
General Classification Learning an indicator function
Classes: 1, . . . , k,D,O (doubts and outliers) Bayes: Both feature
vector X and class Y are random vars Two different problems (no-
tation: py(x) = probability that X = x looking at class y = "class
conditional density" = "likelihood"):

Bayes

prior P(model) πy
likelihood P(data|model) py(x) =

∏
i p(xi|y) if i.i.d.

posterior P(model|data) p(y|x)
evidence P(data)

∑
z πzpz(x)

posterior = likelihood · prior/evidence
For known densities If 0-1-loss: Optimal classifier:
• Select class y as the arg max p(y|x) (the class that has the max-

imum posterior) if the posterior is > 1− d
• otherwise select doubt class D
If any other loss function: Sum up the losses and compare with d.
Parametric models Assume that classes can be treated indepen-
dently (θy is not informative for class Xz)
Maximum Likelihood Estimation Maximize the likelihood given
the data: For each class y : θ̂y = arg maxθy P (Xy|θy) How? find
the extremum of the log likelihood function. Log turns product
P =

∏
i p(xiy|θy) into sum, then derive and set to zero.

• Consistency: For n→∞, MLE converges to the best model θ0.
• Equivariance: if θ̂ MLE of θ then f(θ̂) MLE of f(θ)

• Asymptotic normality:
√
n(θ̂ − θ) converges to a normal distr.

in probability
• Asymptotic efficiency: For well-behaved estimators, MLE has

the smallest variance for large n
Rao Cramer inequality Lower bound on variance for unbiased es-
timators of θ: Inverse Fisher information.
Bayes estimation θ is a random variable, not a point. Can
be applied recursively: For the likelihood p(X n|θ) =
p(xn|θ)p(Xn−1|θ) → Calculate result without xn, then multiply
with next likelihood and scale to 1 by dividing by the integral to
get the posterior, at the base case of this is the prior p(θ).
For reasonable priors, MLE/Bayes are equal in the limit.
Error estimation
Epsilon-Delta for classifier quality PX,Y {R(ĉn) ≤ R(cBayes) +
ε} > 1 − δ. The trained classifier is ε-close to the optimal error
(Bayes) more than (1 − δ) · 100 percent of the time (PAC, Proba-
bly Approximately Correct). ToDo: Lecture 9, strong vs. weak
learning
Cross-Validation Estimate error as 1

K

∑
v∈K R̂v (average error

rate per bucket).Usually K = min(
√
n10) is chosen.

Problem: Underfitting because we don’t train with entire data.
Leave one out K = n, bucketsize 1. Predicts true error without
bias but can have a large variance (training sets are very similar).
Bootstrap Estimate mean and variance of error as usual by using
e.g. normal sample set as "ground truth".
Problem: Too optimistic. TODO: Probabilities 0.632 etc
Jackknife Tries to estimate the bias of an estimator Ŝn (so you can
then subtract it). Recompute the statistic estimate n times using
leave-one-out. Calculate estimated bias as (n− 1)(S̃n − Ŝn) with
S̃n = 1

n

∑n
i=1 Ŝ

(−i)
n−1 .

Also with bootstrapping. Estimate ˆbias = 1
|B|

∑
b∈B Ŝ(b)− Ŝ.

Linear Discriminant Functions
Perceptron Separate two classes (yi ∈ {−1, 1}) by a hyperplane
(homogeneous coordinates). w is the normal, wTx is the distance.
Idea: Take the loss function Q =

∑
M wTxiyi for all misclassified

points and minimize it. Use ∂Q
∂w =

∑
M xiyi and descend towards

the negative gradient.
This yields the update rule wt+1 = wt + η

∑
M xiyi for some not

too large η. We can also sum individual points (wt+1 = wt+ηxtyt
for misclassifieds (xt, yt) while there still are misclassifieds).
Fisher’s Linear Discriminant Analysis (LDA) Idea: Project k
classes to k− 1 dimensions s.t. they are optimally separated (max-

imize inter-class, minimize intra-class scatter).
• Define within-scatter of class α as

Σα = Σx∈α(x−mα)(x−mα)T , within-scatter of all classes
ΣW = Σ1 + Σ2 + . . ., projected scatter by w is wTΣWw.

• Define between-class scatter 1
k

∑
α(mα −m)(mα −m)T , m is

global mean
• Minimize J(W ) = |WTΣBW |

|WTΣWW | by the generalized EV problem
Σbwi = λiΣ−Wwi.
• We now have as the vectors in W the (k− 1) discriminant func-

tions for yi = wTi x.
2 class case unscaled: ŵ = (Σ1 + Σ2)−1(m1 −m2).
Support Vector Machines (SVM)
Primal problem Maximize m under constraints zi(w

Tyi +
w0) ≥ m, zi ∈ {−1, 1}. Rescale w → w

m to get constraints
zi(w

T y + w0) ≥ 1. With m = 1
||w|| , we can as well minimize

1
2wTw. Therefore: minimize 1

2wTw s.t. zi(wTyi + w0) ≥ 1.
Lagrange formulation L(w,w0, α) = 1

2 −
∑n

i=1 αi(yi(w
Txi +

w0)− 1) Derive wrt. w and w0, set to 0, solve.
Dual problem Obtained from the primal form by substitut-
ing ∂L

∂w = ∂L
∂w0

= 0. Maximize W (α) =
∑n

i=1 αi −
1
2

∑n
i=1

∑n
j=1 zizjαiαjyi

Tyj subject to αi ≥ 0 ∧
∑n

i=1 ziαi =
0. The optimal hyperplane w∗, w∗0 is given by w∗ =∑n

i=1 α
∗
i ziyi, w

∗
0 = −1

2(mini:zi=1 w∗Tyi + maxi:zi=−1 w∗Tyi)

Sparsity Optimal Margin: wTw =
∑

i∈SV α
∗
i .

Soft-Margin SVM Introduce slack variables ξi. New problem:
Minimize 1

2wTw + C
∑n

i=1 ξi. New constraint: ξi ≥ 0.
For the dual problem, the only difference turns out that we have
∀i C ≥ αi ≥ 0 instead of ∀i αi ≥ 0.
nonlinear SVM Substitute yi

Tyj = φT (xi)φ(xj) by a kernel
function K(xi,xj), such that the discriminant function is g(x) =∑n

i=1 αiziK(xi,x).
K is a kernel function iff the matrix K(i, j) = K(xi,xj) is posi-
tive semi-definite. Addition, scaling, multiplication, plugging input
into functions, applying polynomial/exp functions on the kernel re-
sults in a new kernel.
Ensemble Methods Use weak learners (stumps, decision trees,
multi-layer perceptrons, RBFs) cb to build a weighted classifier
ĉB(x) = sgn(

∑B
b=1 αbcb(x)).

Bagging Train classifiers by different bootstrap samples. Random
forests: bagging + decision trees (pick the best split-point among p
variables again and again). Weights are chosen uniformly.
Boosting Uses data-reweighting. AdaBoost minimizes the
exponential loss e−yF (x). Apply weight w

(b)
i to training

data (xi, yi) at the bth boosting step. w
(1)
i = 1

n , then

εb =
∑n

i=1
w

(b)
i∑n

i=1 w
(b)
i

I{cb(xi)6=yi}, αb = log 1−εb
εb
, w

(b+1)
i =

w
(b)
i exp(αbI{cb(xi)6=yi})

Regression
Least-Squares MinimizeRSS(β) = ||y−Xβ||2, X are the points
to fit row-wise. Differentiate wrt. β and set to 0: For nonsingular
XTX: β̂ = (XTX)−1XTy and ŷ = Xβ̂.
If we assume additive gaussian noise ε around 0 with variance
σ2, this is also the MLE optimum: β̂ ∼ N (β, (XTX)−1σ2). Has
the smallest variance among all linear unbiased estimates (Gauss
Markov Theorem var(aTβ) ≤ var(cT y)).
Ridge RSS(β) = ||y − Xβ||2 + λ||β||22. Solution: β̂ridge =
(XTX + λI)−1XTy. Small eigenvalues are repressed: Shrinkage

factor
d2j

d2j+λ
is small for small singular values.

LASSO Favors sparseness, RSS(β) = ||y −Xβ||2 + λ||β||.
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Bias-Variance Dilemma Split the error into three components:
EDEX,Y (f̂(X)− Y )2 = EDEX(f̂(X)−E(Y |X))2 +EX,Y (Y −
E(Y |X))2 = EXED(f̂(X) − EDf̂(X))2 + EX(EDf̂(X) −
E(Y |X))2 + EX,Y (Y − E(Y |X))2 = variance + bias2 + noise
Small dataset, large hyp class: Large var, small bias - Large dataset,
small hyp class: Small var, large bias. Ensemble methods keep bias
fixed and lower variance, but RCLB is a lower-bound of variance.
Combining B regressors Use f̂(x) = 1

B

∑B
i=1 f̂i(x)

Bias EDf̂(x) − E(Y |x) = 1
B

∑B
i=1 EDf̂i(x) − E(Y |x) =

1
B

∑B
i=1 bias(f̂i(x))→Unbiased estimators remain unbiased

Variance
V(f̂(x)) = 1

B2

∑B
i=1 V(f̂i(x)) + 1

B2

∑∑
i 6=j Cov(f̂i(x), f̂j(x))

If we assume small covariances and similar variances (V(f̂i(x)) ≈
σ2), then V(f̂(x)) ≈ σ2

B (reduction by factor of B)
Gaussian processes Extend lin. regression by defining a prior over
the regression coefficients. "kernelized lin. regression"
Assume y = xTβ + ε, ε normally distr. around 0, calculate expec-
tation and covariance, get "confidence bands" around function by
covariance
Unsupervised Learning
Nonparametric Density Estimation Always induce a classifier by
selecting the class with the highest density at a point.
Historgrams Problem: Reliable estimate needs exponentially
many samples with the dimension.
Parzen Estimators Some window function φ with d-dimensional
volume Vn = hdn. Estimate the density p̂n(x) =
1
n

∑n
i=1

1
Vn
φ(x−xi

hn
). Convergence: Variance goes to 0, converges

to real density if limn→∞ Vn = 0 and limn→∞ nVn = ∞. Con-
volution of empirical density with the window function 1

Vn
φ(x)

(low-pass if φ Gaussian). Problems: V0 too small means noise (not
smooth enough), V0 too large means loss of detail, Vn is data inde-
pendent (doesn’t scale differently to regions)
k-NN Vn grows until k samples included: p̂(x) = 1

Vk(x) where
Vk(x) =minimal volume around x with k neighbors. Induced clas-
sifier corresponds to majority vote. Error rate converges in L1 to
P1 ≤ P ∗(2− C

C−1P
∗) ≤ 2P ∗ with P ∗ Bayes error rate.

Problems: Complexity increases with dimension (compute norms)
and sample size
Clustering
k-Means Assignment function c(x), centroids µc ∈ Y , find c and
Y that minimize

∑
x||x− µc(x)||2. Approximation:

1. keep Y fixed, c(x) := argminc∈{1,...,k}||x− µc||2

2. keep c(x) fixed, µα = 1
nα

∑
x:c(x)=α x

Mixture Models Assume data distributed according to not one
density p(x|θ), but a mixture of densities

∑
c∈{1..k} πc p(x|θc).

Task: Estimate θ̂ such that it maximizes the likeli-
hood of X :

∏
x∈X

∑
c∈{1..k} πc p(x|θc). Log-likelihood:∑

x∈X log
∑

c∈{1..k} πc p(x|θc). Optimizing the sum within log
is hard.
Gaussian Mixtures
p(x|µ,Σ) = 1√

2π
d√|Σ| exp(−1

2(x− µ)TΣ−1(x− µ)))

EM Introduce "latent variables" XL: Is x assigned to class c?
1. Expectation: Calculate Q(θ, θ(j)) = EXL [L(X ,XL|θ)|X , θ(j)]

2. Maximization: Choose θ(j+1) = argmax θQ(θ, θ(j))
EM for Mixture Models Estimation: We call the latent variables
Mxc and insert the log-likelihood for L(X ,M |θ). Then we pull the
expectation through to theMxc and call it γxc = EM [Mxc|X , θ(j)].
Case distinction onM (either 0 or 1) yields that γxc = P (c|x, θ(j)).
Use Bayes to get P (x|c,θ(j))P (c|θ(j))

P (x|θ(j)) .

Maximization: DeriveQ−λ(
∑k

c̄=1 πc−1) = 0, for Gaussians w.r.t
to mixture weights πc and µc and Σc. We get πc = 1

|X |
∑

x∈X γxc,

µc =
∑

x∈X γxcx∑
x∈X γxc

, Σc = σ2
c I with σ2

c =
∑

x∈X γxc(x−µc)2∑
x∈X γxc

.
Repeat estimation then maximization until convergence.
Convergence Log-likelihood increases with each iteration.
Problems Hard to analyze (cost fn changes), influence of hidden
variables not completely understood, local minima (usually not
practical problem, choose smaller step), dependent on initial val-
ues
Time Series Sequence of random variables (Xt)t∈T =
X1, X2, . . .. Drawing from these, ⇒ trajectory (assign an xt to
each t). Stationary process: Joint distribution of any subsequence
is invariant under index shifts. Markov process: Outcome of each
draw depends only on the previous draw. Stationary markov chains
have single transition matrix (no changes).
HMM Each state can generate different symbols b of random vari-
able S, each with a certain probability in state k: ek(st) = P (St =
st|Xt = xk). The probability of drawing the path x and generating
the string s is P (s,x) = ax0x1 ·

∏n
t=1 ext(st)axtxt + 1.

Evaluation problem Known transition+emission probabilities
aij , ek(st), given sequence. Compute probability that a sequence
s was emitted. Forward algorithm: Recursion: fl(st) total proba-
bility of subsequence s1, . . . , st if the t-th state is xl. fl(st+1) =
el(st+1)

∑
k fk(st)akl . Then compute P (s) =

∑
k fk(sn)akε, ε

being the final state. The backward algorithm does the same by
computing probabilities for suffix strings instead of prefix strings.
Decoding problem Known aij , ek(st). compute most likely path
x1, . . . , xn responsible for a sequence s. Viterbi algorithm. We
know that P (xl, t|s) = fl(st)bl(st)

P (s) . For each symbol st, for all
states xi alculate vl(st+1) = el(st+1) maxk(vk(st)akl) as the prob-
ability of reaching state xl in step t + 1. Set a pointer to the most
probable predecessor state. Find the most probable path by follow-
ing the pointers backward.
Learning problem Known sequences s1, . . . , sn, compute the
model (aij and ek(st)) and the path x. Baum-Welch algorithm.
E-Step: For each sequence sj Compute the f, b by the backward-
algorithm. Then compute A (expected number of times transition
xk 7→ xl is made) and E (expected number of times b is emitted
by xk) for all states and symbols b. M-Step: Compute parameter
estimates akl and ek(b).
Maths
• P (X,Y ) = P (X,Y )P (Y )

P (Y ) = P (X|Y )P (Y )

• P (X) =
∑

y∈Y P (x, y); p(x) =
∫
Y p(x, y) dy

• independence: P (Y |X) = P (Y ), P (X,Y ) = P (X)P (Y )
• E[X] =

∫
X x · p(x) dx, E[x|y] =

∫
xp(x|y) dx

• E[f(x)] =
∫
X f(x)p(x) dx

• E[a+ bX] = a+ bE[X], V ar[a+ bX] = b2V ar[X]
• V ar[X] =

∫
(x−µX)2 ·p(x) dx =

∑
i=1(xi−µX)2 ·p(xi) ≥ 0

• V ar[X] = E[(X − E[X])2] = E[X2]− E[X]2

• V ar[X + Y ] = V ar[X] + V ar[Y ] + 2Cov(X,Y )
• Cov(X,Y ) = EX,Y [(X − µx)(Y − µy)]
• Cov(X,Y ) = E[XY ]− E[X]E[Y ] = 0 if independent
• Corr(X,Y ) = Cov(X,Y )/σXσY
• Σ = E[(x− µ)(x− µ)T ] =

∫
(x− µ)(x− µ)T p(x) dx

• d
dx log(ax+ b) = a

ax+b

Lagrange multipliers How to minimize f(w) s.t. gi(w) ≤ 0 and
hj(w) = 0 for all i, j.
Primal form: Minimize L(w, α, β) = f(w) +

∑
i αigi(w) +∑

j βjhj(w).
Dual form: The value of the dual form is ≤ the value of the primal
form, for SVMs it is =.
Kuhn-Tucker conditions Necessary and sufficient conditions for
a point w∗ to be an optimum: Optimum if there exist α∗ and
β∗ s.t. ∂L(w∗,α∗,β∗)

∂w = 0 and ∂L(w∗,α∗,β∗)
∂β = 0, and for all i:

αigi(w
∗) = 0 and gi(w∗) ≤ 0 and α∗i ≥ 0
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