vivp is a volatile pointer to volatile int
     volatile int *volatile vivp;

     int *ip = &v; // error: must use pointer to volatile

     *ivp = &v;    // ok: ivp is pointer to volatile

     vivp = &v;    // ok: vivp is volatile pointer to volatile

As with const , we may assign the address of a volatile object (or copy a pointer to a volatile
type) only to a pointer to volatile . We may use a volatile object to initialize a reference only
if the reference is volatile .

Synthesized Copy Control Does Not Apply to Volatile Objects

One important difference between the treatment of const and volatile is that the synthesized
copy and assignment operators cannot be used to initialize or assign from a volatile object.
The synthesized copy-control members take parameters that are const references to the class
type. However, a volatile object cannot be passed to a plain or const reference.

If a class wants to allow volatile objects to be copied or to allow assignment from or to a
volatile operand, it must define its own versions of the copy constructor and/or assignment
operator:

     class Foo {
     public:

         Foo(const volatile Foo&);    // copy from a volatile object

         // assign from a volatile object to a non volatile objet
         Foo& operator=(volatile const Foo&);

         // assign from a volatile object to a volatile object
         Foo& operator=(volatile const Foo&) volatile;

         // remainder of class Foo
     };

By defining the parameter to the copy-control members as a const volatile reference, we can
copy or assign from any kind of Foo : a plain Foo , a const Foo , a volatile Foo , or a const
volatile Foo .



Although we can define the copy-control members to handle
volatile objects, a deeper question is whether it makes any sense
to copy a volatile object. The answer to that question depends
intimately on the reason for using volatile in any particular
program.

18.7.3. Linkage Directives: extern "C"

C++ programs sometimes need to call functions written in another programming language.
Most often, that other language is C. Like any name, the name of a function written in another
language must be declared. That declaration must specify the return type and parameter list.
The compiler checks calls to external-language functions in the same way that it handles
ordinary C++ functions. However, the compiler typically must generate different code to call
functions written in other languages. C++ uses linkage directives to indicate the language
used for any non-C++ function.

Declaring a Non-C++ Function

A linkage directive can have one of two forms: single or compound. Linkage directives may not
appear inside a class or function definition. The linkage directive must appear on the first
declaration of a function.

As an example, let's look at some of the C functions declared in the cstdlib header.
Declarations in that header might look something like

     // illustrative linkage directives that might appear in the C++ header <cstring>
     // single statement linkage directive
     extern "C" size_t strlen(const char *);
     // compound statement linkage directive
     extern "C" {
         int strcmp(const char*, const char*);
         char *strcat(char*, const char*);
     }

The first form consists of the extern keyword followed by a string literal, followed by an
"ordinary" function declaration. The string literal indicates the language in which the function is
written.

We can give the same linkage to several functions at once by enclosing their declarations inside
curly braces following the linkage directive. These braces serve to group the declarations to
which the linkage directive applies. The braces are otherwise ignored, and the names of
functions declared within the braces are visible as if the functions were declared outside the
braces.

Linkage Directives and Header Files



The multiple-declaration form can be applied to an entire header file. For example, the C++
cstring header might look like

     // compound statement linkage directive
     extern "C" {
     #include <string.h>     // C functions that manipulate C-style strings
     }

When a #include directive is enclosed in the braces of a compound linkage directive, all ordinary
function declarations in the header file are assumed to be functions written in the language of
the linkage directive. Linkage directives can be nested, so if the header contained a function
with a linkage directive the linkage of that function is unaffected.

The functions that C++ inherits from the C library are permitted to
be defined as C functions but are not required to be C functionsit's
up to each C++ implementation to decide whether to implement the
C library functions in C or C++.

Exporting Our C++ Functions to Other Langauges

By using the linkage directive on a function definition, we can make a C++ function available to
a program written in another language:

     // the calc function can be called from C programs
     extern "C" double calc(double dparm) { /* ... */ }

When the compiler generates code for this function, it will generate code appropriate to the
indicated language.

Every declaration of a function defined with a linkage directive must
use the same linkage directive.

Languages Supported by Linkage Directives

A compiler is required to support linkage directives for C. A compiler may provide linkage



specifications for other languages. For example, extern "Ada", extern "FORTRAN" , and so on.

What languages are supported varies by compiler. You must consult
the user's guide for further information on any non-C linkage
specifications it may provide.

Preprocessor Support for Linking to C

It can be useful sometimes to compile the same source file in both C or
C++. The preprocessor name __cplusplus (two underscores) is automatically

defined when compiling C++, so we can conditionally include code based on
whether we are compiling C++.

     #ifdef __cplusplus

     // ok: we're compiling C++
     extern "C"
     #endif
     int strcmp(const char*, const char*);

Overloaded Functions and Linkage Directives

The interaction between linkage directives and function overloading depends on the target
language. If the language supports overloaded functions, then it is likely that a compiler that
implements linkage directives for that language would also support overloading of these
functions from C++.

The only language guaranteed to be supported by C++ is C. The C language does not support
function overloading, so it should not be a surprise that a linkage directive can be specified only
for one C function in a set of overloaded functions. It is an error to declare more than one
function with C linakage with a given name:

     // error: two extern "C" functions in set of overloaded functions
     extern "C" void print(const char*);
     extern "C" void print(int);

In C++ programs, it is fairly common to overload C functions. However, the other functions in
the overload set must all be C++ functions:

     class SmallInt { /* ... */ };



     class BigNum { /* ... */ };
     // the C function can be called from C and C++ programs
     // the C++ functions overload that function and are callable from C++
     extern "C" double calc(double);
     extern SmallInt calc(const SmallInt&);
     extern BigNum calc(const BigNum&);

The C version of calc can be called from C programs and from C++ programs. The additional
functions are C++ functions with class parameters that can be called only from C++ programs.
The order of the declarations is not significant.

Pointers to extern "C" Functions

The language in which a function is written is part of its type. To declare a pointer to a function
written in another programming language, we must use a linkage directive:

     // pf points to a C function returning void taking an int
     extern "C" void (*pf)(int);

When pf is used to call a function, the function call is compiled assuming that the call is to a C
function.

A pointer to a C function does not have the same type as a pointer
to a C++ function. A pointer to a C function cannot be initialized or
be assigned to point to a C++ function (and vice versa).

When there is such a mismatch, a compile-time error message is issued:

     void (*pf1)(int);            // points to a C++ function
     extern "C" void (*pf2)(int); // points to a C function

     pf1 = pf2; // error: pf1 and pf2 have different types

Some C++ compilers may accept the preceding assignment as a
language extension, even though, strictly speaking, it is illegal.



Linkage Directives Apply to the Entire Declaration

When we use a linkage directive, it applies to the function and any function point-ers used as
the return type or as a parameter type:

     // f1 is a C function; its parameter is a pointer to a C function
     extern "C" void f1(void(*)(int));

This declaration says that f1 is a C function that doesn't return a value. It has one parameter,
which is a pointer to a function that returns nothing and takes a single int parameter. The
linkage directive applies to the function pointer as well as to f1 . When we call f1 , we must pass
it the name of a C function or a pointer to a C function.

Because a linkage directive applies to all the functions in a declaration, we must use a typedef
to pass a pointer to a C function to a C++ function:

     // FC is a pointer to C function
     extern "C" typedef void FC(int);

     // f2 is a C++ function with a parameter that is a pointer to a C function
     void f2(FC *);

Exercises Section 18.7.3

Exercise
18.34:

Explain these declarations and indicate whether they are legal:

     extern "C" int compute(int *, int);
     extern "C" double compute(double *, double);

 



 

Chapter Summary

C++ provides several specialized facilities that are tailored to particular kinds of problems.

Customized memory management is used by classes in two ways: A class may need to define
its own internal memory allocation that allows it to streamline allocation of its own data
members. A class might want to define its own, class-specific operator new and operator delete
functions that will be used whenever new objects of the class type are allocated.

Some programs need to directly interrogate the dynamic type of an object at run time. Run-
time type identification (RTTI) provides language level support for this kind of programming.
RTTI applies only to classes that define virtual functions; type information for types that do not
define virtual functions is available but reflects the static type.

Pointers to ordinary objects are typed. When we define a pointer to a class member, the pointer
type must also encapsulate the type of the class to which the pointer points. A pointer to
member may be bound to any member of the class that has the same type. When we
dereference a pointer to member, an object from which to fetch the member must be specified.

C++ defines several additional aggregate types:

Nested classes, which are classes defined in the scope of another class. Such classes are
often defined as implementation classes of its enclosing class.

Unions are a special kind of class that may contain only simple data members. An object of
a union type may define a value for only one of its data members at any one time. Unions
are most often nested inside another class type.

Local classes, which are very simple classes defined local to a function. All members of a
local class must be defined in the class body. There are no static data members of a local
class.

C++ also supports several inherently nonportable features including bit-fields and volatile ,
which make it easier to interface to hardware, and linkage directives, which make it easier to
interface to programs written in other langauges.

 



 

Defined Terms

allocator class

Standard library class that supports type-specific allocation of raw, unconstructed
memory. The allocator class is a class template that defines member functions to
allocate, deallocate, construct , and destroy objects of the allocator 's template
parameter type.

anonymous union

Unnamed union that is not used to define an object. Members of the anonymous union are
referred to directly. These unions may not have member functions and may not have
private or protected members.

bit-field

Class member with an signed or unsigned integral type that specifies the number of bits
to allocate to the member. Bit-fields defined in consecutive order in the class are, if
possible, compacted into a common integral value.

delete expression

A delete expression destroys a dynamically allocated object of a specified type and frees
the memory used by that object. A delete[] expression destroys the elements of a
dynamically allocated array of a specified type and frees the memory used by the array.
These expressions use the corresponding version of the library or class-specific operator
delete functions to free raw memory that held the object or array.

discriminant

Programming technique that uses an object to determine which actual type is held in a
union at any given time.

dynamic_cast

Operator that performs a checked cast from a base type to a derived type. The base type
must define at least one virtual function. The operator checks the dynamic type of the
object to which the reference or pointer is bound. If the object type is the same as the
type of the cast (or a type derived from that type), then the cast is done. Otherwise, a
zero pointer is returned for a pointer cast, or an exception is thrown for a cast of a
reference.



freelist

Memory management technique that involves preallocating unconstructed memory to hold
objects that will be created as needed. When objects are freed, their memory is put back
on the free list rather than being returned to the system.

linkage directive

Mechanism used to allow functions written in a different language to be called from a C++
program. All compilers must support calling C and C++ functions. It is compiler-
dependent whether any other languages are supported.

local class

Class defined inside a function. A local class is visible only inside the function in which it is
defined. All members of the class must be defined inside the class body. There can be no
static members of a local class. Local class members may not access the local variables
defined in the enclosing function. They may use type names, static variables, or
enumerators defined in the enclosing function.

member operators new and delete

Class member functions that override the default memory allocation performed by the
global library operator new and operator delete functions. Both object (new ) and array
(new[] ) forms of these functions may be defined. The member new and delete functions
are implicitly declared as static . These operators allocate (deal-locate) memory. They
are used automatically by new (delete ) expressions, which handle object initialization and
destruction.

nested class

Class defined inside another class. A nested class is defined inside its enclosing scope:
Nested-class names must be unique within the class scope in which they are defined but
can be reused in scopes outside the enclosing class. Access to the nested class outside the
enclosing class requires use of the scope operator to specify the scope(s) in which the
class is nested.

nested type

Synonym for nested class.

new expression

A new expression allocates and constructs an object of a specified type. A new[] expression
allocates and constructs an array of objects. These expressions use the corresponding
version of the library operator new functions to allocate raw memory in which the
expression constructs an object or array of the specified type.



operator delete

A library function that frees untyped, unconstructed memory allocated by operator new .
The library operator delete[] frees memory used to hold an array that was allocated by
operator new[] .

operator new

A library function that allocates untyped, unconstructed memory of a given size. The
library function operator new[] allocates raw memory for arrays. These library functions
provide a more primitive allocation mechanism than the library allocator class. Modern
C++ programs should use the allocator classes rather than these library functions.

placement new expression

The form of new that constructs its object in specified memory. It does no allocation;
instead, it takes an argument that specifies where the object should be constructed. It is a
lower-level analog of the behavior provided by the construct member of the allocator
class.

pointer to member

Pointer that encapsulates the class type as well as the member type to which the pointer
points. The definition of a pointer to member must specify the class name as well as the
type of the member(s) to which the pointer may point:

     TC::*pmem = &C::member;

This statement defines pmem as a pointer that can point to members of the class named C that
have type T and initializes it to point to the member in C named member . When the pointer is
dereferenced, it must be bound to an object of or pointer to type C :

     classobj.*pmem;

     classptr->*pmem;

fetches member from the object classobj of the object pointed to by classptr .

portable

Term used to describe a program that can be moved to a new machine with relatively
little effort.



run-time type identification

Term used to describe the language and library facilities that allow the dynamic type of a
reference or pointer to be obtained at run time. The RTTI operators, typeid and
dynamic_cast , provide the dynamic type only for references or pointers to class types with
virtual functions. When applied to other types, the type returned is the static type of the
reference or pointer.

typeid

Unary operator that takes an expression and returns a reference to an object of the library
type named type_info that describes the type of the expression. When the expression is
an object of a type that has virtual functions, then the dynamic type of the expression is
returned. If the type is a reference, pointer, or other type that does not define virtual
functions, then the type returned is the static type of the reference, pointer, or object.

type_info

Library type that describes a type. The type_info class is inherently machine-dependent,
but any library must define type_info with members listed in Table 18.2 (p. 779 ).
type_info objects may not be copied.

union

Classlike aggregate type that may define multiple data members, only one of which can
have a value at any one point. Members of a union must be simple types: They can be a
built-in or compound type or a class type that does not define a constructor, destructor,
or the assignment operator. Unions may have member functions, including constructors
and destructors. A union may not serve as a base class.

volatile

Type qualifier that signifies to the compiler that a variable might be changed outside the
direct control of the program. It is a signal to the compiler that it may not perform certain
optimizations.
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This appendix presents additional useful details about the library. We'll start by collecting in one
place the names we used from the standard library. Table A.1 on the next page lists each name
and the header that defines that name.

Chapter 11 covered the library algorithms. That chapter illustrated how some of the more
common algorithms are used, and described the architecture that underlies the algorithms
library. In this Appendix, we list all the algorithms, organized by the kinds of operations they
perform.

We close by examining some additional IO library capabilities: format control, unformatted IO,
and random access on files. Each IO type defines a collection of format states and associated
functions to control those states. These format states give us finer control over how input and
output works. The IO we've done has all been formattedthe input and output routines know
about the types we use and format the data on input or output accordingly. There are also
unformatted IO functions that deal with the stream at the char level, doing no interpretation of
the data. In Chapter 8 we saw that the fstream type can read and write the same file. In this
Appendix, we'll see how to do so.

 



 

A.1. Library Names and Headers

Our programs mostly did not show the actual #include directives needed to compile the
program. As a convenience to our readers, Table A.1 lists the library names our programs used
and the header in which they may be found.

Table A.1. Standard Library Names and Headers

Name Header Name Header

abort <cstdlib> ios_base <ios_base>

accumulate <numeric> isalpha <cctype>

allocator <memory> islower <cctype>

auto_ptr <memory> ispunct <cctype>

back_inserter <iterator> isspace <cctype>

bad_alloc <new> istream <iostream>

bad_cast <typeinfo> istream_iterator <iterator>

bind2nd <functional> istringstream <sstream>

bitset <bitset> isupper <cctype>

boolalpha <iostream> left <iostream>

cerr <iostream> less_equal <functional>

cin <iostream> list <list>

copy <algorithm> logic_error <stdexcept>

count <algorithm> lower_bound <algorithm>

count_if <algorithm> make_pair <utility>

cout <iostream> map <map>

dec <iostream> max <algorithm>

deque <deque> min <algorithm>

endl <iostream> multimap <map>

ends <iostream> multiset <set>

equal_range <algorithm> negate <functional>

exception <exception> noboolalpha <iostream>

fill <algorithm> noshowbase <iostream>

fill_n <algorithm> noshowpoint <iostream>



Name Header Name Header

find <algorithm> noskipws <iostream>

find_end <algorithm> not1 <functional>

find_first_of <algorithm> nounitbuf <iostream>

fixed <iostream> nouppercase <iostream>

flush <iostream> nth_element <algorithm>

for_each <algorithm> oct <iostream>

front_inserter <iterator> of stream <fstream>

fstream <fstream> ostream <iostream>

getline <string> ostream_iterator <iterator>

hex <iostream> ostringstream <sstream>

ifstream <fstream> out_of_range <stdexcept>

inner_product <numeric> pair <utility>

inserter <iterator> partial_sort <algorithm>

internal <iostream> plus <functional>

priority_queue <queue> sqrt <cmath>

ptrdiff_t <cstddef> stable_sort <algorithm>

queue <queue> stack <stack>

range_error <stdexcept> strcmp <cstring>

replace <algorithm> strcpy <cstring>

replace_copy <algorithm> string <string>

reverse_iterator <iterator> stringstream <sstream>

right <iostream> strlen <cstring>

runtime_error <stdexcept> strncpy <cstring>

scientific <iostream> terminate <exception>

set <set> tolower <cctype>

set_difference <algorithm> toupper <cctype>

set_intersection <algorithm> type_info <typeinfo>

set_union <algorithm> unexpected <exception>

setfill <iomanip> uninitialized_copy <memory>

setprecision <iomanip> unitbuf <iostream>

setw <iomanip> unique <algorithm>

showbase <iostream> unique_copy <algorithm>

showpoint <iostream> upper_bound <algorithm>

find <algorithm> noskipws <iostream>

find_end <algorithm> not1 <functional>

find_first_of <algorithm> nounitbuf <iostream>

fixed <iostream> nouppercase <iostream>

flush <iostream> nth_element <algorithm>

for_each <algorithm> oct <iostream>

front_inserter <iterator> of stream <fstream>

fstream <fstream> ostream <iostream>

getline <string> ostream_iterator <iterator>

hex <iostream> ostringstream <sstream>

ifstream <fstream> out_of_range <stdexcept>

inner_product <numeric> pair <utility>

inserter <iterator> partial_sort <algorithm>

internal <iostream> plus <functional>

priority_queue <queue> sqrt <cmath>

ptrdiff_t <cstddef> stable_sort <algorithm>

queue <queue> stack <stack>

range_error <stdexcept> strcmp <cstring>

replace <algorithm> strcpy <cstring>

replace_copy <algorithm> string <string>

reverse_iterator <iterator> stringstream <sstream>

right <iostream> strlen <cstring>

runtime_error <stdexcept> strncpy <cstring>

scientific <iostream> terminate <exception>

set <set> tolower <cctype>

set_difference <algorithm> toupper <cctype>

set_intersection <algorithm> type_info <typeinfo>

set_union <algorithm> unexpected <exception>

setfill <iomanip> uninitialized_copy <memory>

setprecision <iomanip> unitbuf <iostream>

setw <iomanip> unique <algorithm>

showbase <iostream> unique_copy <algorithm>

showpoint <iostream> upper_bound <algorithm>



Name Header Name Header

size_t <cstddef> uppercase <iostream>

skipws <iostream> vector <vector>

sort <algorithm>    

 

size_t <cstddef> uppercase <iostream>

skipws <iostream> vector <vector>

sort <algorithm>    

 



 

A.2. A Brief Tour of the Algorithms

Chapter 11 introduced the generic algorithms and outlined their underlying architecture. The
library defines more than 100 algorithms. Learning to use them requires understanding their
structure rather than memorizing the details of each algorithm. In this section we describe each
of the algorithms. In it, we organize the algorithms by the type of action the algorithm
performs.

A.2.1. Algorithms to Find an Object

The find and count algorithms search the input range for a specific value. find returns an
iterator to an element; count returns the number of matching elements.

Simple Find Algorithms

These algorithms require input iterators. The find and count algorithms look for specific
elements. The find algorithms return an iterator referring to the first matching element. The
count algorithms return a count of how many times the element occurs in the input sequence.

find(beg, end, val)
count(beg, end, val)

Looks for element(s) in input range equal to val . Uses the equality (== ) operator of the
underlying type. find returns an iterator to the first matching element or end if no such element
exists. count returns a count of how many times val occurs.

find_if(beg, end, unaryPred)
count_if(beg, end, unaryPred)

Looks for element(s) in input range for which unaryPred is true. The predicate must take a single
parameter of the value_type of the input range and return a type that can be used as a
condition.

find returns an iterator to first element for which unaryPred is true, or end if no such element
exists. count applies unaryPred to each element and returns the number of elements for which
unaryPred was true.

Algorithms to Find One of Many Values

These algorithms require two pairs of forward iterators. They search for the first (or last)
element in the first range that is equal to any element in the second range. The types of beg1
and end1 must match exactly, as must the types of beg2 and end2 .



There is no requirement that the types of beg1 and beg2 match exactly. However, it must be
possible to compare the element types of the two sequences. So, for example, if the first
sequence is a list<string> , then the second could be a vector<char*> .

Each algorithm is overloaded. By default, elements are tested using the == operator for the
element type. Alternatively, we can specify a predicate that takes two parameters and returns a
bool indicating whether the test between these two elements succeeds or fails.

find_first_of(beg1, end1, beg2, end2)

Returns an iterator to the first occurrence in the first range of any element from the second
range. Returns end1 if no match found.

find_first_of(beg1, end1, beg2, end2, binaryPred)

Uses binaryPred to compare elements from each sequence. Returns an iterator to the first
element in the first range for which the binaryPred is true when applied to that element and an
element from the second sequence. Returns end1 if no such element exits.

find_end(beg1, end1, beg2, end2)
find_end(beg1, end1, beg2, end2, binaryPred)

Operates like find_first_of , except that it searches for the last occurrence of any element
from the second sequence.

As an example, if the first sequence is 0,1,1,2,2,4,0,1 and the second sequence is 1,3,5,7,9,
then find_end would return an iterator denoting the last element in the input range, and
find_first_of would return an iterator to the second elementin this example, it returns the first
1 in the input sequence.

Algorithms to Find a Subsequence

These algorithms require forward iterators. They look for a subsequence rather than a single
element. If the subsequence is found, an iterator is returned to the first element in the
subsequence. If no subsequence is found, the end iterator from the input range is returned.

Each function is overloaded. By default, the equality (== ) operator is used to compare
elements; the second version allows the programmer to supply a predicate to test instead.

adjacent_find(beg, end)
adjacent_find(beg, end, binaryPred)

Returns an iterator to the first adjacent pair of duplicate elements. Returns end if there are no
adjacent duplicate elements. In the first case, duplicates are found by using == . In the second,
duplicates are those for which the binaryPred is true.



search(beg1, end1, beg2, end2)
search(beg1, end1, beg2, end2, binaryPred)

Returns an iterator to the first position in the input range at which the second range occurs as a
subsequence. Returns end1 if the subsequence is not found. The types of beg1 and beg2 may
differ but must be compatible: It must be possible to compare elements in the two sequences.

search_n(beg, end, count, val)
search_n(beg, end, count, val, binaryPred)

Returns an iterator to the beginning of a subsequence of count equal elements. Returns end if no
such subsequence exists. The first version looks for count occurrences of the given value ; the
second version count occurrences for which the binaryPred is true.

A.2.2. Other Read-Only Algorithms

These algorithms require input iterators for their first two arguments. The equal and mismatch
algorithms also take an additional input iterator that denotes a second range. There must be at
least as many elements in the second sequence as there are in the first. If there are more
elements in the second, they are ignored. If there are fewer, it is an error and results in
undefined run-time behavior.

As usual, the types of the iterators denoting the input range must match exactly. The type of
beg2 must be compatible with the type of beg1 . That is, it must be possible to compare
elements in both sequences.

The equal and mismatch functions are overloaded: One version uses the element equality
operator (== ) to test pairs of elements; the other uses a predicate.

for_each(beg, end, f)

Applies the function (or function object (Section 14.8 , p. 530 )) f to each element in its input
range. The return value, if any, from f is ignored. The iterators are input iterators, so the
elements may not be written by f . Typically, for_each is used with a function that has side
effects. For example, f might print the values in the range.

mismatch(beg1, end1, beg2)
mismatch(beg1, end1, beg2, binaryPred)

Compares the elements in two sequences. Returns a pair of iterators denoting the first elements
that do not match. If all the elements match, then the pair returned is end1 , and an iterator
into beg2 offset by the size of the first sequence.

equal(beg1, end1, beg2)



equal(beg1, end1, beg2, binaryPred)

Determines whether two sequences are equal. Returns true if each element in the input range
equals the corresponding element in the sequence that begins at beg2 .

For example, given the sequences meet and meat , a call to mismatch would return a pair
containing iterators referring to the second e in the first sequence and to the element a in the
second sequence. If, instead, the second sequence were meeting , and we called equal , then
the pair returned would be end1 and an iterator denoting the element i in the second range.

A.2.3. Binary-Search Algorithms

Although these algorithms may be used with forward iterators, they offer specialized versions
that are much faster when used with random-access iterators.

These algorithms perform a binary search, which means that the input sequence must be
sorted. These algorithms behave similarly to the associative container members of the same
name (Section 10.5.2 , p. 377 ). The equal_range, lower_bound , and upper_bound algorithms
return an iterator that refers to the positions in the container at which the given element could
be inserted while still preserving the container's ordering. If the element is larger than any other
in the container, then the iterator that is returned might be the off-the-end iterator.

Each algorithm provides two versions: The first uses the element type's less-than operator (< )
to test elements; the second uses the specified comparison.

lower_bound(beg, end, val)
lower_bound(beg, end, val, comp)

Returns an iterator to the first position in which val can be inserted while preserving the
ordering.

upper_bound(beg, end, val)
upper_bound(beg, end, val, comp)

Returns an iterator to the last position in which val can be inserted while preserving the
ordering.

equal_range(beg, end, val)
equal_range(beg, end, val, comp)

Returns an iterator pair indicating the subrange in which val could be inserted while preserving
the ordering.

binary_search(beg, end, val)
binary_search(beg, end, val, comp)



Returns a bool indicating whether the sequence contains an element that is equal to val . Two
values x and y are considered equal if x < y and y <x both yield false.

A.2.4. Algorithms that Write Container Elements

Many algorithms write container elements. These algorithms can be distinguished both by the
kinds of iterators on which they operate and by whether they write elements in the input range
or write to a specified destination.

The simplest algorithms read elements in sequence, requiring only input iterators. Those that
write back to the input sequence require forward iterators. Some read the sequence backward,
thus requiring bidirectional iterators. Algorithms that write to a separate destination, as usual,
assume the destination is large enough to hold the output.

Algorithms that Write but do Not Read Elements

These algorithms require an output iterator that denotes a destination. They take a second
argument that specifies a count and write that number of elements to the destination.

fill_n(dest, cnt, val)
generate_n(dest, cnt, Gen)

Write cnt values to dest . The fill_n function writes cnt copies of the value val ; generate_n
evaluates the generator Gen() cnt times. A generator is a function (or function object (Section
14.8 , p. 530 )) that is expected to produce a different return value each time it is called.

Algorithms that Write Elements Using Input Iterators

Each of these operations reads an input sequence and writes to an output sequence denoted by
dest . They require dest to be an output iterator, and the iterators denoting the input range
must be input iterators. The caller is responsible for ensuring that dest can hold as many
elements as necessary given the input sequence. These algorithms return dest incremented to
denote one past the last element written.

copy(beg, end, dest)

Copies the input range to the sequence beginning at iterator dest .

transform(beg, end, dest, unaryOp)
transform(beg, end, beg2, dest, binaryOp)

Applies the specified operation to each element in the input range, writing the result to dest .
The first version applies a unary operation to each element in the input range. The second



applies a binary operation to pairs of elements. It takes the first argument to the binary
operation from the sequence denoted by beg and end and takes the second argument from the
sequence beginning at beg2 . The programmer must ensure that the sequence beginning at beg2
has at least as many elements as are in the first sequence.

replace_copy(beg, end, dest, old_val, new_val)
replace_copy_if(beg, end, dest, unaryPred, new_val)

Copies each element to dest , replacing specified elements by the new_val . The first version
replaces those elements that are == to old_val . The second version replaces those elements for
which unaryPred is true.

merge(beg1, end1, beg2, end2, dest)
merge(beg1, end1, beg2, end2, dest, comp)

Both input sequences must be sorted. Writes a merged sequence to dest . The first version
compares elements using the < operator; the second version uses the given comparison.

Algorithms that Write Elements Using Forward Iterators

These algorithms require forward iterators because they write elements in their input sequence.

swap(elem1, elem2)
iter_swap(iter1, iter2)

Parameters to these functions are references, so the arguments must be writable. Swaps the
specified element or elements denoted by the given iterators.

swap_ranges(beg1, end1, beg2)

Swaps the elements in the input range with those in the second sequence beginning at beg2 .
The ranges must not overlap. The programmer must ensure that the sequence starting at beg2
is at least as large as the input sequence. Returns beg2 incremented to denote the element just
after the last one swapped.

fill(beg, end, val)
generate(beg, end, Gen)

Assigns a new value to each element in the input sequence. fill assigns the value val ;
generate executes Gen() to create new values.



replace(beg, end, old_val, new_val)
replace_if(beg, end, unaryPred, new_val)

Replace each matching element by new_val . The first version uses == to compare elements with
old_val; the second version executes unaryPred on each element, replacing those for which
unaryPred is true.

Algorithms that Write Elements Using Bidirectional Iterators

These algorithms require the ability to go backward in the sequence, and so they require
bidirectional iterators.

copy_backward(beg, end, dest)

Copies elements in reverse order to the output iterator dest . Returns dest incremented to
denote one past the last element copied.

inplace_merge(beg, mid, end)
inplace_merge(beg, mid, end, comp)

Merges two adjacent subsequences from the same sequence into a single, ordered sequence:
The subsequences from beg to mid and from mid to end are merged into beg to end . First version
uses < to compare elements; second version uses a specified comparison. Returns void .

A.2.5. Partitioning and Sorting Algorithms

The sorting and partitioning algorithms provide various strategies for ordering the elements of a
container.

A partition divides elements in the input range into two groups. The first group consists of
those elements that satisfy the specified predicate; the second, those that do not. For example,
we can partition elements in a container based on whether the elements are odd, or on whether
a word begins with a capital letter, and so forth.

Each of the sorting and partitioning algorithms provides stable and unstable versions. A stable
algorithm maintains the relative order of equal elements. For example, given the sequence

      { "pshew", "Honey", "tigger", "Pooh" }

a stable partition based on whether a word begins with a capital letter generates the sequence
in which the relative order of the two word categories is maintained:

     { "Honey", "Pooh", "pshew", "tigger" }



The stable algorithms do more work and so may run more slowly and use more memory than
the unstable counterparts.

Partitioning Algorithms

These algorithms require bidirectional iterators.

stable_partition(beg, end, unaryPred)
partition(beg, end, unaryPred)

Uses unaryPred to partition the input sequence. Elements for which unaryPred is true are put at
the beginning of the sequence; those for which the predicate is false are at the end. Returns an
iterator just past the last element for which unaryPred is true.

Sorting Algorithms

These algorithms require random-access iterators. Each of the sorting algorithms provides two
overloaded versions. One version uses element operator < to compare elements; the other takes
an extra parameter that specifies the comparison. These algorithms require random-access
iterators. With one exception, these algorithms return void ; partial_sort_copy returns an
itertor into the destination.

The partial_sort and nth_element algorithms do only part of the job of sorting the sequence.
They are often used to solve problems that might otherwise be handled by sorting the entire
sequence. Because these operations do less work, they typically are faster than sorting the
entire input range.

sort(beg, end)
stable_sort(beg, end)
sort(beg, end, comp)
stable_sort(beg, end, comp)

Sorts the entire range.

partial_sort(beg, mid, end)
partial_sort(beg, mid, end, comp)

Sorts a number of elements equal to mid beg . That is, if mid beg is equal to 42, then this
function puts the lowest-valued elements in sorted order in the first 42 positions in the
sequence. After partial_sort completes, the elements in the range from beg up to but not
including mid are sorted. No element in the sorted range is larger than any element in the range
after mid . The order among the unsorted elements is unspecified.

As an example, we might have a collection of race scores and want to know what the first-,
second- and third-place scores are but don't care about the order of the other times. We might



sort such a sequence as follows:

     partial_sort(scores.begin(),
                 scores.begin() + 3, scores.end());

partial_sort_copy(beg, end, destBeg, destEnd)
partial_sort_copy(beg, end, destBeg, destEnd, comp)

Sorts elements from the input range and puts as much of the sorted sequence as fits into the
sequence denoted by the iterators destBeg and destEnd . If the destination range is the same
size or has more elements than the input range, then the entire input range is sorted and stored
starting at destBeg . If the destination size is smaller, then only as many sorted elements as will
fit are copied.

Returns an iterator into the destination that refers just after the last element that was sorted.
The returned iterator will be destEnd if that destination sequence is smaller or equal in size to
the input range.

nth_element(beg, nth, end)
nth_element(beg, nth, end, comp)

The argument nth must be an iterator positioned on an element in the input sequence. After
nth_element , the element denoted by that iterator has the value that would be there if the
entire sequence were sorted. The elements in the container are also partitioned around nth :
Those before nth are all smaller than or equal to the value denoted by nth , and the ones after
it are greater than or equal to it. We might use nth_element to find the value closest to the
median:

     nth_element(scores.begin(), scores.begin() +
              scores.size()/2, scores.end());

A.2.6. General Reordering Operations

Several algorithms reorder the elements in a specified way. The first two, remove and unique ,
reorder the container so that the elements in the first part of the sequence meet some criteria.
They return an iterator marking the end of this subsequence. Others, such as reverse, rotate ,
and random_shuffle rearrange the entire sequence.

These algorithms operate "in place;" they rearrange the elements in the input sequence itself.
Three of the reordering algorithms offer "copying" versions. These algorithms, remove_copy,
rotate_copy , and unique_copy , write the reordered sequence to a destination rather than
rearranging elements directly.

Reordering Algorithms Using Forward Iterators



These algorithms reorder the input sequence. They require that the iterators be at least forward
iterators.

remove(beg, end, val)
remove_if(beg, end, unaryPred)

"Removes" elements from the sequence by overwriting them with elements that are to be kept.
The removed elements are those that are == to val or for which unaryPred is true. Returns an
iterator just past the last element that was not removed.

For example, if the input sequence is hello world and val is o , then a call to remove will
overwrite the two elements that are the letter 'o' by shifting the sequence to the left twice. The
new sequence will be hell wrldld . The returned iterator will denote the element after the first d
.

unique(beg, end)
unique(beg, end, binaryPred)

"Removes" all but the first of each consecutive group of matching elements. Returns an iterator
just past the last unique element. First version uses == to determine whether two elements are
the same; second version uses the predicate to test adjacent elements.

For example, if the input sequence is boohiss , then after the call to unique , the first sequence
will contain bohisss . The iterator returned will point to the element after the first s . The value
of the remaining two elements in the sequence is unspecified.

rotate(beg, mid, end)

Rotates the elements around the element denoted by mid . The element at mid becomes the first
element; those from mid + 1 through end come next, followed by the range from beg to mid .
Returns void .

For example, given the input sequence hissboo , if mid denotes the character b , then rotate
would reorder the sequence as boohiss .

Reordering Algorithms Using Bidirectional Iterators

Because these algorithms process the input sequence backward, they requre bidirectional
iterators.

reverse(beg, end)
reverse_copy(beg, end, dest)

Reverses the elements in the sequence. reverse operates in place; it writes the rearranged
elements back into the input sequence. reverse_copy copies the elements in reverse order to the



output iterator dest . As usual, the programmer must ensure that dest can be used safely.
reverse returns void ; reverse_copy returns an iterator just past the last element copied into the
destination.

Reordering Algorithms Writing to Output Iterators

These algorithms require forward iterators for the input sequence and an output iterator for the
destination.

Each of the preceding general reordering algorithms has an _copy version. These _copy versions
perform the same reordering but write the reordered elements to a specified destination
sequence rather than changing the input sequence. Except for rotate_copy , which requires
forward iterators, the input range is specified by input iterators. The dest iterator must be an
output iterator and, as usual, the programmer must guarantee that the destination can be
written safely. The algorithms return the dest iterator incremented to denote one past the last
element copied.

remove_copy(beg, end, dest, val)
remove_copy_if(beg, end, dest, unaryPred)

Copies elements except those matching val or for which unaryPred return true into dest .

unique_copy(beg, end, dest)
unique_copy(beg, end, dest, binaryPred)

Copies unique elements to dest .

rotate_copy(beg, mid, end, dest)

Like rotate except that it leaves its input sequence unchanged and writes the rotated sequence
to dest . Returns void .

Reordering Algorithms Using Random-Access Iterators

Because these algorithms rearrange the elements in a random order, they require random-
access iterators.

random_shuffle(beg, end)
random_shuffle(beg, end, rand)

Shuffles the elements in the input sequence. The second version takes a random-number
generator. That function must take and return a value of the iterator's difference_type . Both
versions return void .



A.2.7. Permutation Algorithms

Consider the following sequence of three characters: abc . There are six possible permutations
on this sequence: abc, acb, bac, bca, cab , and cba . These permutations are listed in
lexicographical order based on the less-than operator. That is, abc is the first permutation
because its first element is less than or equal to the first element in every other permutation,
and its second element is smaller than any permutation sharing the same first element.
Similarly, acb is the next permutation because it begins with a , which is smaller than the first
element in any remaining permutation. Those permutations that begin with b come before those
that begin with c .

For any given permutation, we can say which permutation comes before it and which after it.
Given the permutation bca , we can say that its previous permutation is bac and that its next
permutation is cab . There is no previous permutation of the sequence abc , nor is there a next
permutation of cba .

The library provides two permutation algorithms that generate the permutations of a sequence
in lexicographical order. These algorithms reorder the sequence to hold the (lexicographically)
next or previous permutation of the given sequence. They return a bool that indicates whether
there was a next or previous permutation.

The algorithms each have two versions: One uses the element type < operator, and the other
takes an extra argument that specifies a comparison to use to compare the elements. These
algorithms assume that the elements in the sequence are unique. That is, the algorithms
assume that no two elements in the sequence have the same value.

Permutation Algorithms Require Bidirectional Iterators

To produce the permutation, the sequence must be processed both forward and backward, thus
requiring bidirectional iterators.

next_permutation(beg, end)
next_permutation(beg, end, comp)

If the sequence is already in the last permutation, then next_permutation reorders the sequence
to be the lowest permutation and returns false . Otherwise, it transforms the input sequence
into the next permutation, which is the lexicographically next ordered sequence and returns
true . The first version uses the element < operator to compare elements; the second version
uses specified comparison.

prev_permutation(beg, end)
prev_permutation(beg, end, comp)

Like next_permutation , but transforms the sequence to form the previous permutation. If this is
the smallest permutation, then it reorders the sequence to be the largest permutation and
returns false .

A.2.8. Set Algorithms for Sorted Sequences



The set algorithms implement general set operations on a sequence that is in sorted order.

These algorithms are distinct from the library set container and
should not be confused with operations on set s. Instead, these
algorithms provide setlike behavior on an ordinary sequential
container (vector, list , etc.) or other sequence, such as an input
stream.

With the exception of includes , they also take an output iterator. As usual, the programmer
must ensure that the destination is large enough to hold the generated sequence. These
algorithms return their dest iterator incremented to denote the element just after the last one
that was written to dest .

Each algorithm provides two forms: The first uses the < operator for the element type to
compare elements in the two input sequences. The second takes a comparison, which is used to
compare the elements.

Set Algorithms Require Input Iterators

These algorithms process elements sequentially, requiring input iterators.

includes(beg, end, beg2, end2)
includes(beg, end, beg2, end2, comp)

Returns TRue if every element in the second sequence is contained in the input sequence.
Returns false otherwise.

set_union(beg, end, beg2, end2, dest)
set_union(beg, end, beg2, end2, dest, comp)

Creates a sorted sequence of the elements that are in either sequence. Elements that are in
both sequences occur in the output sequence only once. Stores the sequence in dest .

set_intersection(beg, end, beg2, end2, dest)
set_intersection(beg, end, beg2, end2, dest, comp)

Creates a sorted sequence of elements present in both sequences. Stores the sequence in dest .

set_difference(beg, end, beg2, end2, dest)



set_difference(beg, end, beg2, end2, dest, comp)

Creates a sorted sequence of elements present in the first container but not in the second.

set_symmetric_difference(beg, end, beg2, end2, dest)
set_symmetric_difference(beg, end, beg2, end2, dest, comp)

Creates a sorted sequence of elements present in either container but not in both.

A.2.9. Minimum and Maximum Values

The first group of these algorithms are unique in the library in that they operate on values
rather than sequences. The second set takes a sequence that is denoted by input iterators.

min(val1, val2)
min(val1, val2, comp)
max(val1, val2)
max(val1, val2, comp)

Returns the minimum/maximum of val1 and val2 . The arguments must have exactly the same
type as each other. Uses either < operator for the element type or the specified comparison.
Arguments and the return type are both const references, meaning that objects are not copied.

min_element(beg, end)
min_element(beg, end, comp)
max_element(beg, end)
max_element(beg, end, comp)

Returns an iterator referring to the smallest/largest element in the input sequence. Uses either <
operator for the element type or the specified comparison.

Lexicographical Comparison

Lexicographical comparison examines corresponding elements in two sequences and determines
the comparison based on the first unequal pair of elements. Because the algorithms process
elements sequentially, they require input iterators. If one sequence is shorter than the other
and all its elements match the corresponding elements in the longer sequence, then the shorter
sequence is lexicographically smaller. If the sequences are the same size and the corresponding
elements match, then neither is lexicographically less than the other.

lexicographical_compare(beg1, end1, beg2, end2)
lexicographical_compare(beg1, end1, beg2, end2, comp)



Does an element by element comparison of the elements in the two sequences. Returns true if
the first sequence is lexicographically less than the second sequence. Otherwise, returns false .
Uses either < operator for the element type or the specified comparison.

A.2.10. Numeric Algorithms

Numeric algorithms require input iterators; if the algorithm writes output, it uses an output
iterator for the destination

These functions perform simple arithmetic manipulations of their input sequence. To use the
numeric algorithms, the numeric header must be included.

accumulate(beg, end, init)
accumulate(beg, end, init, BinaryOp)

Returns the sum of all the values in the input range. The summation starts with the initial value
specified by init . The return type is the same type as the type of init .

Given the sequence 1,1,2,3,5,8 and an initial value of 0, the result is 20. The first version
applies the + operator for the element type; second version applies the specified binary
operation.

inner_product(beg1, end1, beg2, init)
inner_product(beg1, end1, beg2, init, BinOp1, BinOp2)

Returns the sum of the elements generated as the product of two sequences. The two
sequences are examined in step, and the elements from each sequence are multiplied. The
product of that multiplication is summed. The initial value of the sum is specified by init . The
second sequence beginning at beg2 is assumed to have at least as many elements as are in the
first sequence; any elements in the second sequence beyond the size of the first sequence are
ignored. The type of init determines the return type.

The first version uses the element's multiplication (* ) and addition (+ ) operators: Given the
two sequences 2,3,5,8 and 1,2,3,4,5,6,7 , the result is the sum of the initial value plus the
following product pairs:

     initial_value + (2 * 1) + (3 * 2) + (5 * 3) + (8 * 4)

If we provide an initial value of 0, then the result is 55.

The second version applies the specified binary operations, using the first operation in place of
addition and the second in place of multiplication. As an example, we might use inner_product
to produce a list of parenthesized namevalue pairs of elements, where the name is taken from
the first input sequence and the corresponding value is in the second:



     // combine elements into a parenthesized, comma-separated pair
     string combine(string x, string y)
     {
         return "(" + x + ", " + y + ")";
     }
     // add two strings, each separated by a comma
     string concatenate(string x, string y)
     {
         if (x.empty())
             return y;
         return x + ", " + y;
     }
         cout << inner_product(names.begin(), names.end(),
                                     values.begin(), string(),
                                     concatenate, combine);

If the first sequence contains if, string , and sort , and the second contains keyword, library
type , and algorithm , then the output would be

   (if, keyword), (string, library type), (sort, algorithm)

   partial_sum(beg, end, dest)
   partial_sum(beg, end, dest, BinaryOp)

Writes a new sequence to dest in which the value of each new element represents the sum of all
the previous elements up to and including its position within the input range. The first version
uses the + operator for the element type; the second version applies the specified binary
operation. The programmer must ensure that dest is at least as large as the input sequence.
Returns the dest iterator incremented to refer just after the last element written.

Given the input sequence 0,1,1,2,3,5,8 , the destination sequence will be 0,1,2,4,7,12,20 .
The fourth element, for example, is the partial sum of the three previous values (0,1,1 ) plus its
own( 2 ), yielding a value of 4.

adjacent_difference(beg, end, dest)
adjacent_difference(beg, end, dest, BinaryOp)

Writes a new sequence to dest in which the value of each new element other than the first
represents the difference of the current and previous element. The first version uses the
element type's - operation; the second version applies the specified binary operation. The
programmer must ensure that dest is at least as large as the input sequence.

Given the sequence 0,1,1,2,3,5,8 , the first element of the new sequence is a copy of the first
element of the original sequence: 0. The second element is the difference between the first two
elements: 1. The third element is the difference between the second and third element, which is
0, and so on. The new sequence is 0,1,0,1,1,2,3 .

 



 

A.3. The IO Library Revisited

In Chapter 8 we introduced the basic architecture and most commonly used parts of the IO
library. This Appendix completes our coverage of the IO library.

A.3.1. Format State

In addition to a condition state (Section 8.2 , p. 287 ), each iostream object also maintains a
format state that controls the details of how IO is formatted. The format state controls aspects
of formatting such as the notational base for an integral value, the precision of a floating-point
value, the width of an output element, and so on. The library also defines a set of manipulators
(listed in Tables A.2 (p. 829) and A.3 (p. 833) for modifying the format state of an object.
Simply speaking, a manipulator is a function or object that can be used as an operand to an
input or output operator. A manipulator returns the stream object to which it is applied, so we
can output multiple manipulators and data in a single statement.

When we read or write a manipulator, no data are read or written. Instead, an action is taken.
Our programs have already used one manipulator, endl , which we "write" to an output stream
as if it were a value. But endl isn't a value; instead, it performs an operation: It writes a newline
and flushes the buffer.

A.3.2. Many Manipulators Change the Format State

Many manipulators change the format state of the stream. They change the format of how
floating-pointer numbers are printed or whether a bool is displayed as a numeric value or using
the bool literals, TRue or false , and so forth.

Manipulators that change the format state of the stream usually
leave the format state changed for all subsequent IO.

Most of the manipulators that change the format state provide set/unset pairs; one manipulator
sets the format state to a new value and the other unsets it, restoring the normal default
formatting.

The fact that a manipulator makes a persistent change to the format state can be useful when
we have a set of IO operations that want to use the same formatting. Indeed, some programs
take advantage of this aspect of manipulators to reset the behavior of one or more formatting
rules for all its input or output. In such cases, the fact that a manipulator changes the stream is
a desirable property.



However, many programs (and, more importantly, programmers) expect the state of the stream
to match the normal library defaults. In these cases, leaving the state of the stream in a
nonstandard state can lead to errors.

It is usually best to undo any state change made by a
manipulator. Ordinarily, a stream should be in its ordinary,
default state after every IO operation.

Using flags Operation to Restore the Format State

An even better approach to managing changes to format state uses the flags operations. The
flags operations are similar to the rdstate and setstate operations that manage the condition
state of the stream. In this case, the library defines a pair of flags functions:

flags() with no arguments returns the stream's current format state. The value returned
is a library defined type named fmtflags .

flags(arg) takes a fmtflags argument and sets the stream's format as indicated by the
argument.

We can use these functions to remember and restore the format state of either an input or
output stream:

     void display(ostream& os)
     {
          // remember the current format state
          ostream::fmtflags curr_fmt = os.flags();

          // do output that uses manipulators that change the format state of os

          os.flags(curr_fmt);              // restore the original format state of os
     }

A.3.3. Controlling Output Formats

Many of the manipulators allow us to change the appearance of our output. There are two broad
categories of output control: controlling the presentation of numeric values and controlling the
amount and placment of padding.

Controlling the Format of Boolean Values

One example of a manipulator that changes the formatting state of its object is the boolalpha
manipulator. By default, bool values print as 1 or 0. A true value is written as the integer 1 and
a false value as 0. We can override this formatting by applying the boolalpha manipulator to



the stream:

     cout << "default bool values: "
          << true << " " << false
          << "\nalpha bool values: "
          << boolalpha
          << true << " " << false
          << endl;

When executed, the program generates the following:

     default bool values: 1 0
     alpha bool values: true false

Once we "write" boolalpha on cout , we've changed how cout will print bool values from this
point on. Subsequent operations that print bool s will print them as either true or false .

To undo the format state change to cout , we must apply noboolalpha :

bool bool_val;

cout << boolalpha    // sets internal state of cout
     << bool_val
     << noboolalpha; // resets internal state to default formatting

Now we change the formatting of bool values only to print of bool_val and immediately reset
the stream back to its initial state.

Specifying the Base for Integral Values

By default, integral values are written and read in decimal notation. The programmer can
change the notational base to octal or hexadecimal or back to decimal (the representation of
floating-point values is unaffected) by using the manipulators hex, oct , and dec:

     const int ival = 15, jval = 1024; // const, so values never change
     cout << "default: ival = " << ival
          << " jval = " << jval << endl;
     cout << "printed in octal: ival = " << oct << ival
          << " jval = " << jval << endl;
     cout << "printed in hexadecimal: ival = " << hex << ival
          << " jval = " << jval << endl;
     cout << "printed in decimal: ival = " << dec << ival
          << " jval = " << jval << endl;

When compiled and executed, the program generates the following output:



     default: ival = 15 jval = 1024
     printed in octal: ival = 17 jval = 2000
     printed in hexadecimal: ival = f jval = 400
     printed in decimal: ival = 15 jval = 1024

Notice that like boolalpha , these manipulators change the format state. They affect the
immediately following output, and all subsequent integral output, until the format is reset by
invoking another manipulator.

Indicating Base on the Output

By default, when we print numbers, there is no visual cue as to what notational base was used.
Is 20, for example, really 20, or an octal representation of 16? When printing numbers in
decimal mode, the number is printed as we expect. If we need to print octal or hexadecimal
values, it is likely that we should also use the showbase manipulator. The showbase manipulator
causes the output stream to use the same conventions as used for specifying the base of an
integral constant:

A leading 0x indicates hexadecimal

A leading 0 indicates octal

The absence of either indicates decimal

Here is the program revised to use showbase :

     const int ival = 15, jval = 1024; // const so values never change
     cout << showbase; // show base when printing integral values
     cout << "default: ival = " << ival
          << " jval = " << jval << endl;
     cout << "printed in octal: ival = " << oct << ival
          << " jval = " << jval << endl;
     cout << "printed in hexadecimal: ival = " << hex << ival
          << " jval = " << jval << endl;
     cout << "printed in decimal: ival = " << dec << ival
          << " jval = " << jval << endl;
     cout << noshowbase; // reset state of the stream

The revised output makes it clear what the underlying value really is:

     default: ival = 15 jval = 1024
     printed in octal: ival = 017 jval = 02000
     printed in hexadecimal: ival = 0xf jval = 0x400
     printed in decimal: ival = 15 jval = 1024

The noshowbase manipulator resets cout so that it no longer displays the notational base of
integral values.



By default, hexadecimal values are printed in lowercase with a lowercase x. We could display
the X and the hex digits a f as uppercase by applying the uppercase manipulator.

     cout << uppercase << showbase << hex
          << "printed in hexadecimal: ival = " << ival
          << " jval = " << jval << endl
          << nouppercase << endl;

The preceding program generates the following output:

     printed in hexadecimal: ival = 0XF jval = 0X400

To revert back to the lowercase x, we apply the nouppercase manipulator.

Controlling the Format of Floating-Point Values

There are three aspects of formatting floating-point values that we can control:

Precision: how many digits are printed

Notation: whether to print in decimal or scientific notation

Handling of the decimal point for floating-point values that are whole numbers

By default, floating-point values are printed using six digits of precision. If the value has no
fractional part, then the decimal point is omitted. Whether the number is printed using decimal
or scientific notation depends on the value of the floating-point number being printed. The
library chooses a format that enhances readability of the number. Very large and very small
values are printed using scientific notation. Other values use fixed decimal.

Specifying How Much Precision to Print

By default, precision controls the total number of digits that are printed. When printed, floating-
point values are rounded, not truncated, to the current precision. Thus, if the current precision
is four, then 3.14159 becomes 3.142 ; if the precision is three, then it is printed as 3.14 .

We can change the precision through a member function named precision or by using the
setprecision manipulator. The precision member is overloaded (Section 7.8 , p. 265 ): One
version takes an int value and sets the precision to that new value. It returns the previous
precision value. The other version takes no arguments and returns the current precision value.
The setprecision manipulator takes an argument, which it uses to set the precision.

Table A.2. Manipulators Defined in iostream



  boolalpha Display true and false as strings

x noboolalpha Display true and false as 0, 1

  showbase Generate prefix indicating numeric base

x noshowbase Do not generate notational base prefix

  showpoint Always display decimal point

x noshowpoint Only display decimal point if fraction

  showpos Display + in nonnegative numbers

x noshowpos Do not display + in nonnegative numbers

  uppercase Print 0X in hexadecimal, E in scientific

x nouppercase Print 0x in hexadecimal, e in scientific

x dec Display in decimal numeric base

  hex Display in hexadecimal numeric base

  oct Display in octal numeric base

  left Add fill characters to right of value

  right Add fill characters to left of value

  internal Add fill characters between sign and value

  fixed Display floating-point in decimal notation

  scientific Display floating-point in scientific notation

  flush Flush ostream buffer

  ends Insert null, then flush ostream buffer

  endl Insert newline, then flush ostream buffer

  unitbuf Flush buffers after every output operation

x nounitbuf Restore normal buffer flushing

x skipws Skip whitespace with input operators

  noskipws Do not skip whitespace with input operators

  ws "Eat" whitespace

x indicates default stream
state

The following program illustrates the different ways we can control the precision use when
printing floating point values:

     // cout.precision reports current precision value
     cout << "Precision: " << cout.precision()



          << ", Value: "   << sqrt(2.0) << endl;

     // cout.precision(12) asks that 12 digits of precision to be printed
     cout.precision(12);
     cout << "Precision: " << cout.precision()
          << ", Value: "   << sqrt(2.0) << endl;

     // alternative way to set precision using setprecision manipulator
     cout << setprecision(3);
     cout << "Precision: " << cout.precision()
          << ", Value: "   << sqrt(2.0) << endl;

When compiled and executed, the program generates the following output:

     Precision: 6, Value: 1.41421
     Precision: 12, Value: 1.41421356237
     Precision: 3, Value: 1.41

This program calls the library sqrt function, which is found in the cmath header. The sqrt
function is overloaded and can be called on either a float, double , or long double argument. It
returns the square root of its argument.

The setprecision manipulators and other manipulators that take
arguments are defined in the iomanip header.

Controlling the Notation

By default, the notation used to print floating-point values depends on the size of the number: If
the number is either very large or very small, it will be printed in scientific notation; otherwise,
fixed decimal is used. The library chooses the notation that makes the number easiest to read.

When printing a floating-point number as a plain number
(as opposed to printing money, or a percentage, where we
want to control the appearance of the value), it is usually
best to let the library choose the notation to use. The one
time to force either scientific or fixed decimal is when
printing a table in which the decimal points should line up.

If we want to force either scientific or fixed notation, we can do so by using the appropriate



manipulator: The scientific manipulator changes the stream to use scientific notation. As with
printing the x on hexadecimal integral values, we can also control the case of the e in scientific
mode through the uppercase manipulator. The fixed manipulator changes the stream to use
fixed decimal.

These manipulators change the default meaning of the precision for the stream. After executing
either scientific or fixed , the precision value controls the number of digits after the decimal
point. By default, precision specifies the total number of digitsboth before and after the decimal
point. Using fixed or scientific lets us print numbers lined up in columns. This strategy
ensures that the decimal point is always in a fixed position relative to the fractional part being
printed.

Reverting to Default Notation for Floating-Point Values

Unlike the other manipulators, there is no manipulator to return the stream to its default state
in which it chooses a notation based on the value being printed. Instead, we must call the
unsetf member to undo the change made by either scientific or fixed . To return the stream
to default handling of float values we pass unsetf function a library-defined value named
floatfield :

     // reset to default handling for notation
     cout.unsetf(ostream::floatfield);

Except for undoing their effect, using these manipulators is like using any other manipulator:

     cout << sqrt(2.0) << '\n' << endl;
     cout << "scientific: " << scientific << sqrt(2.0) << '\n'
          << "fixed decimal: " << fixed << sqrt(2.0) << "\n\n";
     cout << uppercase
          << "scientific: " << scientific << sqrt(2.0) << '\n'
          << "fixed decimal: " << fixed << sqrt(2.0) << endl
          << nouppercase;
     // reset to default handling for notation
     cout.unsetf(ostream::floatfield);
     cout << '\n' << sqrt(2.0) << endl;

produces the following output:

     1.41421

     scientific: 1.414214e+00
     fixed decimal: 1.414214

     scientific: 1.414214E+00
     fixed decimal: 1.414214

     1.41421



Printing the Decimal Point

By default, when the fractional part of a floating-point value is 0, the decimal point is not
displayed. The showpoint manipulator forces the decimal point to be printed:

     cout << 10.0 << endl;        // prints 10

     cout << showpoint << 10.0    // prints 10.0000
          << noshowpoint << endl; // revert to default handling of decimal point

The noshowpoint manipulator reinstates the default behavior. The next output expression will
have the default behavior, which is to suppress the decimal point if the floating-point value has
a 0 fractional part.

Padding the Output

When printing data in columns, we often want fairly fine control over how the data are
formatted. The library provides several manipulators to help us accomplish the control we might
need:

setw to specify the minimum space for the next numeric or string value.

left to left-justify the output.

right to right-justfiy the output. Output is right-justified by default.

internal controls placement of the sign on negative values. internal left-justifies the sign
and right-justifies the value, padding any intervening space with blanks.

setfill lets us specify an alternative character to use when padding the output. By
default, the value is a space.

setw , like endl , does not change the internal state of the output
stream. It determines the size of only the next output.

The following program illustrates these manipulators

     int i = -16;
     double d = 3.14159;
     // pad first column to use minimum of 12 positions in the output
     cout << "i: " << setw(12) << i << "next col" << '\n'
          << "d: " << setw(12) << d << "next col" << '\n';
     // pad first column and left-justify all columns
     cout << left
          << "i: " << setw(12) << i << "next col" << '\n'



          << "d: " << setw(12) << d << "next col" << '\n'
          << right; // restore normal justification
     // pad first column and right-justify all columns
     cout << right
          << "i: " << setw(12) << i << "next col" << '\n'
          << "d: " << setw(12) << d << "next col" << '\n';
     // pad first column but put the padding internal to the field
     cout << internal
          << "i: " << setw(12) << i << "next col" << '\n'
          << "d: " << setw(12) << d << "next col" << '\n';
     // pad first column, using # as the pad character
     cout << setfill('#')
          << "i: " << setw(12) << i << "next col" << '\n'
          << "d: " << setw(12) << d << "next col" << '\n'
          << setfill(' '); // restore normal pad character

When executed, this program generates

     i:          -16next col
     d:      3.14159next col
     i: -16         next col
     d: 3.14159     next col
     i:          -16next col
     d:      3.14159next col
     i: -         16next col
     d:      3.14159next col
     i: -#########16next col
     d: #####3.14159next col

Table A.3. Manipulators Defined in iomanip

setfill(ch) Fill whitespace with ch

setprecision(n) Set floating-point precision to n

setw(w) Read or write value to w characters

setbase(b) Output integers in base b

A.3.4. Controlling Input Formatting

By default, the input operators ignore whitespace (blank, tab, newline, formfeed, and carriage
return). The following loop

     while (cin >> ch)
         cout << ch;



given the input sequence

     a b   c
     d

executes four times to read the characters a through d , skipping the intervening blanks,
possible tabs, and newline characters. The output from this program is

     abcd

The noskipws manipulator causes the input operator to read, rather than skip, whitespace. To
return to the default behavior, we apply skipws manipulator:

     cin >> noskipws;      // set cin so that it reads whitespace
     while (cin >> ch)
             cout << ch;

     cin >> skipws; // reset cin to default state so that it discards whitespace

Given the same input as before, this loop makes seven iterations, reading white-space as well
as the characters in the input. This loop generates

     a b    c
     d

A.3.5. Unformatted Input/Output Operations

So far, our programs have used only formatted IO operations. The input and output operators
(<< and >> ) format the data they read or write according to the data type being handled. The
input operators ignore whitespace; the output operators apply padding, precision, and so on.

The library also provides a rich set of low-level operations that support unformatted IO. These
operations let us deal with a stream as a sequence of uninterpreted bytes rather than as a
sequence of data types, such as char, int, string , and so on.

A.3.6. Single-Byte Operations

Several of the unformatted operations deal with a stream one byte at a time. They read rather
than ignore whitespace. For example, we could use the unformatted IO operations get and put
to read the characters one at a time:

     char ch;
     while (cin.get(ch))
             cout.put(ch);



This program preserves the whitespace in the input. Its output is identical to the input. Given
the same input as read by the previous program that used noskipws , this program generates
the same output:

     a b    c
     d

Table A.4. Single-Byte Low-Level IO Operations

is.get(ch) Puts next byte from the istream is in character ch .
Returns is .

os.put(ch) Puts character ch onto the ostream os . Returns os .

is.get() Returns next byte from is as an int .

is.putback(ch) Puts character ch back on is ; returns is .

is.unget() Moves is back one byte; returns is .

is.peek() Returns the next byte as an int but doesn't remove
it.

Putting Back onto an Input Stream

Sometimes we need to read a character in order to know that we aren't ready for it yet. In such
cases, we'd like to put the character back onto the stream. The library gives us three ways to do
so, each of which has subtle differences from the others:

peek returns a copy of the next character on the input stream but does not change the
stream. The value returned by peek stays on the stream and will be the next one retrieved.

unget backs up the input stream so that whatever value was last returned is still on the
stream. We can call unget even if we do not know what value was last taken from the
stream.

putback is a more specialized version of unget : It returns the last value read from the
stream but takes an argument that must be the same as the one that was last read. Few
programs use putback because the simpler unget does the same job with fewer constraints.

In general, we are guaranteed to be able to put back at most one value before the next read.
That is, we are not guaranteed to be able to call putback or unget successively without an
intervening read operation.

int Return Values from Input Operations

The version of get that takes no argument and the peek function return a character from the
input stream as an int . This fact can be surprising; it might seem more natural to have these



functions return a char .

The reason that these functions return an int is to allow them to return an end-of-file marker. A
given character set is allowed to use every value in the char range to represent an actual
character. Thus, there is no extra value in that range to use to represent end-of-file.

Instead, these functions convert the character to unsigned char and then promote that value to
int . As a result, even if the character set has characters that map to negative values, the int
returned from these operations will be a positive value (Section 2.1.1 , p. 36 ). By returning
end-of-file as a negative value, the library guarantees that end-of-file will be distinct from any
legitimate character value. Rather than requiring us to know the actual value returned, the
iostream header defines a const named EOF that we can use to test if the value returned from
get is end-of-file. It is essential that we use an int to hold the return from these functions:

     int ch;   // NOTE: int, not char!!!!
     // loop to read and write all the data in the input
     while ((ch = cin.get()) != EOF)
              cout.put(ch);

This program operates identically to one on page 834 , the only difference being the version of
get that is used to read the input.

A.3.7. Multi-Byte Operations

Other unformatted IO operations deal with chunks of data at a time. These operations can be
important if speed is an issue, but like other low-level operations they are error-prone. In
particular, these operations require us to allocate and manage the character arrays (Section
4.3.1 , p. 134 ) used to store and retrieve data.

The multi-byte operations are listed in Table A.5 (p. 837 ). It is worth noting that the get
member is overloaded; there is a third version that reads a sequence of characters.

Caution: Low-Level Routines Are Error-Prone

In general, we advocate using the higher-level abstractions provided by the
library. The IO operations that return int are a good example of why.

It is a common programming error to assign the return from get or one of
the other int returning functions to a char rather than an int . Doing so is

an error but an error the compiler will not detect. Instead, what happens
depends on the machine and on the input data. For example, on a machine
in which char s are implemented as unsigned char s, this loop will run

forever:

[View full width]
     char ch;    // Using a char here invites disaster!
     // return from cin.get is converted from int to char and

 then compared to an int
     while ((ch = cin.get()) != EOF)
              cout.put(ch);



The problem is that when get returns EOF , that value will be converted to an
unsigned char value. That converted value is no longer equal to the integral
value of EOF , and the loop will continue forever.

At least that error is likely to be caught in testing. On machines for which
char s are implemented as signed char s, we can't say with confidence what

the behavior of the loop might be. What happens when an out-of-bounds
value is assigned to a signed value is up to the compiler. On many machines,

this loop will appear to work, unless a character in the input matches the
EOF value. While such characters are unlikely in ordinary data, presumably
low-level IO is necessary only when reading binary values that do not map
directly to ordinary characters and numeric values. For example, on our
machine, if the input contains a character whose value is '\377' then the
loop terminates prematurely. '\377' is the value on our machine to which -1
converts when used as a signed char . If the input has this value, then it will

be treated as the (premature) end-of-file indicator.

Such bugs do not happen when reading and writing typed values. If you can
use the more type-safe, higher-level operations supported by the library, do
so.

The get and getline functions take the same parameters, and their actions are similar but not
identical. In each case, sink is a char array into which the data are placed. The functions read
until one of the following conditions occurs:

size - 1 characters are read

End-of-file is encountered

The delimiter character is encountered

Following any of these conditions, a null character is put in the next open position in the array.
The difference between these functions is the treatment of the delimiter. get leaves the
delimiter as the next character of the istream . getline reads and discards the delimiter. In
either case, the delimiter is not stored in sink .

It is a common error to intend to remove the delimiter from the
stream but to forget to do so.

Table A.5. Multi-Byte Low-Level IO Operations



is.get(sink, size, delim)

  Reads up to size bytes from is and stores them in
the character array pointed to by sink . Reads until
encountering the delim character or until it has read
size bytes or encounters end-of-file. If the delim is
present, it is left on the input stream and not read
into sink .

is.getline(sink, size, delim)

  Same behavior as three-argument version of get but
reads and discards delim .

is.read(sink, size)

  Reads up to size bytes into the character array sink
. Returns is .

is.gcount() Returns number of bytes read from the stream is by
last call to an unformatted read operation.

os.write(source, size)

  Writes size bytes from the character array source to
os . Returns os .

is.ignore(size, delim)

  Reads and ignores at most size characters up to but
not including delim . By default, size is 1 and delim
is end-of-file.

Determining How Many Characters Were Read

Several of the read operations read an unknown number of bytes from the input. We can call
gcount to determine how many characters the last unformatted input operation read. It is
esssential to call gcount before any intervening unformatted input operation. In particular, the
single-character operations that put characters back on the stream are also unformatted input
operations. If peek, unget , or putback are called before calling gcount , then the return value
will be 0!

A.3.8. Random Access to a Stream

The various stream types generally support random access to the data in their associated
stream. We can reposition the stream so that it skips around, reading first the last line, then the
first, and so on. The library provides a pair of functions to seek to a given location and to tell
the current location in the associated stream.



Random IO is an inherently system-dependent. To understand how
to use these features, you must consult your system's
documentation.

Seek and Tell Functions

To support random access, the IO types maintain a marker that determines where the next read
or write will happen. They also provide two functions: One repositions the marker by seek ing to
a given position; the second tell s us the current position of the marker. The library actually
defines two pairs of seek and tell functions, which are described in Table A.6 . One pair is used
by input streams, the other by output streams. The input and output versions are distinguished
by a suffix that is either a g or a p . The g versions indicate that we are "getting" (reading) data,
and the p functions indicate that we are "putting" (writing) data.

Table A.6. Seek and Tell Functions

seekg Reposition the marker in an input stream

tellg Return the current position of the marker in
an input stream

seekp Reposition the marker for an output stream

tellp Return the current position of the marker in
an output stream

Logically enough, we can use only the g versions on an istream or its derived types ifstream , or
istringstream , and we can use only the p versions on an ostream or its derived types ofstream ,
and ostringstream . An iostream, fstream , or stringstream can both read and write the
associated stream; we can use either the g or p versions on objects of these types.

There Is Only One Marker

The fact that the library distinguishes between the "putting" and "getting" versions of the seek
and tell functions can be misleading. Even though the library makes this distinction, it
maintains only a single marker in the filethere is not a distinct read marker and write marker.

When we're dealing with an input-only or output-only stream, the distinction isn't even
apparent. We can use only the g or only the p versions on such streams. If we attempt to call
tellp on an ifstream , the compiler will complain. Similarly, it will not let us call seekg on an
ostringstream .

When using the fstream and stringstream types that can both read and write, there is a single
buffer that holds data to be read and written and a single marker denoting the current position
in the buffer. The library maps both the g and p positions to this single marker.



Because there is only a single marker, we must do a seek to
reposition the marker whenever we switch between reading and
writing.

Plain iostream s Usually Do Not Allow Random Access

The seek and tell functions are defined for all the stream types. Whether they do anything
useful depends on the kind of object to which the stream is bound. On most systems, the
streams bound to cin, cout, cerr and clog do not support random accessafter all, what would
it mean to jump ten places back when writing directly to cout ? We can call the seek and tell
functions, but these functions will fail at run time, leaving the stream in an invalid state.

Because the istream and ostream types usually do not support
random access, the remainder of this section should be considered
as applicable to only the fstream and sstream types.

Repositioning the Marker

The seekg and seekp functions are used to change the read and write positions in a file or a
string . After a call to seekg , the read position in the stream is changed; a call to seekp sets
the position at which the next write will take place.

There are two versions of the seek functions: One moves to an "absolute" address within the
file; the other moves to a byte offset from a given position:

     // set the indicated marker a fixed position within a file or string
     seekg(new_position); // set read marker
     seekp(new_position); // set write marker

     // offset some distance from the indicated position
     seekg(offset, dir); // set read marker
     seekp(offset, dir); // set write marker

The first version sets the current position to a given location. The second takes an offset and an
indicator of where to offset from. The possible values for the offset are listed in Table A.7 .



Table A.7. Offset From Argument to seek

beg The beginning of the stream

cur The current position of the stream

end The end of the stream

The argument and return types for these functions are machine-dependent types defined in both
istream or ostream . The types, named pos_type and off_type , represent a file position and an
offset from that position, respectively. A value of type off_type can be positive or negative; we
can seek forward or backward in the file.

Accessing the Marker

The current position is returned by either tellg or tellp , depending on whether we're looking
for the read or write position. As before, the p indicates putting (writing) and the g indicates
getting (reading). The tell functions are usually used to remember a location so that we can
subsequently seek back to it:

     // remember current write position in mark
    ostringstream writeStr; // output stringstream
    ostringstream::pos_type mark = writeStr.tellp();
     // ...
     if (cancelEntry)
          // return to marked position
          writeStr.seekp(mark);

The tell functions return a value that indicates the position in the associated stream. As with
the size_type of a string or vector , we do not know the actual type of the object returned
from tellg or tellp . Instead, we use the pos_type member of the appropriate stream class.

A.3.9. Reading and Writing to the Same File

Let's look at a programming example. Assume we are given a file to read. We are to write a new
line at the end of the file that contains the relative position at which each line begins. For
example, given the following file,

     abcd
     efg
     hi
     j

the program should produce the following modified file:

        abcd



        efg
        hi
        j
        5 9 12 14

Note that our program need not write the offset for the first lineit always occurs at position 0. It
should print the offset that corresponds to the end of the data portion of the file. That is, it
should record the position after the end of the input so that we'll know where the original data
ends and where our output begins.

We can write this program by writing a loop that reads a line at a time:

     int main()
     {
         // open for input and output and pre-position file pointers to end of file
         fstream inOut("copyOut",
                        fstream::ate | fstream::in | fstream::out);
         if (!inOut) {
             cerr << "Unable to open file!" << endl;
             return EXIT_FAILURE;
         }

         // inOut is opened in ate mode, so it starts out positioned at the end,
         // which we must remember as it is the original end-of-file position
         ifstream::pos_type end_mark = inOut.tellg();
         inOut.seekg(0, fstream::beg); // reposition to start of the file
         int cnt = 0;                  // accumulator for byte count
         string line;                  // hold each line of input
         // while we haven't hit an error and are still reading the original data
         // and successfully read another line from the file
         while (inOut && inOut.tellg() != end_mark
                      && getline(inOut, line))
         {
             cnt += line.size() + 1; //   add 1 to account for the newline
         // remember current read marker
         ifstream::pos_type mark = inOut.tellg();
             inOut.seekp(0, fstream::end);// set write marker to end
             inOut << cnt;        // write the accumulated length
             // print separator if this is not the last line
             if (mark != end_mark) inOut << " ";
             inOut.seekg(mark);         // restore read position
          }
          inOut.clear();                // clear flags in case we hit an error
          inOut.seekp(0, fstream::end); // seek to end
          inOut << "\n";                // write a newline at end of file
          return 0;
     }

This program opens the fstream using the in, out , and ate modes. The first two modes
indicate that we intend to both read and write to the same file. By also opening it in ate mode,
the file starts out positioned at the end. As usual, we check that the open succeeded, and exit if
it did not.



Initial Setup

The core of our program will loop through the file a line at a time, recording the relative position
of each line as it does so. Our loop should read the contents of the file up to but not including
the line that we are adding to hold the line offsets. Because we will be writing to the file, we
can't just stop the loop when it encounters end-of-file. Instead, the loop should end when it
reaches the point at which the original input ended. To do so, we must first remember the
original end-of-file position.

We opened the file in ate mode, so it is already positioned at the end. We store the initial end
position in end_mark . Of course, having remembered the end position, we must reposition the
read marker at the beginning of the file before we attempt to read any data.

Main Processing Loop

Our while loop has a three-part condition.

We first check that the stream is valid. Assuming the first test on inOut succeeds, we then check
whether we've exhausted our original input. We do this check by comparing the current read
position returned from tellg with the position we remembered in end_mark . Finally, assuming
that both tests succeeded, we call getline to read the next line of input. If getline succeeds, we
perform the body of the loop.

The job that the while does is to increment the counter to determine the offset at which the
next line starts and write that marker at the end of the file. Notice that the end of the file
advances on each trip through the loop.

We start by remembering the current position in mark . We need to keep that value because we
have to reposition the file in order to write the next relative offset. The seekp call does this
repositioning, resetting the file pointer to the end of the file. We write the counter value and
then restore the file position to the value we remembered in mark . The effect is that we return
the marker to the same place it was after the last read. Having restored the marker, we're
ready to repeat the condition in the while .

Completing the File

Once we exit the loop, we have read each line and calculated all the starting offsets. All that
remains is to print the offset of the last line. As with the other writes, we call seekp to position
the file at the end and write the value of cnt . The only tricky part is remembering to clear the
stream. We might exit the loop due to an end-of-file or other input error. If so, inOut would be
in an error state, and both the seekp and the output expression would fail.
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! (logical NOT)

!= (inequality) 2nd

     container

     container adaptor

     iterator 2nd

     string

#define

#ifdef

#ifundef

#include

% (modulus)

& (address-of) 2nd 3rd

& (bitwise AND) 2nd

     Query

&& (logical AND)

     operand order of evaluation

     overloaded operator

() (call operator) 2nd 3rd 4th

     overloaded operator

* (dereference) 2nd 3rd 4th

     iterator

     on map yields pair

     overloaded operator

     pointer

     yields lvalue 2nd

* (multiplication)

+ (addition)

     iterator 2nd

     pointer

     Sales_item

     string

+ (unary plus)

++ (increment) 2nd 3rd 4th

     and dereference

     iterator 2nd 3rd

     overloaded operator

     pointer

     prefix yields lvalue

     reverse iterator

+= (compound assignment) 2nd 3rd

     iterator

     overloaded operator

     Sales_item

     string

, (comma operator) 2nd

     example

     operand order of evaluation

     overloaded operator

- (subtraction)



     iterator 2nd

     pointer

- (unary minus)

-- (decrement)

     and dereference

     iterator

     overloaded operator

     prefix yields lvalue

     reverse iterator

->* (pointer to member arrow)

... (ellipsis parameter)

.C file

.cc file

.cp file

.cpp file

.h file

/ (division)

/* */ (block comment) 2nd

// (single-line comment) 2nd

> (arrow operator)

     class member access

     overloaded operator

:: (scope operator) 2nd 3rd 4th

     base class members

     class member 2nd

     container defined type

     member function definition

     to override name lookup

; (semicolon)

     class definition

< (less-than) 2nd

     overloaded and containers

     used by algorithm

<< (left-shift) 2nd

<< (output operator) 2nd

     bitset

     formatting

     ostream_iterator

     overloaded operator

         must be nonmember

     precedence and associativity

     Sales_item

     string 2nd

<= (less-than-or-equal) 2nd 3rd

= (assignment) 2nd 3rd

     and conversion

     and equality

     class assignment operator

     container

     overloaded operator 2nd

         and copy constructor

         check for self-assignment

         Message

         multiple inheritance

         reference return 2nd

         rule of three

         use counting 2nd

         valuelike classes



     pointer

     string

     to signed

     to unsigned

     yields lvalue

== (equality) 2nd

     algorithm

     container

     container adaptor

     iterator 2nd

     string 2nd

> (greater-than) 2nd

>= (greater-than-or-equal) 2nd

>> (input operator) 2nd

     istream_iterator

     overloaded operator

         must be nonmember

     precedence and associativity

     Sales_item,

     string 2nd

>> (right-shift) 2nd

?: (conditional operator) 2nd

     operand order of evaluation

[] (subscript) 2nd 3rd

     and multi-dimensioned array

     and pointer

     array

     bitset

     deque

     map

     overloaded operator

         reference return

     string

     valid subscript range

     vector 2nd

     yields lvalue

\0 (null character)

\n (newline character) 2nd

\ nnn (octal escape sequence)

\t (tab character) 2nd

\X nnn (hexadecimal escape sequence) 2nd

^ (bitwise XOR) 2nd

_ _cplusplus

_ _DATE_ _

_ _FILE_ _

_ _LINE_ _

_ _TIME_ _

{} (curly brace) 2nd

| (bitwise OR) 2nd

     example

     Query

|| (logical OR)

     operand order of evaluation

     overloaded operator

~ (bitwise NOT) 2nd

     Query

~ classname [See destructor ]
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abnormal termination, stream buffers

abort 2nd

absInt

abstract base class 2nd

     example

abstract data type 2nd 3rd

abstraction, data 2nd

access control

     in base and derived classes

     local class

     nested class

     using declarations to adjust

access label 2nd 3rd 4th

     private 2nd

     protected 2nd

     public 2nd

Account

accumulate 2nd

Action

adaptor 2nd

     container

     function 2nd 3rd

     iterator

addition (+ )

     iterator 2nd

     pointer

     Sales_item

     string

address 2nd

address-of (& ) 2nd

     overloaded operator

adjacent_difference

adjacent_find

algorithm 2nd

     _copy versions 2nd

     _if versions

     element type constraints

     independent of container

     iterator argument constraints 2nd

     iterator category and 2nd

     naming convention

     overloaded versions

     parameter pattern

     passing comparison function

     read-only

     structure

     that reorders elements

     that writes elements

     type independence 2nd



     using function object as argument

     with two input ranges

algorithm header

algorithms

     binary

     library defined

    overloaded operator

         example

     unary

alias, namespace 2nd

allocator 2nd 3rd

     allocate

         compared to operator new

     construct 2nd

         compared to placement new

     deallocate

         compared to operator delete

     destroy 2nd

         compared to calling destructor

     operations

alternative operator name

ambiguous

     conversion

         multiple inheritance

     function call 2nd 3rd

         multiple base classes

     overloaded operator

AndQuery

     definition

     eval function

anonymous union 2nd

app (file mode)

append , string

argc

argument 2nd 3rd 4th 5th

     array type

     C-style string

     const reference type

     conversion

         with class type conversion

     copied

         uses copy constructor

     default

     iterator 2nd

     multi-dimensioned array

     nonconst reference parameter

     passing

     pointer to const

     pointer to nonconst

     reference parameter

    template [See template argument ]

     to main

     to member function

     type checking

         ellipsis

         of array type

         of reference to array

         with class type conversion



argument deduction, template

argument list

argv

arithmetic

     iterator 2nd 3rd 4th

     pointer 2nd

arithmetic operator

     and compound assignment

     function object

     overloaded operator

arithmetic type 2nd

     conversion 2nd

         from bool

         signed to unsigned

     conversion to bool

array 2nd 3rd

     and pointer

     argument

     as initializer of vector

     assignment

     associative

     conversion to pointer 2nd

         and template argument

     copy

     default initialization

         uses copy constructor

         uses default constructor

     definition

     elements and destructor

     function returning

     initialization

     multi-dimensioned

         and pointer

         definition

         initialization

         parameter

         subscript operator

     of char initialization

     parameter

         buffer overflow

         convention

         reference type

     size calculation

     subscript operator

arrow operator (> )

     auto_ptr

     class member access

     generic handle

     overloaded operator

assert preprocessor macro 2nd

assign

     container

     string

assignment

     memberwise 2nd

     vs. initialization

assignment (= ) 2nd 3rd 4th

     and conversion



     and copy constructor

     check for self-assignment

     container

     for derived class

     Message

     multiple inheritance

     overloaded operator 2nd 3rd

         reference return 2nd

     pointer

     rule of three

         exception for virtual destructors

     string

     synthesized 2nd

     to base from derived

     to signed

     to unsigned

     use counting 2nd

     usually not virtual

     valuelike classes

     yields lvalue

associative array [See map ]

associative container 2nd

     assignment (= )

     begin

     clear

     constructors

     count

     element type constraints 2nd

     empty

     equal_range

     erase

     find

     insert

     key type constraints

     lower_bound

     operations

     overriding the default comparison

     rbegin

     rend

     returning an

     reverse_iterator

     size

     supports relational operators

     swap

     types defined by

     upper_bound

associativity 2nd 3rd

     overloaded operator

at

     deque

     vector

ate (file mode)

     auto_ptr 2nd

     constructor

     copy and assignment

     default constructor

     get member

     operations



     pitfalls

     reset member

     self-assignment

automatic object 2nd [See also local variable , parameter ]

     and destructor
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back

     queue

     sequential container

back_inserter 2nd 3rd

bad

bad_alloc 2nd

bad_cast 2nd

bad_typeid

badbit

base

base class 2nd 3rd 4th [See also virtual function ]

     abstract 2nd

         example

     access control 2nd

     assignment operator, usually not virtual

     can be a derived class

     constructor

         calls virtual function

         not virtual

     conversion from derived

         access control

     definition

    destructor

         calls virtual function

         usually virtual

     friendship not inherited

     handle class

     member hidden by derived

     member operator delete

    multiple [See multiple base class ]

     must be complete type

     no conversion to derived

     object initialized or assigned fromderived

     scope

     static members

     user

    virtual [See virtual base class ]

Basket

     total function

Bear

     as virtual base

begin

     container

     map

     set

     vector

best match 2nd [See also function matching ]

bidirectional iterator 2nd

    container



         list

         map

         set

binary (file mode)

binary function object

binary operator 2nd

binary_search

BinaryQuery

     definition

bind1st

bind2nd

binder 2nd

binding, dynamic 2nd

     requirements for

bit-field 2nd

     access to

bitset 2nd 3rd

     any

     compared to bitwise operator

     constructor

     count

     flip

         compared to bitwise NOT

     header

     none

     output operator

     reset

     set

     size

     subscript operator

     test

     to_ulong

bitwise AND (& ) 2nd

     example

bitwise exclusive or (^ ) 2nd

bitwise NOT ( ~ ) 2nd

     example

bitwise operator

     and compound assignment

     compared to bitset

     compound assignment

     example

     operand

bitwise OR (| ) 2nd

     example 2nd

block 2nd 3rd 4th 5th

     as target of if

     function

     TRy 2nd 3rd 4th

block scope

body, function 2nd 3rd 4th

book finding program

     using equal_range

     using find

     using upper_bound

bookstore program

     exception classes

bool



     and equality operator

     conversion to arithmetic type

     literal

boolalpha manipulator

brace, curly 2nd

break statement 2nd

     and switch

buffer 2nd

     flushing

buffer overflow

     and C-style string

     array parameter

built-in type 2nd 3rd

     class member default initialization

     conversion

     initialization of

Bulk_item

     class definition

     constructor

     constructor using default arguments

     derived fromDisc_item

     interface

     member functions

byte 2nd
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C library header

C with classes

C++

     calling C function from C++

     compiling C and C++

     using C linkage

C-style cast

C-style string 2nd 3rd 4th 5th

     and char*

     and string literal

     compared to string 2nd

     definition

     dynamically allocated

     initialization

     parameter

     pitfalls with generic programs

c_str

     example

CachedObj

     add_to_freelist

     allocation explained

     definition

     definition of static members

     design

     illustration

     inheriting from

     operator delete

     operator new

call operator (() ) 2nd 3rd 4th

     execution flow

     overloaded operator

calling C function from C++

candidate function 2nd

     and function templates

     namespaces

     overloaded operator

capacity

     string

     vector

case label 2nd 3rd

     default

cassert header

cast 2nd

    checked [See dynamic_cast ]

     old-style

catch clause 2nd 3rd 4th 5th

     catch(...) 2nd

     example

     exception specifier



     matching

     ordering of

     parameter

category, iterator

cctype 2nd

     header

cerr 2nd

char

     literal

char string literal [See string literal ]

character

     newline (\n )

     nonprintable 2nd

     null (\0 )

     printable

     tab (\t )

checked cast [See dynamic_cast ]

CheckedPtr

children's story program

     revisited

cin 2nd

     by default tied to cout

cl

class 2nd 3rd 4th 5th

     abstract base

         example

     access labels 2nd

     as friend

     2nd 3rd [See base class ]

     concrete

     conversion

         multiple conversions lead to ambiguities

     conversion constructor

         function matching

         with standard conversion

     data member 2nd

         const vs. mutable

         const , initialization

         constraints on type

         definition

         initialization

         mutable

         reference, initialization

         static

     data member definition

     default access label

     default inheritance access label

     definition 2nd

         and header 2nd

     2nd 3rd [See derived class ]

     destructor definition

    direct base [See immediate base class ]

     explicit constructor

     forward declaration

     generic handle 2nd

     2nd [See handle class ]

     immediate base 2nd

     indirect base 2nd



    local [See local class ]

     member 2nd 3rd

     member access

     2nd [See member function ]

    member: constant expression [See bit-field ]

    multiple inheritance [See multiple base class ]

    nested [See nested class ]

     nonvirtual function, calls resolved at compile time

    operator delete [See member operator ]

    operator new [See member operator new ]

    pointer member

         copy control

         copy control strategies

         default copy behavior

     pointer to member

         definition

     pointer to member function, definition

     preventing copies

     private member

     private member

         inheritance

     protected member

     public member 2nd

         inheritance

     static member 2nd

         as default argument

         data member as constant expression

         example

         inheritance

    template member [See member template ]

     type member

     undefined member

     user 2nd

     virtual base

     virtual function, calls resolved at run time

class declaration 2nd

     of derived class

class derivation list 2nd

     access control

     default access label

     multiple base classes

     virtual base

class keyword

class member: constant expression [See bit-field ]

class scope 2nd 3rd

     friend declaration

     inheritance

     member definition

     name lookup

     static members

     virtual functions

class template 2nd 3rd 4th [See also template parameter , template argument , instantiation ]

     compiler error detection

     declaration

     definition

     error detection

     explicit template argument

     export



    friend

         declaration dependencies

         explicit template instantiation

         nontemplate class or function

         template class or function

     member function

         defined outside class body

         instantiation

     member specialization

    member template [See member template ]

     nontype template parameter

     static member

         accessed through an instantiation

         definition

     type includes template argument(s) 2nd

     type-dependent code

     uses of template parameter

class template specialization

     definition

     member defined outside class body

     member, declaration

     namespaces

class type 2nd 3rd 4th 5th 6th

     class member default initialization

     conversion

     design considerations

     example

     initialization of

     multiple conversions lead to ambiguities

     object definition

     operator 2nd 3rd

     operator and function matching

     parameter and overloaded operator

     used implicitly

     variable vs. function declaration

     with standard conversion

class , keyword

     compared to typename

     in template parameter

     in variable definition

cleanup, object [See destructor ]

clear 2nd

     associative container

     example 2nd

     sequential container

clog 2nd

close

comma operator (, ) 2nd

     example

     operand order of evaluation

     overloaded operator

comment 2nd

     block (/* */ ) 2nd

     single-line (// ) 2nd

compare

     plain function

     string

     template version



         instantiatied with pointer

         specialization

compilation

     and header

     conditional

     inclusion model for templates

     needed when class changes

     needed when inline function changes

     separate 2nd

         of templates

     separate model for templates

compiler

     extension

     flag for inclusion compilation model

     GNU

     Microsoft

     template errors diagnosed at link time

compiler extension

compiling C and C++

composition vs. inheritance

compound assignment (e.g.,+=) 2nd 3rd

     bitwise operator

     iterator

     overloaded operator 2nd

     Sales_item

     string

compound expression 2nd

compound statement 2nd

compound type 2nd 3rd

compute

     overloaded version

concatenation

     Screen operations

     string

     string literal

concrete class

     initialization

condition 2nd

     and conversion

     assignment in

     in do while statement

     in for statement 2nd

     in if statement 2nd

     in logical operator

     in while statement

     stream type as 2nd 3rd

     string input operation as

condition state 2nd

conditional compilation

conditional operator (?: ) 2nd

     operand order of evaluation

console window

const

     and dynamically allocated array

     conversion to 2nd

         and template argument

     iterator vs. const_iterator

     object scope 2nd



     overloading and 2nd

     parameter

     pointer

     reference

         initialization

const data member

     compared to mutable

     initialization

     static data member

const member function 2nd 3rd 4th 5th

const object, constructor

const pointer [See also pointer to const ]

     conversion from nonconst

const reference

     argument

     conversion from nonconst

     parameter

         overloading

     return type

const void* 2nd

const_cast 2nd

const_iterator 2nd

     compared to const iterator

     container

const_reference

const_reverse_iterator

     container

constant expression 2nd

     and header file

     array index

     bit-field

     enumerator

     nontype template parameter

     static data member

construction, order of 2nd

     derived objects 2nd

     multiple base classes

     virtual base classes

constructor 2nd 3rd 4th 5th 6th

     const objects

     conversion 2nd

         function matching

         with standard conversion

     copy 2nd

         base from derived

         multiple inheritance

     default 2nd 3rd 4th 5th 6th

     default argument in

     derived class

         initializes immediate base class

         initializes virtual base

     execution flow

     explicit 2nd

         copy-initialization

     for associative container

     for sequential container

     function matching

     function try block



     in constructor initializer list

     inheritance

     initializer

     may not be virtual

     object creation

     order of construction

         derived objects 2nd

         multiple base classes

         virtual base classes

     overloaded

     pair

     resource allocation

     synthesized copy 2nd

     synthesized default 2nd 3rd 4th

     virtual inheritance

     with standard conversion

constructor initializer list 2nd 3rd 4th 5th

     compared to assignment

     derived classes

     function try block

     initializers

     multiple base classes

     sometimes required

     virtual base class

container 2nd 3rd 4th [See also sequential container , associative container ]

     and generic algorithms

     as element type

     assignment (= )

     associative 2nd

     begin

     clear

     const_iterator

     const_reference

     const_reverse_iterator

     element type constraints 2nd

     elements and destructor

     elements are copies

     empty

     end

     erase

     has bidirectional iterator

     inheritance

     insert

     iterator

     rbegin 2nd

     reference

     rend 2nd

     returning a

     reverse_iterator 2nd

     sequential 2nd

     size

     size_type

     supports relational operators

     swap

     types defined by

continue statement 2nd

     example

control, flow of 2nd



conversion 2nd

     ambiguous

     and assignment

     argument

         with class type conversion

     arithmetic type 2nd

     array to pointer 2nd

         and template argument

conversion constructor

copy

copy constructor 2nd 3rd

     and assignment operator

     argument passing

     base from derived

     for derived class

     initialization

     Message

copy control 2nd

     handle class

     inheritance

     message handling example

     multiple inheritance

     of pointer members

copy-initialization

     using constructor

copy_backward

count

     book finding program

     map

     multimap

     multiset

     set

count, use 2nd

count_if 2nd

     with function object argument

cout 2nd

     by default tied to cin

cstddef header 2nd

cstdlib header

cstring header

ctrl-d (Unix end-of-file)

ctrl-z (Windows end-of-file)

curly brace 2nd
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dangling else 2nd

dangling pointer 2nd

     returning pointer to local variable

     synthesized copy control

data abstraction 2nd

     advantages

data hiding

data structure 2nd

data type, abstract

ddd.ddd L or ddd.dddl ( long double literal)

dec manipulator

decimal literal

declaration 2nd

     class 2nd

     class template member specialization

     dependencies and template friends

     derived class

     export

     forward 2nd

     function

         exception specification

     function template specialization 2nd

     member template

     template

     using 2nd 3rd 4th

         access control

         class member access

         overloaded inherited functions

declaration statement 2nd

decrement (-- )

     iterator

     overloaded operator

     prefix yields lvalue

     reverse iterator

deduction, template argument

default argument

     and header file

     function matching

     in constructor

     initializer

     overloaded function

     virtual functions

default case label 2nd

default constructor 2nd 3rd 4th 5th 6th

     default argument

     Sales_item

     string 2nd

     synthesized 2nd 3rd 4th

     used implicitly



     variable definition

definition 2nd

     array

     base class

     C-style string

     class 2nd

     class data member 2nd

     class static member

     class template

         static member

     class template specialization

         member defined outside class body

     class type object

     derived class

     destructor

     dynamically allocated array

     dynamically allocated object

     function

     inside a switch expression

     inside a while condition

     inside an if condition

     map 2nd

     multi-dimensioned array

     namespace

         can be discontiguous

         member

     of variable after case label

     overloaded operator

     pair

     pointer

     pointer to function

     static data member

     variable

delete 2nd 3rd 4th

     compared to operator delete

     const object

     execution flow

     member operator

         and inheritance

         interface

     memory leak 2nd

     null pointer

     runs destructor

delete []

     and dynamically allocated array

deque

     as element type

     assign

     assignment (= )

     at

     back

     begin

     clear

     const_iterator

     const_reference

     const_reverse_iterator

     constructor fromelement count, uses copy constructor

     constructors



     difference_type

     element type constraints 2nd

     empty

     end

     erase

         invalidates iterator

     front

     insert

         invalidates iterator

     iterator

     iterator supports arithmetic

     performance characteristics

     pop_back

     pop_front

     push_back

         invalidates iterator

     push_front

         invalidates iterator

     random-access iterator

     rbegin 2nd

     reference

     relational operators

     rend 2nd

     resize

     reverse_iterator 2nd

     size

     size_type

     subscript ([] )

     supports relational operators

     swap

     types defined by

     value_type

dereference (* ) 2nd 3rd 4th

     and increment

     auto_ptr

     iterator

     on map iterator yields pair

     overloaded operator

     pointer

     yields lvalue 2nd

derivation list, class 2nd

     access control

     default access label

derived class 2nd 3rd 4th [See also virtual function ]

     access control 2nd

     as base class

     assgined or copied to base object

     assignment (= )

     constructor

         calls virtual function

         for remote virtual base

         initializes immediate base class

     constructor initializer list

     conversion to base

         access control

     copy constructor

     default derivation label

     definition



     destructor

         calls virtual function

     friendship not inherited

     handle class

     member hides member in base

     member operator delete

     multiple base classes

     no conversion from base

     scope

     scope (:: ) to access base class member

     static members

    using declaration

         inherited functions

         member access

     with remote virtual base

derived object

     contains base part

     multiple base classes, contains base part for each

derived to base 2nd

     access control

     enumeration type to integer

     from istream

     function matching of template and nontemplate functions

     function to pointer

         and template argument

     implicit

     inheritance

     integral promotion

     multi-dimensioned array to pointer

     multiple inheritance

     nontemplate type argument

     of return value

     rank for function matching

     rank of class type conversions

     signed to unsigned

     signed type

     template argument

     to const

         and template argument

         parameter matching

     to const pointer

     virtual base

design

     CachedObj

     class member access control

     class type conversions

     consistent definitions of equality and relational operators

     is-a relationship

     Message class

     namespace

     of handle classes

     of header files

         export

         inclusion compilation model

         separate compilation model

     optimizing new and delete

         using freelist

     overloaded operator



     overview of use counting

     Query classes

     Queue

     resource allocation is initialization

     Sales_item handle class

     TextQuery class

     vector memory allocation strategy

     writing generic code

         pointer template argument

destruction, order of

     derived objects

     multiple base classes

     virtual base classes

destructor 2nd 3rd

     called during exception handling

     container elements

     definition

     derived class

     explicit call to

     implicitly called

     library classes

     Message

     multiple inheritance

     order of destruction

         derived objects

         multiple base classes

         virtual base classes

     resource deallocation

     rule of three

         exception for virtual destructors

     should not throw exception

     synthesized 2nd

     use counting 2nd

     valuelike classes

     virtual in base class

     virtual, multiple inheritance

development environment, integrated

difference_type 2nd 3rd

dimension 2nd

direct base class [See immediate base class ]

direct-initialization

     using constructor

directive, using 2nd

     pitfalls

Disc_item

     class definition

discriminant 2nd

divides<T>

division (/ ) 2nd

do while statement

     condition in

domain_error

dot (. ) 2nd

     class member access

dot operator (. ) 2nd

     class member access

double

     literal (num E num or num e num )



     long double

     notation outptu format control

     output format control

duplicate word program

     revisited

dynamic binding 2nd

     in C++

     requirements for

dynamic type 2nd

dynamic_cast 2nd 3rd

     example

     throws bad_cast

     to pointer

     to reference

dynamically allocated

     array 2nd

         definition

         delete

     const object

     initialization

     of const
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edit-compile-debug 2nd

     errors at link time

else [See if statement ]

     dangling 2nd

empty

     associative container

     container

     priority_queue

     queue

     stack

     string 2nd

     vector 2nd

encapsulation 2nd

     advantages

end

     container

     map

     set

     vector

end-of-file 2nd 3rd

     entering from keyboard

Endangered

endl

     manipulator flushes the buffer

ends , manipulator flushes the buffer

enum keyword

enumeration 2nd

     conversion to integer

     function matching

enumerator 2nd

     conversion to integer

environment, integrated development

eof

eofbit

equal

equal member function

equal_range

     associative container

     book finding program

equal_to<T>

equality (== ) 2nd 3rd 4th

     algorithm 2nd

     and assignment

     container 2nd

     container adaptor 2nd

     iterator 2nd 3rd 4th

     overloaded operator 2nd

         consistent with equality

     string 2nd 3rd 4th



erase

     associative container

     container

     invalidates iterator

     map

     multimap

     multiset

     sequential container

     set

     string

error, standard

escape sequence 2nd

     hexadecimal (\X nnn )

     octal (\ nnn )

evaluation

     order of 2nd

     short-circuit

exception

     class 2nd

     class hierarchy

     constructor

     extending the hierarchy

     header

     what member 2nd

exception handling 2nd [See also throw , catch clause ]

     and terminate

     compared to assert

     exception in destrutor

     finding a catch clause

     function try block 2nd

    handler [See catch clause ]

     library class destructors

     local objects destroyed

     specifier 2nd 3rd 4th

         nonreference

         reference

         types related by inheritance

     stack unwinding

     uncaught exception

     unhandled exception

exception object 2nd

     array or function

     initializes catch parameter

     must be copyable

     pointer to local object

     rethrow

exception safety 2nd

exception specification 2nd

     function pointers

     tHRow()

     unexpected

     violation

     virtual functions

exception, raise [See throw ]

executable file

EXIT_FAILURE

EXIT_SUCCESS

explicit constructor 2nd



     copy-initialization

export

     and header design

     keyword 2nd

exporting C++ to C

expression 2nd 3rd 4th

     and operand conversion

     compound 2nd

     constant 2nd

     throw 2nd

expression statement 2nd

extended_compute

extension, compiler

extern

extern 'C' [See linkage directive ]

extern const
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factorial program

fail

failbit

file

     executable

     object

     source 2nd

file mode 2nd

     combinations

     example

file static 2nd

fill

fill_n

find 2nd

     book finding program

     map

     multimap

     multiset

     set

     string

find last word program

find_end

find_first_not_of, string

find_first_of 2nd 3rd

     string

find_if 2nd

find_last_not_of, string

find_last_of, string

find_val program

fixed manipulator

float

     literal (num F or num f )

floating point

     notation output format control

     output format control

floating point literal [See double literal ]

flow of control 2nd

flush , manipulator flushes the buffer

Folder [See Message ]

for statement 2nd

     condition in

     execution flow

     expression

     for header

     initialization statement

     scope

for statementfor statement

for_each

format state



forward declaration of class type

forward iterator 2nd

fp_compute

free store 2nd

freelist 2nd

friend 2nd

     class

    class template

         explicit template instantiation

         nontemplate class or function

         template class or function

     function template, example

     inheritance

     member function

     overloaded function

     overloaded operator

     scope considerations

         namespaces

     template example

friend keyword

front

     queue

     sequential container

front_inserter 2nd

     compared to inserter

fstream 2nd 3rd [See also istream , ostream ]

     close

     constructor

     file marker

     file mode

         combinations

         example

     file random access

     header 2nd

     off_type

     open

     pos_type

     random IO sample program

     seek and tell members

function 2nd 3rd 4th

     calls resolved at run time

     candidate 2nd

     compared to run-time type identification

     conversion to pointer

         and template argument

     default argument

     derived classes

     destructor

     destructor and multiple inheritance

     equal member

     exception specifications

     function returning

     in constructors

     in destructor

     inline 2nd

     inline and header

     introduction

     2nd 3rd [See member function ]



     multiple inheritance

     no virtual constructor

     nonvirtual, calls resolved at compile time

     overloaded 2nd 3rd

         compared to redeclaration

         friend declaration

         scope

         virtual

     overloaded operator

     overriding run-time binding

     pure virtual 2nd

         example

     recursive 2nd

     return type

     run-time type identification

     scope

     to copy unknown type

     type-sensitive equality

     viable 2nd

     virtual 2nd 3rd

         assignment operator

function adaptor 2nd 3rd

     bind1st

     bind2nd

     binder

     negator

     not1

     not2

function body 2nd 3rd 4th

function call

     ambiguous 2nd

     execution flow

     overhead

     through pointer to function

     through pointer to member

     to overloaded operator

     to overloaded postfix operator

     using default argument

function declaration

     and header file

     exception specification

function definition

function matching 2nd

     and overloaded function templates

         examples

     argument conversion

     conversion operator

     conversion rank

         class type conversions

     enumeration parameter

     integral promotion

     multiple parameters

     namespaces

     of member functions

     overloaded operator

function name 2nd

function object 2nd

function pointer



     and template argument deduction

     definition

     exception specifications

     function returning

     initialization

     overloaded functions

     parameter

     return type

     typedef

function prototype 2nd

function return type 2nd 3rd

     const reference

     no implicit return type

     nonreference

         uses copy constructor

     reference

     reference yields lvalue

     void

function scope

function table

     pointer to member

function template 2nd [See also template parameter , template argument , instantiation ]

     as friend

     compiler error detection

     declaration

     error detection

     explicit template argument

         and function pointer

         specifying

     export

     inline

     instantiation

     template argument deduction

     type-dependent code

function template specialization

     compared to overloaded function

     declaration 2nd

     example

     namespaces

     scope

function TRy block 2nd
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g++

gcd program

generate

generate_n

generic algorithm [See algorithm ]

generic handle class 2nd

generic memory management [See CachedObj ]

generic programming 2nd

     and pointer template argument

     type-independent code

getline 2nd

     example 2nd

global namespace 2nd

global scope 2nd

global variable, lifetime

GNU compiler

good

goto statement 2nd

greater-than (> ) 2nd 3rd 4th

greater-than-or-equal (>= ) 2nd 3rd 4th

greater<T>

greater_equal<T>

GT6 program

GT_cls

guard header 2nd
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Handle

     int instantiation

     operations

     Sales_item instantiation

handle class 2nd

     copy control

     copying unknown type

     design

     generic 2nd

     that hides inheritance hierarchy

     using a

handler [See catch clause ]

has-a relationship

HasPtr

     as a smart pointer

     using synthesized copy control

     with value semantics

header 2nd 3rd 4th

     algorithm

     and constant expression

     and library names

     bitset

     C library

     cassert

     cctype 2nd

     class definition 2nd

     cstddef 2nd

     cstdlib

     cstring

     default argument

     deque

     design

         export

         inclusion compilation model

         namespace members

         separate compilation model

     exception

     fstream 2nd

     function declaration

     inline function

     inline member function definition

     iomanip

     iostream

     iterator

     list

     map 2nd

     new

     numeric

     programmer-defined



     queue

     Sales_item 2nd 3rd

     set 2nd

     sstream 2nd

     stack

     stdexcept 2nd

     string

     type_info

     using declaration

     utility

     vector 2nd

header file, naming convention

header guard 2nd

heap 2nd

hex manipulator

hexadecimal escape sequence (\X nnn )

hexadecimal, literal (0X num or 0x num),

hides, names in base hidden by names in derived

hierarchy, inheritance 2nd 3rd

high-order bits 2nd
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IDE

identification, run-time type 2nd

identifier 2nd

     naming convention

     reserved

if statement 2nd 3rd 4th

     compared to switch

     dangling else

     else branch 2nd

if statement, else branch

ifstream 2nd [See also istream ]

     close

     constructor

     file marker

     file mode

         combinations

         example

     file random access

     off_type

     open

     pos_type

     random IO sample program

     seek and tell members

immediate base class 2nd

implementation 2nd 3rd

implementation inheritance

implicit conversion [See conversion ]

implicit return

     from main allowed

implicit this pointer 2nd 3rd 4th

     in and overloaded operator

     static member functions

implicit this pointer, overloaded operator

in (file mode)

include [See #include ]

includes

inclusion compilation model 2nd

incomplete type 2nd

     restriction on use 2nd 3rd

increment (++ ) 2nd 3rd 4th 5th 6th

     and dereference 2nd

     iterator 2nd 3rd 4th 5th

     overloaded operator

     pointer 2nd

     prefix yields lvalue 2nd

     reverse iterator 2nd

indentation 2nd

index 2nd

indirect base class 2nd



inequality (!= ) 2nd 3rd 4th

     container 2nd

     container adaptor 2nd

     iterator 2nd 3rd 4th

     overloaded operator 2nd

     string 2nd

inheritance 2nd

     containers

     conversions

     default access label

     friends

     handle class

     implementation

     interface

     iostream diagram

    multiple [See multiple base class ]

     private

     static members

     virtual 2nd

inheritance hierarchy 2nd 3rd

inheritance vs. composition

initialization 2nd 3rd 4th

     array

     array of char

     built-in type

     C-style string

     class data member

     class member of built-in type

     class member of class type

     class type 2nd

     const static data member

    definitions and goto

         constructor

     dynamically allocated array

     dynamically allocated object

     local 2nd

     map

     memberwise 2nd

     multi-dimensioned array

     objects of concrete class type

     pair

     parameter

     pointer

     pointer to function

     return value

     scope

     value 2nd

     variable 2nd 3rd

     vs. assignment

initialization vs. assignment

initialized 2nd

initializer list, constructor 2nd 3rd 4th 5th

inline function 2nd

     and header

     function template

     member function

         and header

inner_product



inplace_merge

input (>> ) 2nd 3rd 4th

     istream_iterator

     istream_iterator ,

     overloaded operator

         error handling

         must be nonmember

     precedence and associativity 2nd

     Sales_item

     Sales_item ,

     string 2nd 3rd

input iterator 2nd

input, standard

insert

     inserter

     invalidates iterator

     map

     multimap

     multiset

     return type fromset::insert

     sequential container

     set

     string

insert iterator 2nd 3rd

inserter

inserter

     compared to front_inserter

instantiation 2nd

     class template 2nd 3rd

         member function

         nontype parameter

         type

     error detection

     function template

         from function pointer

         nontemplate argument conversion

         nontype template parameter

         template argument conversion

     member template

     nested class template 2nd

     on use

     static class member

int

     literal

Integral

integral promotion 2nd

     function matching

integral type 2nd

integrated development environment

interface 2nd 3rd

interface inheritance

internal manipulator

interval, left-inclusive 2nd

invalid_argument

invalidated iterator 2nd

IO stream [See stream ]

iomanip header

iostate



iostream 2nd 3rd [See also istream , ostream ]

     header

     inheritance hierarchy

     seek and tell members

is-a relationship

isalnum

isalpha

ISBN

isbn_mismatch

     destructor explained

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isShorter program 2nd

isspace

istream 2nd 3rd [See also manipulator ]

     condition state

     flushing input buffer

     format state

     gcount

     get

         multi-byte version

         returns int 2nd

     getline 2nd

     getline , example

     ignore

     inheritance hierarchy

     input (>> )

         precedence and associativity

     no containers of

     no copy or assign

     peek

     put

     putback

     read

     seek and tell members

     unformatted operation

         multi-byte

         single-byte

     unget

     write

istream_iterator 2nd

     and class type

     constructors

     input iterator

     input operator (>> )

     limitations

     operations

     used with algorithms

istringstream 2nd 3rd [See also istream ]

     str

     word per line processing 2nd 3rd

isupper

isxdigit

Item_base



     class definition

     constructor

     interface

     member functions

iter_swap

iterator 2nd 3rd 4th 5th

iterator 2nd

iterator

     argument

     arrow (-> )

     bidirectional 2nd

     compared to reverse iterator 2nd

iterator

     container

iterator

     destination 2nd

     equality 2nd

     forward 2nd

     generic algorithms

     inequality 2nd

     input 2nd

     insert 2nd 3rd

     invalidated 2nd

    invalidated by

         assign

         erase

         insert

         push_back

         push_front

         resize

     off-the-end 2nd 3rd

     operations

     output 2nd

     parameter 2nd

     random-access 2nd

     relational operators

     reverse 2nd 3rd

     stream

iterator arithmetic 2nd 3rd 4th

     relational operators

iterator category 2nd

     algorithm and 2nd

     bidirectional iterator

     forward iterator

     hierarchy

     input iterator

     output iterator

     random-access iterator

iterator header

iterator range 2nd 3rd

     algorithms constraints on 2nd

     erase

     generic algorithms

     insert
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key_type

     associative containers

keyword

     enum

     export

     friend

     namespace

     protected

     template

     try

     union

     virtual

keyword table

Koenig lookup
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L' c ' ( wchar_t literal)

label

     access 2nd 3rd 4th

     case 2nd 3rd

     statement

labeled statement 2nd

left manipulator

left-inclusive interval 2nd

left-shift (<< ) 2nd 3rd 4th

length_error

less-than (< ) 2nd 3rd 4th

     overloaded and containers

     used by algorithm 2nd

less-than-or-equal (<= ) 2nd 3rd 4th 5th 6th

less<T>

less_equal<T>

lexicographical_compare

library names to header table

library type

library, standard 2nd

lifetime, object 2nd

link time errors from template

linkage directive 2nd

     C++ to C

     compound

     overloaded function

     parameter or return type

     pointer to function

     single

linking 2nd

list

     as element type

     assign

     assignment (= )

     back

     begin

     bidirectional iterator

     clear

     const_iterator

     const_reference

     const_reverse_iterator

     constructor fromelement count, uses copy constructor

     constructors

     element type constraints 2nd

     empty

     end

     erase

     front

     insert



     iterator

     merge

     performance characteristics

     pop_back

     pop_front

     push_back

     push_front

     rbegin 2nd

     reference

     relational operators

     remove

     remove_if

     rend 2nd

     resize

     reverse

     reverse_iterator 2nd

     size

     size_type

     specific algorithms

     splice

     swap

     types defined by

     unique

     value_type

literal 2nd 3rd

     bool

     char

     decimal

     double (num E num or num e num )

     float (num F or num f)

     hexadecimal (0X num or 0x num),

     int

     long (num L or num l )

     long double (ddd.ddd L or ddd.ddd l )

     multi-line

     octal (0 num )

     string 2nd 3rd

     unsigned (num U or num u )

     wchar_t

local class 2nd

     access control

     name lookup

     nested class in

     restrictions on

local scope 2nd

local static object 2nd

local variable 2nd

     destructor

     lifetime

     reference return type

logic_error

logical AND (&& ) 2nd

     operand order of evaluation 2nd

     overloaded operator

logical NOT (! ) 2nd

logical operator

     function object

logical OR (|| ) 2nd



     operand order of evaluation 2nd

     overloaded operator

logical_and<T>

logical_not<T>

logical_or<T>

long

     literal (num L or num l )

long double

long double , literal (ddd.ddd L or ddd.ddd l )

lookup, name 2nd

     and templates

     before type checking 2nd

         multiple inheritance

     class member declaration

     class member definition 2nd

     class member definition, examples

     collisions under inheritance

     depends on static type

         multiple inheritance

     inheritance 2nd

     local class

     multiple inheritance

         ambiguous names

     namespace names

         argument-dependent lookup

     nested class

     overloaded virtual functions

     virtual inheritance

low-order bits 2nd

lower_bound

     associative container

     book finding program

lvalue 2nd

     assignment

     dereference

     function reference return type

     prefix decrement

     prefix increment

     subscript
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machine-dependent

     bitfield layout

     char representation

     division and modulus result

     end-of-file character

     iostate type

     linkage directive language

     nonzero return from main

     pre-compiled headers

     random file access

     reinterpret_cast

     representation of enum type

     return from exception what operation

     signed and out-of-range value

     signed types and bitwise operators

     size of arithmetic types

     template compilation optimization

     terminate function

     type_info members

     vector memory allocation size

     volatile implementation

magic number 2nd

main 2nd

     arguments to

     not recursive

     return type

     return value 2nd

     returns 0 by default

make_pair

make_plural program

manip

manipulator 2nd 3rd

     boolalpha 2nd

     change format state

     dec 2nd

     endl flushes the buffer

     ends flushes the buffer

     fixed 2nd

     flush flushes the buffer

     hex 2nd

     internal 2nd

     left 2nd

     noboolalpha 2nd

     noshowbase 2nd

     noshowpoint 2nd

     noskipws 2nd

     nouppercase 2nd

     oct 2nd

     right 2nd



     scientific 2nd

     setfill 2nd

     setprecision 2nd

     setw 2nd

     showbase 2nd

     showpoint 2nd

     skipws 2nd

     unitbuf flushes the buffer

     uppercase 2nd

map 2nd

     as element type

     assignment (= )

     begin

     bidirectional iterator

     clear

     constructors

     count

     definition

     dereference yields pair

     element type constraints

     empty

     end

     equal_range

     erase 2nd

     find

     header

     insert

     iterator

     key type constraints

     key_type

     lower_bound

     mapped_type 2nd

     operations

     overriding the default comparison

     rbegin

     rend

     return type from insert

     reverse_iterator

     size

     subscript operator

     supports relational operators

     swap

     upper_bound

     value_type

mapped_type , map , multimap

match, best 2nd

max

member [See also class member ]

     mutable data

     pointer to 2nd

member function 2nd 3rd 4th

     as friend

     base member hidden by derived

     class template

         defined outside class body

         instantiation

     const 2nd 3rd

     defined outside class body 2nd



     definition

         in class scope

         name lookup

         name lookup, examples

     equal

    function template [See member template ]

     implicitly inline

     inline

         and header

     overloaded

     overloaded on const

     overloaded operator 2nd

     pointer to, definition

     returning *this

     static

         this pointer

     undefined

member operator delete 2nd

     and inheritance

     CachedObj

     example

     interface

member operator delete []

member operator new 2nd

     CachedObj

     example

     interface

member operator new []

member template 2nd

     declaration

     defined outside class body

     examples

     instantiation

     template parameters

memberwise assignment 2nd

memberwise initialization 2nd

memory and object construction

memory exhaustion

memory leak 2nd

     after exception

memory management, generic [See CachedObj ]

merge

     list

Message

     assignment operator

     class definition

     copy constructor

     design

     destructor

     put_Msg_in_Folder

     remove_Msg_from_Folder

method [See member function ]

Microsoft compiler

min

min_element

minus<T>

mismatch

mode, file 2nd



modulus (% ) 2nd

modulus<T>

multi-dimensioned array

     and pointer

     conversion to pointer

     definition

     initialization

     parameter

     subscript operator

multi-line literal

multimap 2nd

     assignment (= )

     begin

     clear

     constructors

     count

     dereference yields pair

     element type constraints

     empty

     equal_range

     erase 2nd

     find

     has no subscript operator

     insert

     iterator 2nd

     key type constraints

     key_type

     lower_bound

     mapped_type

     operations 2nd

     overriding the default comparison

     rbegin

     rend

     return type from insert

     reverse_iterator

     size

     supports relational operators

     swap

     upper_bound

     value_type

multiple base class [See also virtual base class ]

     ambiguities

     ambiguous conversion

     avoiding potential name ambiguities

     conversions

     definition

     destructor usually virtual

     name lookup

     object composition

     order of construction

     scope

     virtual functions

multiple inheritance [See multiple base class ]

multiplication (* ) 2nd

multiplies<T> ,

multiset 2nd

     assignment (= )

     begin



     clear

     constructors

     count

     element type constraints

     end

     equal_range ,

     erase 2nd

     find

     insert

     iterator

     key type constraints

     lower_bound ,

     operations 2nd

     overriding the default comparison

     rbegin

     rend

     return type from insert

     reverse_iterator ,

     Sales_item ,

     supports relational operators

     swap

     upper_bound ,

         example

     value_type ,

mutable data member 2nd
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name lookup 2nd

     and templates

     before type checking 2nd

         multiple inheritance

     class member declaration

     class member definition 2nd

     class member definition, examples

     collisions under inheritance

     depends on static type

         multiple inheritance

     inheritance 2nd

     local class

     multiple inheritance

         ambiguous names

     namespace names

         argument-dependent lookup

     nested class

     overloaded virtual functions

     virtual inheritance

name resolution [See name lookup ]

namespace 2nd 3rd 4th

     class friend declaration scope

     cplusplus_primer ,

     definition

     design

     discontiguous definition

     function matching

     global

     member

     member definition

         outside namespace

         restrictions

     nested

     scope

     unnamed

         local to file

         replace file static

namespace alias 2nd

namespace keyword

namespace pollution 2nd

naming convention

     header file

     source file

NDEBUG

negate<T> ,

negator 2nd

nested class 2nd

     access control

     class defined outside enclosing class



     in class template

     in local class

     member defined outside class body

     name lookup

     QueueItem example

     relationship to enclosing class 2nd

     scope

     static members

     union

nested namespace

nested type [See nsted class ]

new 2nd 3rd 4th

     compared to operator new

     execution flow

     header

     member operator

     member operator , interface

     placement 2nd

         compared to construct

new []

new failure

next_permutation ,

noboolalpha manipulator

NoDefault

nonconst reference

     parameter

         limitations

nonportable

nonprintable character 2nd

nonreference

     parameter

         uses copy constructor

     return type

         uses copy constructor

nontype template parameter 2nd 3rd 4th [See also template parameter ]

     class template

     must be constant expression

nonvirtual function, calls resolved at compile time

noshowbase manipulator

noshowpoint manipulator

noskipws manipulator

not equal [See inequality ]

not1

not2

not_equal_to<T> ,

NotQuery

     definition

     eval function

nouppercase manipulator

nth_element ,

NULL

null pointer

     delete of

null statement 2nd

null-terminated array [See C-style string ]

number, magic 2nd

num Enum or num e num (double literal)

numeric header



numeric literal

     float (num F or num f ),

     long (num L or num l ),

     long double (ddd.ddd L or ddd.ddd l )

     unsigned (num U or num u ),

num F or num f (float literal)

num L or num l (long literal)

num U or num u (unsigned literal)
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object 2nd 3rd

     auto_ptr

     automatic 2nd

     constructor

     destructor

     exception

     function

     is not polymorphic

     local static 2nd

     temporary

object cleanup [See destructor ]

object creation

     constructor

     order of construction

         derived objects 2nd

         multiple base classes

         virtual base classes

     order of destruction

         derived objects

         multiple base classes

         virtual base classes

object file

object lifetime 2nd

     and destructor

     compared to scope

object-oriented programming 2nd 3rd

     key ideas in

oct manipulator

octal escape sequence (\ nnn )

octal, literal (0 num )

off-the-end iterator 2nd 3rd

     istream_iterator ,

off-the-end pointer

ofstream 2nd [See also ostream ]

     close

     constructor

     file marker

     file mode

         combinations

         example

     file random access

     off_type ,

     open

     pos_type ,

     random IO sample program

open

open_file program

open_file , example of 2nd

operand 2nd



    order of evaluation

         comma operator

         conditional operator

         logical operator

operator 2nd

     addition (+ )

         iterator 2nd

         pointer

         string

     address-of (& )

     arrow (-> )

         class member access

     assignment (= ) 2nd 3rd

         and conversion

         and equality

         container

         multiple inheritance

         pointer

         string

         to signed

         to unsigned

         yields lvalue

     binary 2nd

     bitwise AND (& )

     bitwise exclusive or (^ )

     bitwise not (~ )

     bitwise OR (| )

     bitwise OR (| ), example

     call (() ) 2nd

     comma (, )

         operand order of evaluation

     comma (, ), example

     compound assginment (e.g.,+= ), iterator

     compound assignment (e.g.,+= ) 2nd 3rd

         arithmetic

         bitwise

         string

     conditional (?: )

         operand order of evaluation

    decrement (-- )

         iterator

         prefix yields lvalue

         reverse iterator

     dereference (* )

         and increment

         iterator

         on map yields pair

     pointer

     sizeof

     typeid 2nd

     yields lvalue 2nd

operator alternative name

operator delete [] member

operator delete function 2nd

     compared to deallocate

     compared to delete expression

operator delete member

     and inheritance



     CachedObj

     example

     interface

operator new [] member

operator new function 2nd

     compared to allocate

     compared to new expression

operator new member

     CachedObj

     example

     interface

operator overloading [See overloaded operator ]

options to main

order of construction 2nd

     derived objects 2nd

     multiple base classes

     virtual base classes

order of destruction 2nd

     derived objects

     multiple base classes

     virtual base classes

order of evaluation 2nd

     comma operator

     conditional operator

     logical operator

ordering, strict weak 2nd

OrQuery

     definition

     eval function

ostream 2nd 3rd [See also manipulator ]

     condition state

     floatfield member

     flushing output buffer

     format state

     inheritance hierarchy

     no containers of

     no copy or assign

     not flushed if program crashes

     output (<< )

         precedence and associativity

     precision member

     seek and tell members

     tie member

     unsetf member

ostream_iterator , 2nd

     and class type

     constructors

     limitations

     operations

     output iterator

     output operator (<< )

     used with algorithms

ostringstream 2nd [See also ostream ]

     str

out (file mode)

out_of__stock ,

out_of_range , 2nd

output (<< ) 2nd 3rd 4th



     bitset 2nd

     ostream_iterator , 2nd

     overloaded operator

         formatting

         must be nonmember

     precedence and associativity 2nd

     Sales_item ,

     string 2nd 3rd

output iterator 2nd

output, standard

overflow

overflow_error ,

overload resolution [See function matching ]

overloaded 2nd 3rd 4th

overloaded function 2nd

     compared to redeclaration

     compared to template specialization

     friend declaration

     linkage directive

     namespaces

     scope

     using declarations

     using directive

     virtual

overloaded member function

     on const

overloaded operator 2nd 3rd

     & (address-of)

     && (logical AND)

     () (call operator)

     * (dereference)

     , (comma operator)

     -> (arrow operator)

     << (output operator)

         formatting

         must be nonmember

         Sales_item ,

     = (assignment) 2nd 3rd

         and copy constructor

         check for self-assignment

         Message

         reference return 2nd

         rule of three

         use counting 2nd

         valuelike classes

     >> (input operator)

         error handling

         must be nonmember

     [ ] (subscript)

         reference return

     addition (+ ), Sales_item ,

     ambiguous

     arithmetic operators

     as virtual function

     binary operator

     candidate functions

     compound assignment (e.g.,+= )

         Sales_item ,



     consistency between relational and equality operators

     definition 2nd

     design

     equality operators 2nd

     explicit call to

     explicit call to postfix operators

     function matching

     member and this pointer

     member vs. nonmember function 2nd

     postfix increment (++ ) and decrement (-- ) operators

     precedence and associativity

     prefix increment (++ ) and decrement (-- ) operators

     relational operators 2nd

     require class-type parameter

     unary operator

     || (logical OR)

overloading [See overloaded function ]

    operator [See overloaded operator ]
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pair 2nd

     as return type from map::insert

     as return type from set::insert ,

     default constructor

     definition

     initialization

     make_pair ,

     operations

     public data members

Panda

     virtual inheritance

parameter 2nd 3rd 4th

     and main

     array and buffer overflow

     array type

     C-style string

     const

     const reference

         overloading

     ellipsis

     function pointer

         linkage directive

     initialization of

     iterator 2nd

     library container

     lifetime

     local copy

     matching

         ellipsis

         template specialization

         with class type conversion

     multi-dimensioned array

     nonconst reference

     nonreference type

         uses copy constructor

     of member function

     passing

     pointer members

     pointer to const

         overloading

     pointer to function

         linkage directive

     pointer to nonconst ,

     pointer type 2nd

    reference

         to array type

         to pointer

     rule of three

         exception for virtual destructors



     synthesized 2nd

    template [See template parameter ]

    type checking

         and template argument

         of reference to array

     use counting 2nd

     valuelike classes

     vector type

parameter list 2nd 3rd 4th

     member function definition

parentheses, override precedence

partial specialization 2nd

partial_sort ,

partial_sort_copy ,

partial_sum ,

partition

placement new 2nd

     compared to construct

plus<T> ,

pointer 2nd 3rd

     array

     arrow (-> )

     as initializer of vector

     as parameter

     assignment

    char* [See C-style string ]

     class member copy control

         copy constructor

         destructor

         strategies

     compared to iterator

     compared to reference

     const

     const pointer to const

     container constructor from

     conversion from derived to multiple base

     conversion fromderived to base

     conversion to bool

     conversion to void

     dangling 2nd

         synthesized copy control

     declaration style

     definition

     delete

     dynamic_cast , example

     function returning

     implicit this 2nd

     initialization

     is polymorphic

     multi-dimensioned array

     new

     null

     off-the-end

     pitfalls with generic programs

     reference parameter

     relational operator

     return type and local variable

     smart 2nd 3rd



         handle class

         overloaded (++ ) and (* ),

         overloaded -> (arrowoperator) and * (dereference)

     subscript operator

     to pointer

     typedef

     typeid operator

     uninitialized

     volatile

pointer arithmetic 2nd

pointer to const

     argument

     conversion from nonconst ,

     parameter

         overloading

pointer to function

     definition

     exception specifications

     function returning

     initialization

     linkage directive

     overloaded functions

     parameter

     return type

     typedef

pointer to member 2nd

     and typedef

     arrow (->* ) 2nd

     definition

     dot (.* ) 2nd

     function pointer

     function table

pointer to nonconst

     argument

     parameter

polymorphism 2nd

     compile time polymorphism via templates

     run time polymorphism in C++

pop

     priority_queue ,

     queue

     stack

pop_back , sequential container

pop_front , sequential container

portable

postfix decrement (-- )

     overloaded operator

     yields rvalue

postfix increment (++ )

     and dereference

     overloaded operator

precedence 2nd 3rd 4th 5th

     of assignment

     of conditional

     of dot and derefernece

     of increment and dereference

     of IO operator

     of pointer to member and call operator



     overloaded operator

     pointer parameter declaration

precedence table

predicate 2nd

prefix decrement (-- )

     overloaded operator

     yields lvalue

prefix increment (++ )

     and dereference

     overloaded operator

     yields lvalue

preprocessor 2nd

     directive 2nd

     macro 2nd

     variable

prev_permutation ,

preventing copies of class objects

print_total ,

     explained

printable character

printValues program 2nd 3rd

priority_queue , 2nd

     constructors

     relational operator

private

     class

     copy constructor

     inheritance

     member 2nd

private access label 2nd

     inheritance

private inheritance

program

    book finding

         using equal_range ,

         using find

         using upper_bound ,

     bookstore

     bookstore exception classes

     CachedObj

     duplicate words

         revisited

     factorial

     find last word

     find_val ,

     gcd

     GT6

     Handle class

         int instantiation

         operations

         Sales_item instantiation

     isShorter 2nd

     make_plural ,

     message handling classes

     open_file ,

     printValues 2nd 3rd

     ptr_swap ,

    Query



         design

         interface

         operations

     Queue

         copy_elems member

         destroy member

         pop member

         push member

     random IO example

     restricted word count

     rgcd

     Sales_item handle class

     Screen class template

     swap 2nd

     TextQuery

         class definition

         design

         interface

     vector capacity

     vector , capacity

     vowel counting

     word count

     word transformation

     ZooAnimal class hierarchy

programmer-defined header

programming

     generic 2nd

     object-oriented 2nd 3rd

promotion, integral 2nd

protected access label 2nd

protected keyword

protected, inheritance 2nd

prototype, function 2nd

ptr_swap program

ptrdiff_t , 2nd

public

     inheritance 2nd

     member 2nd

public access label 2nd

     inheritance

pure virtual function 2nd

     example

push

     priority_queue ,

     queue

     stack

push_back , 2nd

     back_inserter ,

     sequential container

     vector

push_front

     front_inserter ,

     sequential container

put_Msg_in_Folder ,
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Query

     & (bitwise AND)

         definition

     << (output operator)

     definition

     design

     interface

     operations

     | (bitwise OR)

         definition

     ~ (bitwise NOT)

         definition

Query_base ,

     definition

     member functions

queue 2nd

Queue

     << (output operator)

     assign

queue

     constructors

Queue

     copy_elems member 2nd

     definition

     design

     destroy member

     final class definition

     interface

     member template declarations

     operations

     pop member

     push member

     push , specialized

queue

     relational operator

Queue

     template version, char*

QueueItem

     as nested class

         constructor

         definition

     CachedObj

         allocation explained

     friendship
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Raccoon as virtual base

RAII [See resource allocation is initialization ]

raise

raise exception [See throw ]

random file IO

random-access iterator 2nd

     deque

     string

     vector

random_shuffle ,

range

     iterator 2nd 3rd

     left-inclusive

range_error ,

rbegin , container 2nd

rdstate

recursive function 2nd

refactoring 2nd

referece

reference 2nd

     and pointer

     const reference

         initialization

     conversion from derived to multiple base

     conversion fromderived to base

     dynamic_cast operator, example

     is polymorphic

     nonconst reference

     parameter

     pointer parameter

     return type and class object

     return type and local variable

     return type, is lvalue

     return value

     to array parameter

reference count [See use count ]

reference data member, initialization

reference return

reference to const [See const reference ]

reinterpret_cast , 2nd

relational operator

     associative container

     container

     container adaptor

     function object

     overloaded operator 2nd

         consistent with equality

     pointer

     string



remove

     list

remove_copy ,

remove_copy_if ,

remove_if ,

     list

remove_Msg_from_Folder ,

rend , container 2nd

replace 2nd

     string

replace_copy , 2nd

replace_copy_if ,

replace_if ,

reserve

     string

     vector

reserved identifier

resize , sequential container

Resource

resource allocation is initialization

     auto_ptr ,

restricted word count program

result 2nd

rethrow 2nd

return statement

     from main

     implicit

     local variable 2nd

return type 2nd 3rd 4th

     const reference

     function

     function pointer

     linkage directive

     member function definition

     no implicit return type

     nonreference

     of virtual function

     pointer to function

     reference

     reference yields lvalue

     uses copy constructor

     void

return value

     conversion

     copied

return , container

reverse

     list

reverse iterator 2nd 3rd

     ++ (increment)

     -- (decrement)

     base

     compared to iterator 2nd

     example

     requires -- (decrement)

reverse_copy ,

reverse_iterator ,

     container



rfind , string

rgcd program

right manipulator

right-shift (>> ) 2nd 3rd 4th

     scope (:: ) 2nd 3rd

         class member 2nd

         container defined type

         member function definition

         to override name lookup

     shift 2nd

     sizeof

    subscript ([ ] )

         and multi-dimensioned array

         and pointer

         array

         bitset

         deque

         map

         string

         valid subscript range

         vector 2nd

         yields lvalue

     subtraction (- )

         iterator 2nd

         pointer

     unary 2nd

     unary minus (- )

     unary plus (+ )

rotate

rotate_copy

rule of three 2nd

     exception for virtual destructors

run time

     error

run-time type identification 2nd

     classes with virtual functions

     compared to virtual functions

     dynamic_cast

         example

         throws bad_cast

         to poiner

         to reference

     type-sensitive equality

     typeid

         and virtual functions

         example

         returns type_info

runtime_error 2nd

     constructor from string

rvalue 2nd
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safety, exception

Sales_item

     addition (+ ) 2nd

         throws exception 2nd

     avg_price definition

     class definition 2nd

     compare function

     compound assignment (e.g.,+= )

     conversion

     default constructor

     equality operators (== ), (!= )

     explicit constructor

     handle class

         clone function

         constructor 2nd

         definition

         design

         multiset of

         using generic Handle

     header 2nd 3rd

     input (>> )

     istream constructor

     no relational operators

     operations

     output (<< )

     same_isbn 2nd

     string constructor

scientific manipulator

scope 2nd

     block

     class 2nd 3rd

     compared to object lifetime

     const object 2nd

     for statement

     friend declaration

     function

     function template specialization

     global 2nd

     local 2nd

     multiple inheritance

     namespace

     statement

     template parameter

     using declaration

     using directive

         example

         name collisions

scope (:: )

     base class members



     namespace member

scope operator (:: ) 2nd 3rd 4th

     class member 2nd

     container defined type

     member function definition

     namespace member

     to override class-specific memory allocation

     to override name lookup

Screen

     CachedObj

     class template

     concatenating operations

     display

     do_display

     friends

     get definition

     get members

     get_cursor definition

     Menu function table

     move members

     set members

     simplified

     size_type

ScreenPtr

     arrow operator (-> )

     dereference (* )

     use counted

ScrPtr

search

search_n

seek and tell members

self-assignment

     auto_ptr

     check

     use counting

semantics, value 2nd

semicolon (; )

semicolon (; ), class definition

sentinel 2nd

separate compilation 2nd

     inclusion model for templates

     of templates

     separate compilation model for templates 2nd

sequence (\X nnn ), hexadecimal escape

sequence, escape

sequential container 2nd

     assign

     assignment (= )

     back

     clear

     const_iterator

     const_reverse_iterator

    constructor from element count

         uses copy constructor

         uses element default constructor

     constructors

     deque

     element type constraints 2nd



     empty

     erase

     front

     insert

     iterator

     list

     operations

     performance characteristics

     pop_back

     pop_front

     priority_queue

     push_back

     push_front

     queue

     rbegin

     rend

     resize

     returning a

     reverse_iterator 2nd

     size

     size_type

     stack

     supports relational operators

     swap

     types defined by

     value_type

     vector

set 2nd

     as element type

     assignment (= )

     begin

     bidirectional iterator

     clear

     constructors

     count

     element type constraints

     empty

     end

     equal_range

     erase 2nd

     find

     insert

     iterator

     key type constraints

     lower_bound

     operations

     overriding the default comparison

     rbegin

     rend

     return alternatives

     return type from insert

     reverse_iterator

     size

     supports relational operators

     swap

     upper_bound

     value_type

set_difference



set_intersection 2nd

set_symmetric_difference

set_union

setfill manipulator

setprecision manipulator

setstate 2nd

setw manipulator

shift operator 2nd

     short

     short-circuit evaluation

         overloaded operator

shorterString

showbase manipulator

showpoint manipulator

signed 2nd

     conversion to unsigned 2nd

size

     associative container

     priority_queue

     queue

     sequential container

     stack

     string

     vector

size_t 2nd 3rd

     and array

size_type 2nd

     container

     string

     vector

sizeof operator

skipws manipulator

sliced 2nd

SmallInt 2nd

     conversion operator

smart pointer 2nd 3rd

     handle class

     overloaded (++ ) and (* )

     overloaded -> (arrow operator) and * (dereference)

sort 2nd

source file 2nd

     naming convention

specialization

    class template

         definition

         member defined outside class body

         partial

         partial specialization

     class template member

         declaration

    function template

         compared to overloaded function

         declaration 2nd

         example

         scope

     template, namespaces

specifier, type 2nd

splice , list



sstream

     header 2nd

     str

stable_partition

stable_sort 2nd

stack 2nd

     constructors

     relational operator

stack unwinding 2nd

standard error 2nd

standard input 2nd

standard library 2nd

standard output 2nd

state, condition

statement 2nd

     break 2nd

     compound 2nd

     continue 2nd

     declaration 2nd

     do while

     expression 2nd

     for 2nd

     for statementfor

     goto 2nd

     if 2nd 3rd 4th

     labeled 2nd

     null 2nd

     return

     return , local variable 2nd

     switch 2nd

     while 2nd 3rd 4th

statement block [See block ]

statement label

statement scope

statementfor statement, for

static

static (file static)

static class member 2nd

     as default argument

     class template

         accessed through an instantiation

         definition

     const data member, initialization

     const member function

     data member

         as constant expression

     inheritance

     member function

         this pointer

static object, local 2nd

static type 2nd

     determines name lookup

         multiple inheritance

static type checking 2nd

     argument

     function return value

static_cast 2nd

std 2nd



stdexcept header 2nd

store, free 2nd

str

strcat

strcmp

strcpy

stream

     flushing buffer

     istream_iterator

     iterator 2nd

         and class type

         limitations

         used with algorithms

     not flushed if program crashes

     ostream_iterator

     type as condition

stream iterator

strict weak ordering 2nd

string

     addition

     addition to string literal

     and string literal 2nd

     append

     are case sensitive

     as sequential container

     assign

     assignment (= )

     c_str

     c_str , example

     capacity

     compare

     compared to C-style string

     compound assignment

     concatenation

     constructor 2nd

     default constructor

     empty

     equality (== )

     equality operator

     erase

     find

     find_first_not_of

     find_first_of

     find_last_not_of

     find_last_of

     getline

     getline , example

     header

     input operation as condition

     input operator

     insert

     output operator

     random-access iterator

     relational operator 2nd

     replace

     reserve

     rfind

     size



     size_type

     subscript operator

     substr

string literal 2nd 3rd

     addition to string

     and C-style string

     and string library type 2nd

     concatenation

string, C-style [See C-style string ]

stringstream 2nd 3rd [See also istream , ostream ]

     str

strlen

strncat

strncpy

struct [See also class ]

     default access label

     default inheritance access label

struct , keyword 2nd 3rd

     in variable definition

structure, data 2nd

Studio, Visual

subscript ([ ] ) 2nd 3rd 4th

     and multi-dimensioned array

     and pointer

     array

     bitset

     deque

     map

     overloaded operator

         reference return

     string

     valid subscript range

     vector 2nd

     yields lvalue

subscript range

     array

     string

     vector

substr , string

subtraction (- )

     iterator 2nd

     pointer

swap 2nd

     container

swap program 2nd

swap_ranges

switch statement 2nd

     and break

     case label

     compared to if

     default label

     execution flow

     expression

     variable definition

synthesized assignment (= ) 2nd

     multiple inheritance

     pointer members

synthesized copy constructor 2nd



     multiple inheritance

     pointer members

     virtual base class

synthesized copy control, volatile

synthesized default constructor 2nd 3rd 4th

     inheritance

synthesized destructor 2nd

     multiple inheritance

     pointer members
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table of library name and header

template [See also class template , function template , instantiation ]

     class 2nd

    class member [See member template ]

     link time errors

     overview

template argument 2nd

     and function argument type checking

     class template

     conversion

     deduction

         from function pointer

     deduction for class template member function

     deduction for function template

     explicit and class template

     explicit and function template

         and function pointer

         specifying

     pointer

template argument deduction

template class [See class template ]

template function [See function template ]

template keyword

template parameter 2nd 3rd

     and member templates

     name

         restrictions on use

     nontype parameter 2nd 3rd 4th

         class template

         must be constant expression

     scope

     type parameter 2nd 3rd 4th

     uses of inside class definition

template parameter list 2nd

template specialization 2nd

     class member declaration

     compared to overloaded function

     definition

     example

     function declaration 2nd

     member defined outside class body

     member of class template

     parameter matching

     partial specialization 2nd

     scope

template<> [See template specialization ]

temporary object

terminate 2nd 3rd 4th 5th

TextQuery



     class definition

     main program using

     program design

     program interface

     revisited

this pointer

     implicit 2nd

     implicit parameter 2nd

     in overloaded operator

     overloaded operator

     static member functions

three, rule of 2nd

tHRow 2nd 3rd 4th 5th

     example 2nd

     execution flow 2nd

     pointer to local object

     rethrow

tolower

top

     priority_queue

     stack

toupper

TRansform

transformation program, word

translation unit [See source file ]

trunc (file mode)

TRy block 2nd 3rd 4th

TRy keyword

type

     abstract data 2nd

     arithmetic 2nd

     built-in 2nd 3rd

     class 2nd 3rd

     compound 2nd 3rd

     dynamic 2nd

     function return

     incomplete 2nd

     integral 2nd

     library

    nested [See nsted class ]

     return 2nd 3rd 4th

     static 2nd

         determines name lookup

         name lookup and multiple inheritance

type checking

     argument

         with class type conversion

     ellipsis parameter

     name lookup

     reference to array argument

type identification, run-time 2nd

type specifier 2nd

type template parameter 2nd 3rd [See also template parameter ]

type_info

     header

     name member

     no copy or assign

     operations



     returned from typeid

typedef 2nd

typedef

     and pointer

     and pointer to member

     pointer to function

typeid operator 2nd

     and virtual functions

     example

     returns type_info

typename , keyword

     compared to class

     in template parameter

     inside template definition
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U_Ptr

unary function object

unary minus (- )

unary operator 2nd

unary plus (+ )

uncaught exception

undefined behavior 2nd

     dangling pointer

         synthesized copy control

     invalidated iterator

     uninitialized class data member

     uninitialized pointer

     uninitialized variable

underflow_error

unexpected 2nd

uninitialized 2nd 3rd 4th

uninitialized pointer

uninitialized_copy 2nd

uninitialized_fill

union 2nd

     anonymous 2nd

     as nested type

     example

     limitations on

union keyword

unique 2nd

     list

unique_copy 2nd

unitbuf , manipulator flushes the buffer

unnamed namespace 2nd

     local to file

     replace file static

unsigned 2nd

     conversion to signed 2nd

     literal (num U or num u)

unsigned char

unwinding, stack 2nd

upper_bound

     associative container

     book finding program

     example

uppercase manipulator

use count 2nd

     design overview

     generic class

     held in companion class

     pointer to

     self-assignment check

user 2nd



using declaration 2nd 3rd 4th

     access control

     class member access

     in header

     overloaded function

     overloaded inherited functions

     scope

using directive 2nd

     overloaded function

     pitfalls

     scope

         example

         name collisions

utility header
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value initialization 2nd

     and dynamically allocated array

     and resize

     dequedeque

     listlist

     map subscript operator

     of dynamically allocated object

     sequential container

     vector

     vectorvector

value semantics 2nd

value_type

     map , multimap

     sequential container

     set , multiset

varargs

variable 2nd 3rd

     define before use

     defined after case label

     definition

     definitions and goto

vector 2nd

Vector

vector

     argument

     as element type

     assign

     assignment (= )

     at

     back

     begin 2nd

     capacity

Vector

     capacity

vector

     clear

     const_iterator 2nd

     const_reference

     const_reverse_iterator

     constructor fromelement count, uses copy constructor

     constructor taking iterators

     constructors 2nd

     difference_type

     element type constraints 2nd

     empty 2nd

     end 2nd

     erase 2nd

         invalidates iterator

     front



     header

     initialization from pointer

     insert

         invalidates iterator

     iterator 2nd

     iterator supports arithmetic

     memory allocation strategy

Vector

     memory allocation strategy

vector

     memory management strategy

     parameter

     performance characteristics

     pop_back

     push_back 2nd

Vector

     push_back

vector

    push_back

         invalidates iterator

     random-access iterator

     rbegin 2nd

Vector

     reallocate

vector

     reference

     relational operators

     rend 2nd

     reserve

     resize

     reverse_iterator 2nd

     size 2nd

Vector

     size

vector

     size_type 2nd

     subscript ([ ] )

     subscript operator

     supports relational operators

     swap

     type

     types defined by

Vector

     using explicit destructor call

     using operator new and delete

     using placement new

vector

     value_type

vector capacity program

viable function 2nd

     with class type conversion

virtual base class 2nd

     ambiguities

     conversion

     defining base as

     derived class constructor

     name lookup

     order of construction



     stream types

virtual function 2nd 3rd

     assignment operator

     calls resolved at run time

     compared to run-time type identifi-cation

     default argument

     derived classes

     destructor

         multiple inheritance

     exception specifications

     in constructors

     in destructor

     introduction

     multiple inheritance

     no virtual constructor

     overloaded

     overloaded operator

     overriding run-time binding

     pure 2nd

         example

     return type

     run-time type identification

     scope

     static

     to copy unknown type

     type-sensitive equality

virtual inheritance 2nd

virtual keyword

Visual Studio

void 2nd

     return type

void* 2nd

     const void* 2nd

volatile 2nd

     pointer

     synthesized copy control

vowel counting program
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wcerr

wchar_t

     literal

wchar_t streams

wcin

wcout

weak ordering, strict 2nd

wfstream

what [See exception ]

while statement 2nd 3rd 4th

     condition in

whitespace

wide character streams

wifstream

window, console

Window_Mgr

wiostream

wistream

wistringstream

wofstream

word 2nd

word count program

     restricted

word per line processing

     istringstream

     istringstreamistringstream

word transformation program

WordQuery

     definition

wostream

wostringstream

wrap around

wstringstream

 



Index

[SYMBOL ] [A ] [B ] [C ] [D ] [E ] [F ] [G ] [H ] [I ] [K ] [L ] [M ] [N ] [O ] [P ] [Q ] [R ] [S ] [T ] [U ] [V ] [W ] [Z ]

ZooAnimal class hierarchy

ZooAnimal , using virtual inheritance
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