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SimOS is an environment for studying the hardware and software of computer systems.
SimOS simulates the hardware of a computer system in enough detail to boot a commercial
operating system and run realistic workloads on top of it. This paper identifies two challenges
that machine simulators such as SimOS must overcome in order to effectively analyze large
complex workloads: handling long workload execution times and collecting data effectively. To
study long-running workloads, SimOS includes multiple interchangeable simulation models
for each hardware component. By selecting the appropriate combination of simulation models,
the user can explicitly control the tradeoff between simulation speed and simulation detail. To
handle the large amount of low-level data generated by the hardware simulation models,
SimOS contains flexible annotation and event classification mechanisms that map the data
back to concepts meaningful to the user. SimOS has been extensively used to study new
computer hardware designs, to analyze application performance, and to study operating
systems. We include two case studies that demonstrate how a low-level machine simulator
such as SimOS can be used to study large and complex workloads.
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1. INTRODUCTION

SimOS is a machine simulation environment designed to study large
complex computer systems. SimOS differs from most simulation tools in
that it simulates the complete hardware of the computer system. In
contrast, most other environments only simulate portions of the hardware.
As a result, they must also simulate portions of the system software.
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SimOS simulates the computer hardware with sufficient speed and detail
to run existing system software and application programs. For example, the
current version of SimOS simulates the hardware of multiprocessor com-
puter systems in enough detail to boot, run, and study Silicon Graphics’
IRIX operating system as well as any application that runs on it, such as
parallel compilation and commercial relational database systems.

Simulating machines at the hardware level has allowed SimOS to be
used for a wide range of studies. Computer architects can evaluate the
impact of new hardware designs on the performance of complex workloads
by modifying the configuration and timing model of the simulated hard-
ware components. Operating system programmers can develop their soft-
ware in an environment that provides the same interface as the target
hardware, while taking advantage of the system visibility and repeatability
offered by a simulation environment. Application programmers can also
use SimOS to gain insight into the dynamic execution behavior of complex
workloads. The user can nonintrusively collect detailed performance-analy-
sis metrics such as instruction execution, memory-system stall, and inter-
processor communication time.

Although machine simulation is a well-established technique, it has
traditionally been limited to small system configurations. SimOS enables
the study of complex workloads by addressing some particularly difficult
challenges. The first challenge is to achieve the simulation speed needed to
execute long-running workloads. Given sufficient speed, machine simula-
tors produce voluminous performance data. The second challenge is to
effectively organize these raw data in ways meaningful to the user.

To address the first challenge, SimOS includes both high-speed machine
emulation techniques and more accurate machine simulation techniques.
Using emulation techniques based on binary translation, SimOS can exe-
cute workloads less than 10 times slower than the underlying hardware.
This allows the user to position the workload to an interesting execution
state before switching to a more detailed model to collect statistics. For
example, emulation can be used to boot the operating system and run a
database server until it reaches a steady execution state. SimOS can
dynamically switch between the emulation and simulation techniques,
allowing the user to study portions of long running workloads in detail.

To address the second challenge, SimOS includes novel mechanisms for
mapping the data collected by the hardware models back to concepts that
are meaningful to the user. Just as the hardware of a computer system has
little knowledge of what process, user, or transaction it is executing, the
hardware simulation models of SimOS are unable to attribute the execu-
tion behavior back to these concepts. SimOS uses a flexible mechanism
called annotations to build knowledge about the state of the software being
executed. Annotations are user-defined scripts that are executed when
hardware events of particular interest occur. The scripts have nonintrusive
access to the entire state of the machine, and can control the classification
of simulation statistics. For example, an annotation put on the context
switching routine of the operating system allows the user to determine the
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currently scheduled process and to separate the execution behavior of the
different processes of the workload.

This article describes our solution to the two challenges. We begin with
an overview of SimOS in Section 2. Section 3 describes the use of inter-
changeable hardware simulation models to simulate complex workloads.
Section 4 describes the data collection and classification system. In Section
5, we describe our experiences with SimOS in two case studies. In Section
6, we discuss related techniques used for studying complex systems. We
conclude in Section 7.

2. THE SIMOS ENVIRONMENT

The SimOS project started in 1992 as an attempt to build a software
simulation environment capable of studying the execution behavior of
operating systems. Many of SimOS’s features follow directly from this goal.
To study the behavior of an operating system, SimOS was designed as a
complete machine simulator where the hardware of the machine is simu-
lated in enough detail to run the actual operating system and application
workloads. Furthermore, the large and complex nature of operating sys-
tems required SimOS to include multiple interchangeable simulation mod-
els of each hardware component that can be dynamically selected at any
time during the simulation.

In the rest of this section, we present a brief overview of these features of
SimOS. Readers interested in the implementation details should refer to
the previous papers on SimOS [Rosenblum et al. 1995] and Embra [Witchel
and Rosenblum 1996] for a much more thorough discussion of the simula-
tion techniques. The use of interchangeable simulation models for complete
machine simulation, as discussed in Section 2.2, is introduced in Rosen-
blum et al. [1995]. That paper also describes in detail the implementation
of SimOS’s original approach to high-speed emulation based on direct
execution. Embra, SimOS’s current approach to high-speed emulation
based on binary translation, is described in detail in Witchel and Rosen-
blum [1996].

2.1 Complete Machine Simulation

Despite its name, SimOS does not model an operating system or any
application software, but rather models the hardware components of the
target machine. As shown in Figure 1, SimOS contains software simulation
of all the hardware components of modern computer systems: processors,
memory management units (MMU), caches, memory systems, as well as I/O
devices such as SCSI disks, Ethernets, hardware clocks, and consoles.
SimOS currently simulates the hardware of MIPS-based multiprocessors in
enough detail to boot and run an essentially unmodified version of a
commercial operating system, Silicon Graphics’ IRIX.

In order to run the operating system and application programs, SimOS
must simulate the hardware functionality visible to the software. For
example, the simulation model of a CPU must be capable of simulating the
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execution of all MIPS CPU instructions including the privileged instruc-
tions. It must also provide the virtual address to physical address transla-
tions done by the memory management unit (MMU). For the MIPS archi-
tecture this means implementing the associative lookup of the translation
lookaside buffer (TLB), including raising the relevant exceptions if the
translation fails.

SimOS models the behavior of I/O devices by responding to uncached
accesses from the CPU, interrupting the CPU when an I/O request has
completed, and performing direct memory access (DMA). For some devices,
useful emulation requires communication with the nonsimulated host
devices. For example, the SCSI disk simulator reads and writes blocks from
a file in the host machine’s file system, making it possible to transfer large
amounts of data into the simulated machine by creating the appropriate
disk image in a file. Similarly, the console and network devices can be
connected to real terminals or networks to allow the user to interactively
configure the workloads that run on the simulator.

The complete machine simulation approach differs from the approach
generally used in simulation systems for studying application programs.
Because application-level simulators are not designed to run an operating
system, they only need to simulate the portion of the hardware interface
visible to user-level programs. For example, the MMU is not visible to
application programs and is not modeled by application-level simulators.
However, complete machine simulators must perform an MMU lookup on
every instruction. Although this requires additional work, complete ma-
chine simulators have many advantages as described in Section 3.1.

2.2 Interchangeable Simulation Models

Because of the additional work needed for complete machine simulation,
SimOS includes a set of interchangeable simulation models for each hard-
ware component of the system. Each of these models is a self-contained
software implementation of the device’s functional behavior. Although all
models implement the behavior of the hardware components in sufficient
detail to correctly run the operating system and application programs, the

Fig. 1. The SimOS environment.
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models differ greatly in their timing accuracy, interleaving of multiproces-
sor execution, statistics collected, and simulation speed.

Furthermore, the user can dynamically select which model of a hardware
component is used at any time during the simulation. Each model supports
the ability to transfer its state to the other models of the same hardware
component. For example, the different MIPS CPU models transfer the
contents of the register file and the translation-lookaside buffer. As we
show in Section 3, the ability to switch between models with different
simulation speed and detail is critical when studying large and complex
workloads.

A complete machine simulation system must model all components of a
computer system. However, only a few components play a determining
factor in the speed of the simulation. The processors, MMUs, and memory
hierarchy account for the bulk of the simulation costs. In the rest of this
section, we summarize the implementation techniques used by SimOS to
model these critical components.

2.2.1 High-Speed Machine Emulation Models. To support high-speed
emulation of a MIPS processor and memory system, SimOS includes Embra
[Witchel and Rosenblum 1996]. Embra uses the dynamic binary translation
approach pioneered by the Shade system [Cmelik and Keppel 1994].
Dynamic binary translators translate blocks of instructions into code
sequences that implement the effects of the original instructions on the
simulated machine state. The translated code is then executed directly on
the host hardware. Sophisticated caching of translations and other optimi-
zations results in executing workloads with a slowdown of less than a
factor of 10. This is two to three orders of magnitude faster than more
conventional simulation techniques.

Embra extends the techniques of Shade to support complete machine
simulation. The extensions include modeling the effects of the memory-
management unit (MMU), privileged instructions, and the trap architec-
ture of the machine. The approach used in Embra is to handle all of these
extensions with additional code incorporated into the translations. For
example, Embra generates code that implements the associative lookup
done by the MMU on every memory reference. Embra also extends the
techniques of Shade to efficiently simulate multiprocessors.

Besides its speed, a second advantage of using dynamic binary transla-
tion is the flexibility to customize the translations for more accurate
modeling of the machine. For example, Embra can augment the emitted
translations to check whether instruction and data accesses hit in the
simulated cache. The result is that SimOS can generate good estimates of
the instruction execution and memory stall time of a workload at a
slowdown of less than a factor of 25.

2.2.2 Detailed Machine Simulation Models. Although Embra’s use of
self-generated and self-modifying code allows it to simulate at high speeds,
the techniques cannot be easily extended to build more detailed and
accurate models. To build such models, we use more conventional software
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engineering techniques that value clean well-defined interfaces and ease of
programming over simulation speed. SimOS contains interfaces for sup-
porting different processor, memory system, and I/O device models.

SimOS contains accurate models of two different processor pipelines. The
first, called Mipsy, is a simple pipeline with blocking caches such as used in
the MIPS R4000. The second, called MXS [Bennett and Flynn 1995], is a
superscalar, dynamically scheduled pipeline with nonblocking caches such
as used in the MIPS R10000. The two models vary greatly in speed and
detail. For example, MXS is an order of magnitude slower than Mipsy,
because the R10000 has a significantly more complex pipeline.

Mipsy and MXS can both drive arbitrarily accurate memory system
models. SimOS currently supports memory system models for a bus-based
memory system with uniform memory access time, a simple cache-coherent
nonuniform memory architecture (CC-NUMA) memory system, and a cycle
accurate simulation of the Stanford FLASH memory system [Kuskin et al.
1994].

For I/O device simulation, SimOS includes detailed timing models for
common devices such as SCSI disks and interconnection networks such as
Ethernet. For example, SimOS includes a validated timing model of the HP
97560 SCSI disk [Kotz et al. 1994].

3. USING SIMOS TO SIMULATE COMPLEX WORKLOADS

The use of complete machine simulation in SimOS would appear to be at
odds with the goal of studying large and complex workloads. After all,
simulating at the hardware level means that SimOS must do a significant
amount of work to study a complex workload. Our experience is that
complete machine simulation can actually simplify the study of complex
workloads. Furthermore, by exploiting the speed/detail tradeoff through
the use of interchangeable hardware models, SimOS can run these work-
loads without excessively long simulation time. In the rest of this section
we describe how these two features of SimOS support the study of complex
workloads.

3.1 Benefits of Complete Machine Simulation

Although complete machine simulation is resource intensive, it has advan-
tages in ease of use, flexibility, and visibility when studying complex
workloads.

Because SimOS provides the same interface as the target hardware, we
can run an essentially unmodified version of a commercial operating
system. This operating system can then in turn run the exact same
applications that would run on the target system. Setting up a workload is
therefore straightforward. We simply boot the operating system on top of
SimOS, copy all the files needed for the workload into the simulated
system, and then start the execution of the workload. In contrast, applica-
tion-level simulators are generally not used to study complex workloads
since they would need to emulate a significant fraction of the operating
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system’s functionality to simply run the workload. This emulation task is
likely to be more complex than a complete machine simulation approach.

For example, we have used SimOS to study complex multiprogrammed
workloads such as parallel compilation and a client-server transaction
processing database. We were able to simply copy the necessary programs
and data files from an existing machine that runs the workloads. No
changes to the application software or the simulator were required.

SimOS is flexible enough that it can be configured to model entire
distributed systems. For example, we have studied file servers by simulat-
ing at the same time the machine running the file server software, the
client machines, and the local area network connecting them. This made it
possible to study the entire distributed system under realistic request
patterns generated by the clients. Although there are certainly limits as to
how far this approach will scale, we have been able to simulate tens of
machines and should be able to study hundreds of machines.

Using software simulation has a number of additional advantages for
SimOS. First, software simulation models are significantly easier to change
than the real hardware of a machine. This makes it possible to study the
effects of changes to the hardware. Secondly, simulating the entire machine
at a low level provides SimOS excellent visibility into the system behavior.
It “sees” all events that occur in the system, including cache misses,
exceptions, and system calls, regardless of which part of the system caused
the events.

3.2 Exploiting the Speed/Detail Tradeoff

SimOS’s use of complete machine simulation tends to consume large
amounts of resources. Furthermore, complex workloads tend to run for long
periods of time. Fast simulation technology is required to study such
workloads. For example, the study of a commercial data processing work-
load described in Section 5.1 required the execution of many tens of billions
of simulated instructions to boot the operating system and start up the
database server and client programs. Executing these instructions using
the simulator with the level of detail needed for the study would have
taken weeks of simulation time to reach an interesting execution state.

SimOS addresses this problem by exploiting the inherent tradeoff be-
tween simulation speed and simulation detail. Each of SimOS’s inter-
changeable simulation models chooses a different tradeoff between simula-
tion speed and detail. We have found the combination of three models to be
of particular use: emulation mode, rough characterization mode, and accu-
rate mode.

3.2.1 Emulation Mode. As indicated, positioning a complex workload
usually requires simulating large amounts of uninteresting execution such
as booting the operating system, reading data from a disk, and initializing
the workload. Furthermore, issues such as memory fragmentation and file
system buffer caches can have a large effect on the workload’s execution.
Many of these effects are not present in a freshly booted operating system;
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they only appear after prolonged use of the system. Realistic studies
require executing past these “cold start” effects and into a steady-state
representative of the real system.

To position a workload, SimOS can be configured to run the workload as
fast as possible. We refer to this configuration as emulation mode because
its implementation shares more in common with emulation techniques
than with simulation techniques. The only requirement is to correctly
execute the workload; no statistics on workload execution are required.

Emulation mode uses Embra configured to model only the hardware
components of the system that are necessary to correctly execute the
workload. No attempt is made to keep accurate timing or to model hard-
ware features invisible to the software, such as the cache hierarchy and
processor pipelines. I/O devices such as disks are configured to instanta-
neously satisfy all requests, avoiding the time that would be required to
simulate the execution of the operating system’s idle loop.

To enable the high speed emulation of multiprocessors, Embra can run as
multiple parallel processes where each process simulates a disjoint set of
processors. Embra can make highly effective use of the additional proces-
sors, achieving linear and sometimes superlinear speedups for the simula-
tion [Witchel and Rosenblum 1996]. Embra is able to make such an
optimization because it is only used in emulation mode, and that does not
require the separate simulated processors to have their notions of time
closely synchronized.

In parallel Embra, the scheduler of the host multiprocessor has an
impact on the interleaving of the simulated processors. The final machine
state is guaranteed to be one of a set of possibilities that are feasible if no
timing assumptions are made about code execution. Note, however, that
the simulation is not deterministic and that different simulation executions
will result in different final machine states. In practice, the operating
system and application software execute correctly independently of the
actual interleaving of the instructions executed. As a result, all reached
machine states, although temporally inaccurate, are functionally plausible,
and can be used as the starting point for more accurate simulation models.

Early versions of SimOS contained an emulation mode based on direct
execution of the operating system and the applications [Rosenblum et al.
1995]. Direct execution was frequently used to position the workloads, but
was removed in 1996 in favor of the binary translation approach. Specifi-
cally, binary translation is more amenable to cross-platform support than
direct execution mode.

3.2.2 Rough Characterization Mode. The speed of emulation mode is
useful for positioning and setup of workloads, but the lack of a timing
model makes it unsuitable for many uses. To gain more insight into the
workload’s behavior, SimOS supports a rough characterization mode that
maintains high simulation speed yet provides timing estimates that ap-
proximate the behavior of the machine. For example, rough characteriza-
tion mode includes timing models that can track instruction execution,
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memory stall, and I/O device behavior, yet it is only two or three times
slower than emulation mode.

Rough characterization mode is commonly used in the following ways.
First, it is used to perform a high-level characterization of the workload in
order to determine first-order bottlenecks. For example, it can determine if
the workload is paging, I/O bound on a disk, or suffering large amounts of
memory system stall. Since the simulation speed of rough characterization
speed is similar to that in emulation mode, it can be used to examine the
workload over relatively long periods of simulated time. The second com-
mon use of rough characterization is to determine the interesting parts of
the workload that should be further studied in greater detail with the
accurate simulators. The rough characterization provides enough informa-
tion to determine the interesting points to focus on in the more detailed
modes.

An example of the use of the rough characterization mode can be found in
Bugnion et al. [1996]. The benchmark programs used in that study re-
quired far too much execution time to run the entire program in the
accurate simulation modes. Instead we used the rough characterization
mode to run the program to completion. We observed that all the bench-
marks in this study had a regular execution behavior. This allowed us to
study limited representative execution windows. Having the rough charac-
terization of the entire benchmark gave us confidence that the selected
window of the workload, studied in the accurate mode, would be represen-
tative of the benchmark as a whole.

The rough characterization mode uses Embra configured to model a
simple CPU pipeline and a large unified instruction and data cache much
like the second-level cache of the MIPS R4000. The memory system models
a fixed delay for each cache miss. I/O devices use a realistic timing model.
For example, the SCSI disk models seek, rotation, and transfer times. This
mode gives estimates of the instruction, memory system behavior, and I/O
behavior of the workload.

3.2.3 Accurate Mode. The accurate simulation mode tries to model a
given hardware configuration as accurately as possible. Because of their
detail, these configurations lead to simulation speeds that are too slow to
use for workload positioning. The goal of accurate mode is to collect
detailed statistics on the workload’s execution behavior. Essentially all
results reported in studies that use SimOS were generated in the accurate
mode.

In this mode, we use either the Mipsy or MXS processor models to study
the performance of a simple processor pipeline or of a dynamically sched-
uled processor. Because of the complexity of the dynamically scheduled
processor it models, MXS can only simulate on the order of 20,000 instruc-
tions per second when run on current machines. Because of this slow
simulation speed, it takes a long time for the simulation to warm up the
state of the cache hierarchy. We therefore generally use Mipsy, which is an
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order of magnitude faster, to warm up the caches before switching into
MXS.

SimOS includes even more detailed gate-level models of some hardware
components of the FLASH machine. Unfortunately, these models are so
detailed that the simulation speed is limited to a few simulated cycles per
second. With such slowdowns, simulating even a single transaction of a
database workload is infeasible.

To study such workloads, we use random sampling techniques that
switch between different levels of detail. This allows us to use statistical
analysis to estimate the behavior of the most detailed models during the
execution of the workload. Sampling is also used to switch between the
Mipsy and MXS processor models. For example, two architectural studies
sampled 10% of the executed cycles using MXS, running the remainder in
the faster Mipsy [Nayfeh et al. 1996; Wilson et al. 1996].

4. DATA COLLECTION MECHANISMS

Low-level machine simulators such as SimOS have a great advantage in
that they see all events that happen on the simulated system. These events
include the execution of instructions, MMU exceptions, cache misses, CPU
pipeline stalls, and so on. The accurate simulation models of SimOS are
heavily instrumented to collect both event counts and timing information
describing the simulated machine’s execution behavior. Unfortunately,
when studying complex systems, collecting these data presents two prob-
lems. The data are generated at a low hardware level and at a high rate.

The low hardware level of data collected is problematic because the user
needs to assign costs to higher-level concepts such as processes or transac-
tions that are not known to the hardware. For example, tracking memory
stalls by physical memory address is not useful if the mapping from the
physical address back to the virtual address of the process being studied is
not known. Even if the memory stalls are recorded by virtual address, it is
often difficult to determine to which process they correspond in a multipro-
grammed workload.

Mapping events to higher-level concepts is also important when studying
the behavior of the hardware. For example, the cycles per instruction (CPI)
of a processor is a useful metric to computer architects only if the instruc-
tions are factored out that are executed while in the operating system’s idle
loop.

The classification of events in SimOS is further complicated by the high
rate at which the data are generated. Unless the classification and record-
ing mechanism is efficient, the overall performance of the simulation will
suffer.

To address these challenges, SimOS’s data classification mechanisms
need to be customized for the structure of the workload being studied as
well as the exact classification desired. A Tcl scripting language interpreter
[Ousterhout 1994] embedded in SimOS accomplishes this in a simple and
flexible way. Users of SimOS can write Tcl scripts that interact closely with
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the hardware simulation models to control data recording and classifica-
tion. These scripts can nonintrusively probe the state of the simulated
machine and therefore can make classification decisions based on the state
of the workload. The use of a scripting language allows users to customize
the data collection without having to modify the simulator.

In the rest of this section we describe the data recording and classifica-
tion mechanism of SimOS. Figure 2 illustrates the architecture of the
mechanisms. Hardware events are recorded in different buckets. They also
trigger the annotation scripts used to control to which bucket a selector
points. In this example, events can be recorded according to whether they
occurred in user, kernel, or idle mode. The detail tables classify events
according to the instruction and data addresses that cause them. Finally,
the event filter generates an additional set of events used to characterize
the memory system behavior. The Tcl language is extended with the
concept of annotations, which are Tcl scripts that allow the simulator to
efficiently track the state of the workloads. Annotations are described in
Section 4.1. To allow for highly efficient recording of these data, SimOS
supports selectors and detail tables as described in Section 4.2. Finally,
Section 4.3 presents the event filter mechanism used in SimOS.

4.1 Annotations

Annotations are the key to mapping low-level events to higher-level con-
cepts. Annotations are Tcl scripts that the user can attach to specific
hardware events. Whenever an event occurs that has an annotation at-
tached to it, the associated Tcl code is executed. Annotations can run
without any effect on the execution of the simulated system. Annotations
have access to the entire state of the simulated machine, including regis-
ters, TLBs, devices, caches, and memories. Furthermore, annotations can

Fig. 2. Data collection in SimOS.

88 • M. Rosenblum et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.



access the symbol table of the kernel and applications running in the
simulator, allowing symbolic references to procedures and data.

By using annotations, a user of SimOS can build higher-level knowledge
about the workload’s execution into the simulator. For example, by reading
from data structures in the simulated machine’s operating system kernel,
an annotation can discover the process ID of the currently running process.
This information can then be used by the annotation to classify data by
process ID.

Examples of simulated hardware events on which annotations can be set
include:

—Execution reaching a particular program counter address. This type of
annotation is invoked whenever a processor executes an instruction at a
particular virtual address. This address can be either in the kernel’s
address space or within the context of a particular user application. Since
SimOS can access the symbol information of any executable, program
counter values can be specified symbolically.

—Referencing a particular data address. These annotations are similar to
debugger watchpoints and are set on virtual addresses. They are invoked
whenever a memory location in a specified range is read or written. As
with program counter annotations, data structure annotations can be
specified using symbols from the application being studied. Data address
annotations are useful for debugging data corruption problems.

—Occurrence of an exception or interrupt. Annotations can be set on any or
all types of traps or interrupts. For example, we use annotations on the
system call exception in order to classify the behavior of the operating
system by the system services it provides.

—Execution of a particular opcode. Annotations may be set for particular
opcodes or classes of opcodes. For example, in the MIPS architecture, an
rfe (return from exception) or eret (exception return) instruction is
executed to return from an exception. Annotations set on these instruc-
tions allow SimOS to efficiently track whether a processor is in kernel or
user mode.

—Reaching a particular cycle count. These annotations are triggered after
a specified number of simulation cycles and are typically used to period-
ically output statistics.

Annotations may also trigger other events that correspond to higher-level
concepts. Using this mechanism we can define annotation types that are
triggered by software events. For example, an annotation on the operating
system’s context switching code triggers a “context switch” event which
may be of interest to a user studying an application program. The user can
determine when the process is active without having to directly instrument
the operating system to gather this information.

Annotations can be efficiently implemented even in emulation mode. In
Embra, program counter annotations are implemented by generating cus-
tom translations for annotated program counter addresses that invoke the
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Tcl interpreter. Program counter addresses for which there are no annota-
tions set do not call into the Tcl interpreter so there is no overhead when
annotations are not being used.

Figure 3 shows an example of how annotations are used to build
higher-level knowledge of the operating system into the simulator. The
state machine is driven by three program counter annotations set on
addresses in the kernel’s text. The script raises the level of abstraction of
system events to include operating system events. Client modules can
install annotations on process switchIn and process switchOut. symbol is a
Tcl command added to SimOS that symbolically accesses data structures in
the simulated machine. “u” is a variable in the operating system that gives
access to the process table entry of the current process. We use a group of
program counter annotations on the kernel context-switching code to track
the currently scheduled process on each CPU. These annotations are set on
the process management system calls, in the context-switching code, and at
the beginning of the kernel idle loop. A Tcl array maintains the current
process ID (PID) and process name for each processor. Although this
process-tracking module does not generate performance data directly, it is
used by other modules to attribute events to specific processes.

We have developed a large set of annotations that build knowledge about
the state of IRIX. This includes scheduling, synchronization, virtual mem-
ory, I/O, and system call behavior. These annotations are clearly dependent

Fig. 3. Process-tracking Tcl script.
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on the target operating system. However, SimOS itself remains free of any
operating system dependency. Porting another operating system to the
SimOS MIPS architecture only requires rewriting portions of the Tcl
scripts.

4.2 Event Classification

Although we could place annotations on each hardware event and count
them in Tcl, the frequency at which events can occur in the faster
simulators of SimOS makes this too slow. To avoid spending too much time
in the Tcl interpreter, annotations are used to control how the frequent
events are recorded rather than having the events themselves invoke
annotations. As shown in Figure 2, hardware events are processed through
an event classifier (either a selector or a detail table) and recorded into
data collection buckets.

With the selector mechanism, the Tcl scripts control which of a set of
predefined buckets is used to record events. Once an annotation has set the
selector to point to a particular bucket, all subsequent events will be
funneled into that bucket. With this model, buckets correspond to different
phases of the workload, and annotations are set on events that signal the
start of a new phase.

Detail tables are like selectors except the target bucket is computed
based on the address of the event. The address can be either the current
value of the program counter or the address of a memory access. Detail
tables allow events to be classified based on the code or data that caused
them.

Figure 4 shows how the selector mechanism can be used to separate the
execution of the workload into four basic modes that correspond to execu-
tion at user level, in the kernel, in the kernel synchronization routines, and
in the kernel idle loop. The left side of the figure shows the Tcl source used
to implement the processor tracking functionality. The script implements a
state machine for each processor. The state machine is shown in the top
right of the figure. The state machine also controls the setting of a selector,
as shown in the bottom right of the figure. The source code has been
simplified and does not include the annotations that define synchroniza-
tion. Annotations placed on exceptions and the return-from-exception op-
code, at the start and end of the idle function, and the kernel synchroniza-
tion routines are used to direct statistics into the bucket corresponding to
the current mode.

The event classification mechanisms of SimOS lend themselves to an
efficient implementation. Accessing the counter associated with the event
requires a simple pointer dereference. In the common case, the Tcl inter-
preter is not invoked. Annotations only need to be placed on events that
change the selector to point to a new bucket. In practice, this occurs
infrequently. Detail tables are implemented similarly except that the
bucket is determined automatically as a function of the address of the
event.
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4.3 Event Filters

Although the event classification mechanisms in SimOS can control the
recording of hardware events, frequently it is not sufficient to know that an
event occurred; the cause of the event is needed. An example of this is
memory stall caused by cache misses on a shared-memory multiprocessor.
Knowing that some code or a data structure suffered cache misses does not
necessarily tell the programmer if these cache misses are necessary or how
they can be avoided.

To address this problem, SimOS provides a mechanism for installing
filters on the hardware event stream that provide additional information
about events. Figure 5 illustrates the state machine of an example filter,
used for classifying the cache misses suffered by each memory location.
SimOS instantiates one such state machine per cache line and processor.
At any point in time, the line is either in a processor’s cache or not. The
bold lines represent cache misses. The dotted lines represent transitions
that occur either when the line is removed from the processor’s cache or
when the cache line is invalidated. Misses are classified as either cold,
replacement, or invalidation misses. The first reference to a particular
memory block by a particular processor is classified as a cold miss.
Replacement misses occur as a result of the limited capacity or associativ-
ity of the cache. Replacement misses consist of both conflict and capacity
misses. Invalidation misses are a result of cache-coherency protocols and
are an indication of interprocessor communication.

The filter can be used in conjunction with detail tables to associate
memory stalls with particular pieces of code or data structures, which can
be valuable to parallel application developers. Cold misses are typically

Fig. 4. Processor mode tracking.
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unavoidable, whereas replacement misses can sometimes be eliminated by
restructuring data structures to eliminate conflict misses due to the limited
associativity of the cache. Excess invalidation misses may indicate that
better control of the interprocessor communication is needed.

To further help programmers, SimOS supports a second filter that
classifies cache misses according to the true or false sharing types defined
by Dubois et al. [1993]. Misses are classified as true sharing when data are
actually being communicated between two processors. False sharing typi-
cally occurs when different processors read and write different portions of a
particular cache line. False sharing is a byproduct of the cache coherence
protocol and occurs when a cache line is invalidated from a cache even
though no actual data communication takes place in the application. When
this state machine is in use, SimOS tracks not only cache misses but also
all data references.

5. EXPERIENCE USING SIMOS

SimOS has been used in several contexts, including the investigation of
new architectural designs [Nayfeh et al. 1996; Wilson et al. 1996; Olokotun
et al. 1996], the development of the Hive operating system [Chapin et al.
1995; Rosenblum et al. 1995], and for various performance studies of
operating systems [Rosenblum et al. 1995; Verghese et al. 1996] and
applications [Bugnion et al. 1996]. This section presents two case studies to
illustrate how the different features of SimOS can be utilized.

5.1 Case Study: Operating System Characterization

We used SimOS to characterize the IRIX operating system and to predict
the impact of architectural trends on its performance [Rosenblum et al.
1995]. SimOS was a critical component of this study for several reasons.
First, we required realistic workloads that stressed the operating system in
significant ways; toy applications and microbenchmarks do not drive the
operating system realistically, and thus cannot provide an accurate picture
of overall operating system performance. Second, the IRIX operating sys-

Fig. 5. Cache miss classification.
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tem is large, complex, and multithreaded. We needed a flexible data
characterization mechanism to help make sense of the wealth of informa-
tion generated. In fact, many of the data collection mechanisms of SimOS
were developed during this study. Third, the goal of the study was to
analyze the behavior of the operating system on machines that are likely to
appear several years in the future. The flexibility of complete machine
simulation allowed us to model hardware platforms before they were
available.

To stress the operating system in realistic ways, we picked workloads
that traditionally run on workstations and shared-memory multiproces-
sors: a commercial database workload, a program development workload,
and an engineering simulation workload. We configured SimOS to simulate
a machine with 128 MB of RAM and up to eight processors.

The first step in preparing the workloads was to position them using the
fast emulation mode. This included booting the operating system and
running through the initialization phases of the applications. We ensured
that the system had run long enough to get past the cold start effects due to
the operating system boot.

Once the workloads were initialized to an interesting point, we used
SimOS’s checkpointing facility to transfer the entire machine state from
the simulation models into a set of files. The checkpoint contained all
software-visible machine state including the contents of physical memory,
all registers, and the state of I/O devices. A single checkpoint can be
restored in multiple different hardware configurations and characterization
modes.

We restored the checkpoints and ran them to completion using the rough
characterization mode while employing the annotations shown in Figure 4.
This gave us a temporal characterization of each workload, and allowed us
to pinpoint the interesting sections. Figure 6 shows examples of the rough
characterization results for two of the workloads. This figure shows the
execution profile of a program development workload (left) and an engi-
neering workload (right) running on an 8-CPU multiprocessor. The execu-
tion time of each processor is broken down between the kernel, synchroni-
zation, user, and idle modes. For user and Kernel modes, the graph further

Fig. 6. Processor mode breakdown.
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separates the time spent executing instructions and the time stalled in the
memory system. The breakdown, averaged over 8 processors, is determined
for each 20-millisecond time step.

We then used the accurate simulation modes, configured to model future
generation hardware, to collect relevant statistics. Checkpoints were cru-
cial during this process because we were able to replay the exact same
workload under three different hardware models. This allowed us to make
a fair comparison between the operating system performance on machines
typical in 1994 and those likely to appear in 1996 and 1998.

The annotation mechanism of SimOS allowed us to analyze the execution
of the kernel in many different ways. One way we found particularly
interesting was to classify the kernel execution time by the service the
kernel was providing to user level processes. These services include the
various system calls, virtual-memory fault processing, exceptions, and
interrupt processing. A key advantage of this decomposition is that it
allowed us to compare the performance of the same service across work-
loads and architectures. Many of the services share the same subroutines
and have common execution paths, so it would be impossible to do this
decomposition based solely on program counter addresses.

Generating this decomposition required extensive use of annotations and
selectors. It was insufficient to simply put annotations at the entry and exit
from the kernel. With interrupt processing, services can be nested within
other services. Furthermore, certain services can be descheduled, for exam-
ple, waiting for an I/O operation to complete. The solution was to set
annotations throughout the operating system code to track the service
currently executing. We set annotations on exceptions, synchronization
routines, the scheduler, and the idle loop. Among other functions, these
annotations tracked interrupts and when processes were descheduled for
I/O.

We used the flexibility of Tcl to arrange the buckets into a tree structure
as shown in Figure 7. A complete breakdown of a workload’s execution can
be easily obtained using the timing mechanism provided by SimOS. In this

Fig. 7. Timing decomposition.
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example, the system is currently performing a synchronization action
within the fork system call. The selector will thus attribute all of the
current events to this particular node in the tree, differentiating the
execution of synchronization routines acting on behalf of the fork from
those acting on behalf of the clock interrupt. The “time descheduled” box is
also a useful feature. This extra state in the tree allows us to track the
overall latency of a service, including the effects of any context switches
that occur during its execution. This tree structure enabled us to discrimi-
nate among the various kernel services and to decompose each service into
its components such as synchronization or time spent descheduled. Collect-
ing data in this tree form made it possible to defer much of the analysis of
the data to postprocessing phases. For example, from the tree in Figure 7 it
would be possible to compute the fraction of time spent in the fork system
call waiting on kernel synchronization. It would also be possible to compute
the total kernel synchronization time by summing all the “sync” buckets.

In order to point the selector at the right bucket in the tree, annotations
were set that maintain the notion of the current service for each processor.
To handle the case of nested services, the current service is kept on a stack.
When a service starts, the annotation pushes the new service on the stack
which then becomes the current service. When the service ends, the
annotation removes it from the stack. Since a process might be descheduled
at any point during the execution of a service, the annotations actually
maintain a separate stack for each process. As a result, the current state of
the system is represented as an array of stacks, and the execution behavior
of the workload is represented as a tree of buckets.

This breakdown of kernel services was important in our study as it
allowed us to compare the performance of the same services across different
workloads, number of processors, and generations of hardware. For exam-
ple, we observed differences in the performance improvements of different
services across architectural trends. We also observed that most operating
system services in the multiprocessor workloads consumed 30 to 70% more
time than their uniprocessor counterparts.

This type of decomposition can be easily extended to include any aspect of
kernel performance. In fact, we found this type of decomposition to be so
useful that we developed it into a general mechanism that can separate the
execution of a workload, including application programs, into different
phases. Our experiences have shown this form of user-defined decomposi-
tion to be much more useful than the simple procedural breakdown offered
by conventional profilers.

5.2 Case Study: The SUIF Parallelizing Compiler

We used SimOS to study automatically parallelized applications generated
by SUIF, a research parallelizing compiler [Wilson et al. 1994]. We were
approached by the SUIF group because they were not achieving the
performance they expected for some applications, and were unable to
identify the source of the performance problems using the tools available to
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them. Using SimOS, we were able to discover the sources of the problems
and suggest several performance improvements. After implementing all the
performance improvements suggested, we ran the SUIF-generated applica-
tions on a high-end multiprocessor and measured the highest SPEC95fp
ratio reported to date [Bugnion et al. 1996].

Because SimOS supports IRIX, workload preparation was simple. We
compiled the SUIF applications on a Silicon Graphics workstation and
copied the executables and their input files onto the simulated multiproces-
sor’s disk. No modifications to the applications were required. We employed
SimOS’s emulation mode to quickly boot the operating system and position
the workload. This process, including the boot of IRIX, took less than 10
minutes of simulation time. To avoid excessive simulation time due to the
long execution times of the SPEC95fp benchmarks—on the order of a
couple of minutes on today’s fastest machines—we used the rough charac-
terization mode to pinpoint portions of the execution that would be repre-
sentative of the overall workload. We then ran only those portions in the
accurate models.

Using SimOS, we were able to identify several performance problems and
suggest solutions. The regular structure of SUIF-generated applications
made them easy to annotate. SUIF generates sections of parallel code
interleaved with sections of sequential and other setup code. Annotations
were set at the beginning and end of the parallel sections, around the
sequential sections, and in the synchronization routines. Coupled with
selectors, these annotations separated the “useful” execution from com-
piler-added administration and synchronization overheads. The annota-
tions also allowed us to quantify the different sources of overhead such as
barrier synchronization and load imbalance. We were able to determine
that the fine granularity of parallelism exploited by the SUIF compiler was
resulting in large overheads due to barrier synchronization at the end of
each parallel section. We then optimized the barrier code in the compiler’s
run-time system, significantly improving the performance of some applica-
tions.

We also used the true sharing/false sharing cache miss classification
filter described in Section 4.3 to study each application’s communication
patterns. Using this classification we found a striking behavior in cfft2, one
of the NASA7 benchmarks. SimOS reported that 84% of all cache misses on
the primary matrix used in the computation were due to false sharing. By
modifying the compiler to align all shared data structures on cache line
boundaries, we were able to completely eliminate this false sharing.

Other SimOS cache statistics generated in rough characterization mode
indicated that conflict misses were a problem for several applications in the
SPEC95fp benchmark. Using annotations placed on the cache misses, we
were able to collect information about the physical addresses of the
frequently used lines. From this information we determined that the
page-mapping policy of the operating system led to an inefficient utilization
of the cache in parallel execution. This led us to develop a new page-
mapping algorithm that significantly improve the performance of compiler-
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parallelized applications. The ability of SimOS to precisely locate and
quantify cache misses was instrumental in the development of the algo-
rithm. For complete information regarding this study, see Bugnion et al.
[1996].

6. RELATED WORK

In this section, we compare SimOS to other tools used for studying
computer systems. Specifically, we focus on the most relevant features of
SimOS including the use of complete machine simulation to study complex
workloads, the exploitation of high-speed simulation technology, and the
flexible event classification mechanisms.

Although simulation has been widely used to study computer systems,
most simulators do not include the effects of operating system execution.1

The operating system is usually ignored and treated as having no impor-
tant impact on the conclusions of a particular study. For example, most
tools only deal with virtual addresses, avoiding the difficulties of address
translation. They also charge only a fixed cost for system calls and include
none of their timing and cache pollution effects.

6.1 Techniques for Studying Complete Machines

SimOS’s approach of using a complete machine simulator to study complex
multiprogrammed workloads differs from most other tools. These tools
typically use instrumentation of the system to collect a trace of the
behavior that can be processed to extract useful information. This involves
running the workload of interest on a system modified to record the trace.
The trace can be generated either using software systems such as ATOM
[Eustace and Srivastava 1995], Epoxie [Borg et al. 1989], FastCache
[Lebeck and Wood 1995], Maxpar [Chen 1985], PatchWrk [Perl and Sites
1996], pixie [Smith 1991], Proteus [Brewer et al. 1991], Paradyn [Miller et
al. 1995], or TangoLite [Goldschmidt 1993], or by using a hardware monitor
as done in DASH [Chapin et al. 1995; Torrellas et al. 1992] and BACH
[Grimsrud et al. 1993].

The popularity of instrumentation approaches attests to their wide
applicability and their relative ease of implementation. Some of the chal-
lenges facing SimOS are nonissues for instrumentation approaches. For
example, instrumentation is generally fast, because the workload can be
positioned with all instrumentation turned off. Instrumentation also works
well over long periods of execution when only limited events need to be
collected into the trace.

SimOS has a number of advantages over the instrumentation approach,
including complete event coverage and nonintrusiveness. Care has to be
taken when using instrumentation to avoid missing important events. For
example, binaries that are not fully instrumented execute correctly but do

1See Cmelik and Keppel [1994], Brewer et al. [1991]; Goldschmidt [1993], Irvin and Miller
[1996], and Veenstra [1993].
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not generate the complete event stream. Furthermore, for bus monitors,
only the events collected by the hardware monitor are visible.

Similarly, intrusiveness is often a problem in instrumentation-based
systems. Software instrumentation requires rewriting existing applica-
tions, resulting in an application that is both larger and longer running
than in its original form. As a result, the events generated may not match
what actually occurs during application execution. Hardware instrumenta-
tion is typically less intrusive, but still can be a factor if it generates
excessive data that must be manipulated during workload execution.

Other interesting techniques used to study systems include using the
ECC bits of main memory to track cache misses as was done by the
Wisconsin Wind Tunnel [Reinhardt et al. 1993], interrupt-based profiling
such as prof [Silicon Graphics], and on-chip counters [Chen et al. 1995].
These techniques provide a way to study some details of a workload
running on the system but lack the flexibility of complete system simula-
tion.

6.2 High-Speed Simulation

The SimOS approach of using high-speed instruction set simulation to
study a system’s behavior has been used by a number of different projects.
For example, Talisman [Bedicheck 1995] statically generates “threaded-
code” from an application to examine its behavior on a multicomputer.
Shade [Cmelik and Keppel 1994] and SimICS [Magnusson and Werner
1995] use special compilation and code caching techniques to run an
optimized instruction set simulation directly on the host platform. These
systems share the advantages of software simulation, such as full event
coverage and nonintrusiveness, but do not model the complete hardware of
a machine and thus cannot be used to study operating systems or multipro-
grammed workloads.

In addition to simulation studies, this technology is being applied to the
domain of cross-platform software emulation [Insignia Software 1996; Sun
Microsystems 1996].

6.3 Flexible Event Classification

Mapping the low-level machine events back to higher-level concepts is a
problem faced by practically all tools for studying systems. Instrumenta-
tion-based systems must not only capture the events of interest, but also
include information about the workload in order to map these events to
their cause. For example, in Chapin et al. [1995] the monitor could only
capture references that reached the memory bus. Therefore, the operating
system had to be altered to output uncached references that recorded
necessary information about the workload.

Memspy [Martonosi et al. 1992] and Flashpoint [Martonosi et al. 1996]
support classification of cache misses that occur during the execution of an
application and can map misses back to the data structures that caused
them. Event classification can occur concurrently with event generation.
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For example, Tango Lite [Goldschmidt 1993] and MINT [Veenstra 1993]
include cache models that categorize memory reference events as they
arrive and even provide timing feedback to the event generator.

A particularly interesting example of the interaction between event
generation and processing is found in Paradyn [Miller et al. 1995]. During
the execution of an application, Paradyn recognizes troublesome sections of
code and directs the event generation mechanism (a code annotator) to
produce more detailed events for processing. As a result, the simulator only
generates those events that are needed, reducing overall simulation time.
SimICS also recognizes the differing levels of detail that may be imple-
mented with run-time code generation, gathering only the amount of detail
desired by the user.

SimOS’s event classification mechanisms borrow from all these ap-
proaches. We incorporate the cache miss classification used in Memspy and
exploit the speed/detail tradeoff in a way similar to Paradyn. SimOS also
employs both dynamic and post-run event classification. Almost any event
of interest can be sent in real-time to a separate event processing compo-
nent. A user can observe workload behavior as it occurs, dynamically
adjusting event collection as desired. In addition, several core event counts
are periodically saved to a log file to allow examining aspects of workload
execution without requiring the entire simulation to be re-executed.

Once the events have been appropriately classified, the data must be
presented effectively to the user. Although SimOS’s event classification
mechanisms are quite mature, its visualization tools are less refined than
several performance analysis tools [Reed et al. 1995; Bunde et al. 1996]. To
address this deficiency, the next major area of SimOS research will
concentrate on interfaces and visual metaphors for effective presentation of
processed event information.

7. CONCLUSIONS

By combining the increasing power of today’s computers with advances in
high-speed machine simulation, we have shown that entire computer
systems can be effectively studied using low-level machine simulators.
SimOS has been successfully used by a wide range of researchers, from
computer architects studying processor pipeline micro-architecture to pro-
grammers building transaction processing database systems. Because of its
flexibility and system visibility, SimOS has been particularly useful to
operating system researchers.

We have found some key features of SimOS critical for studying complex
systems. The first key feature is the explicit speed/detail tradeoff offered by
the interchangeable simulation models. This has enabled SimOS to have
both the speed to position complex workloads and the accuracy to study
them in detail. We found three points on the speed/detail tradeoff curve to
be of particular interest. Emulation mode focuses on simulation speed and
is used to position workloads for detailed study. Rough characterization
mode provides estimates of workload performance at relatively high speeds.
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Finally, the accurate mode is made up of a collection of detailed simulation
models used to generate the final performance data.

The second key feature of SimOS is its ability to flexibly and nonintru-
sively map low-level machine events generated by the simulator to abstrac-
tions meaningful to the user. To accomplish this, SimOS uses the Tcl
scripting language extended with annotations, selectors, and detail tables.
The user can download Tcl scripts into SimOS to control the simulator, the
data that are collected, and how the data are classified.

Ultimately, the value of a tool such as SimOS is measured by the studies
it enables. By this measure SimOS has already been successful. SimOS is
freely available in source form to the research community and is being used
by a number of academic and industrial research efforts.
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